河南中考数学模拟试卷(五)(含答案)

合集下载

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。

备战2022年河南中考数学仿真卷(5)(解析版)

备战2022年河南中考数学仿真卷(5)(解析版)

备战2022年河南中考数学仿真卷(5)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数:4-, 2.8-,0,|4|-,其中比3-小的数是( )A .4-B .|4|-C .0D . 2.8-【答案】A【详解】|4|4-=Q ,43 2.80|4|\-<-<-<<-,\其中比3-小的数是4-.故选:A .2.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是( )A .B .C .D .【答案】A 【详解】从左面看易得左视图为:.故选:A .3.(3分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为94.410´人,94.410´的原数是( )A .440000000B .44000000000C .440000000000D .4400000000【答案】D【详解】94.4104400000000´=,故选:D .4.(3分)下列运算一定正确的是( )A .224a a a +=B .248a a a =gC .248()a a =D .222()a b a b +=+【答案】C【详解】A 、2222a a a +=,原计算错误,故此选项不合题意;B 、246a a a =g ,原计算错误,故此选项不合题意;C 、248()a a =,原计算正确,故此选项合题意;D 、222()2a b a ab b +=++,原计算错误,故此选项不合题意.故选:C .5.(3分)如图所示,//AB CD ,35a Ð=°,C D Ð=Ð,则A Ð的度数是( )A .35°B .145°C .155°D .55°【答案】B【详解】//AB CD Q ,35D a \Ð=Ð=°,C D Ð=ÐQ ,35C \Ð=°,//AB CD Q ,180C A \Ð+Ð=°,145A \Ð=°,故选:B .6.(3分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ì+=ïïíï+=ïîB .15022503x y x y ì+=ïïíï+=ïîC .15022503x y x y ì+=ïïíï+=ïîD .15022503x y x y ì+=ïïíï+=ïî【答案】A【详解】设甲的钱数为x ,乙的钱数为y ,依题意,得:15022503x y x y ì+=ïïíï+=ïî.故选:A .7.(3分)以x 为自变量的二次函数222(2)1y x b x b =--+-的图象不经过第三象限,则实数b 的取值范围是( )A .54b …B .1b …或1b -…C .2b …D .12b ……【答案】A【详解】Q 二次函数222(2)1y x b x b =--+-的图象不经过第三象限,Q 二次项系数1a =,\抛物线开口方向向上,当抛物线的顶点在x 轴上或上方时,则210b -…,△22[2(2)]4(1)0b b =---…,解得54b …;当抛物线的顶点在x 轴的下方时,设抛物线与x 轴的交点的横坐标分别为1x ,2x ,122(2)0x x b \+=->,210b ->,\△22[2(2)]4(1)0b b =--->,①20b ->,②210b -…,③由①得54b <,由②得2b >,\此种情况不存在,54b \…,故选:A .8.(3分)二次函数2(1)5y x =--+,当m x n ……且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( )A .52B .2C .32D .12【答案】D【详解】二次函数2(1)5y x =--+的大致图象如下:.①当01m x n <<……时,当x m =时y 取最小值,即22(1)5m m =--+,解得:2m =-或2m =(舍去).当x n =时y 取最大值,即22(1)5n n =--+,解得:2n =或2n =-(均不合题意,舍去);②当01m x n <<……时,当x m =时y 取最小值,即22(1)5m m =--+,解得:2m =-.当1x =时y 取最大值,即22(11)5n =--+,解得:52n =,③当0m x n <<…时,x n =时y 取最小值,1x =时y 取最大值,22(1)5m n =--+,52n =,118m \=,0m <Q ,\此种情形不合题意,所以51222m n +=-+=.故选:D .9.(3分)如图,在Rt ABC D 中,60BAC Ð=°,点A 的坐标为(1,0)-,点B 的坐标为(2,4),将ABC D 绕点A 顺时针旋转(090)a a °<<°,得到△11AB C ,若1AC x ^轴,则点1B 的坐标为( )A .52-B .5(,2C .5(,2D .52-【答案】A【详解】过点1B 作1B H x ^轴于H .(1,0)A -Q ,(2,4)B ,5AB \==,1160BAC B AC Ð=Ð=°Q ,1AC OA ^,130OAB \Ð=°,111522B H AB \==,1AH H ==OH \=1B \,5)2-.故选:A .10.(3分)如图1,在等边ABC D 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP x =,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边ABC D 的周长为( )A .4B .C .12D .【答案】C【详解】由图2可得y =最小值,ABC D Q 为等边三角形,分析图1可知,当P 点运动到DP AB ^时,DP 长为最小值,\此时DP =60B Ð=°Q ,sin 60\°=解得2BD =,D Q 为BC 的中点,4BC \=,ABC D Q 为等边三角形,\等边ABC D 的周长为12.故选:C .二.填空题(共5小题,满分15分,每小题3分)11.(3在实数范围内有意义,则x 的范围是 .【答案】1x …且2x ¹【详解】Q在实数范围内有意义,\1020x x -ìí-¹î…,解得1x …且2x ¹.故答案为:1x …且2x ¹.12.(3分)从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是2 2.25s =甲,2 1.81s =乙,2 3.42s =丙,你认为最适合参加决赛的选手是 (填“甲”或“乙”或“丙” ).【答案】乙【详解】2 2.25s =Q 甲,2 1.81s =乙,2 3.42s =丙,222s s s \>>乙丙甲,\最适合参加决赛的选手是乙.故答案为:乙.13.(3分)一个不透明的盒子中装有三个红球和两个白球.这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从剩余的球中随机摸出一个球,则两次摸到相同颜色的球的概率为 .【答案】25【详解】列表得:第二次第一次红球1红球2红球3白球1白球2红球1(红1,红2)(红3,红1)(红1,白1)(红1,白2)红球2(红2,红1)(红3,红2)(红2,白1)(红2,白2)红球3(红3,红1)(红3,红2)(红3,白1)(红3,白2)白球1(白1,红1)(白1,红2)(红3,白1)(白1,白2)白球2(白2,红1)(白2,红2)(红3,白2)(白2,白1)Q 共有20种等可能的结果,两次都摸到相同颜色的球有8种情况,\两次都摸到相同颜色的球概率为82205=.14.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点P 为AB 边上一动点(不与点A ,B 重合),PE OA ^于点E ,PF OB ^于点F ,若20AC =,10BD =,则EF 的最小值为 .【答案】【详解】连接OP ,Q 四边形ABCD 是菱形,AC BD \^,1102AO AC ==,152BD BD ==,AB \==,PE OA ^Q 于点E ,PF OB ^于点F ,90EOF OEP OFP \Ð=Ð=Ð=°,\四边形OEPF 是矩形,EF OP \=,Q 当OP 取最小值时,EF 的值最小,\当OP AB ^时,OP 最小,1122ABO S OA OB AB OP D \=×=×,OP \==EF \的最小值为,故答案为:.15.(3分)如图,在ABC D 中,120A Ð=°,8AB AC ==,M 是边AB 上一点,且3BM AM =,N 是BC 边上的一动点,将BMN D 沿MN 折叠得到MNB ¢D ,当点B ¢落在ABC D 的一条边上时,B C ¢的长为 .【答案】或9-【详解】在ABC D 中,120A Ð=°,8AB AC ==,3BM AM =,BC \==,6BM =,30B C Ð=Ð=°,分两种情况:①如图1,当B ¢落在BC 边上时,此时MN BC ^,在Rt BMN D 中,cos 6BN B BM =×==由折叠可知:B N BN ¢==B B \¢=,B C BC B B \¢=-¢=;②如图2,当B ¢落在AC 边上时,过点B ¢作B P BA ¢^于点P ,交BC 于点Q ,30AB P QB C C \Т=Т=Ð=°,设2B C a ¢=,则82AB a ¢=-,142AP AB a \=¢=-,)B P a ¢=-,由折叠可知:6BM B M =¢=,6MP a =-,在Rt △B MP ¢中,根据勾股定理得:222MP B P B M +¢=¢,222(6))]6a a \-+-=,解得1a =28a B C =¢<Q ,舍去),29B C a \¢==.综上所述:B C ¢的长为或9故答案为:或9-三.解答题(共8小题,满分75分)16.(8分)(1)计算:10(2)(3---+.(2)化简:2214()244x x x x x x x ----¸+++.【答案】见解析【详解】(1)10(2)(3---+1212=-++12=-;(2)2214()244x x x x x x x ----¸+++224(1)(2)(2)4x x x x x x x ---+=×+-24(2)(2)4x x x x x -+=×+-2x x+=.17.(9分)2021年7月,教育部印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生课外作业完成时间不超过90分钟.为了了解学生每天完成课外作业时间,某校数学兴趣小组决定对本校学生每天完成课外作业所用时间进行调查,他们随机抽取本校部分学生进行了问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,列表如下:等级A B C D 每天完成课外作业时间(分钟)30t <3050t <…5090t <…90120t <…根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?将条形统计图补充完整.(2)学生每天完成课外作业时间的中位数落在 等级.(3)请对该校学生每天完成课外作业时间作出评价,并提出两条合理化建议.【答案】见解析【详解】(1)本次抽样调查共抽取学生2010%200¸=(名),D级人数:20020406080---=,如图,(2)共有200名学生,前三个等级的人数和为204060120++=,\学生每天完成课外作业时间的中位数落在C等级,故答案为:C;(3)该校部分学生每天完成课外作业时间没有达到意见要求.建议:①该校各学科授课教师要提高教学效率;②教师要有效地引导学生高效学习,基于学情布置作业,作业要量少而精.18.(9分)如图,在ABCÐ=°,以AB为直径作Oe,分别与AC,BCBAC==,45D中,6AB AC cm相交于点E,D,连接DE,BE,点F从点A出发,在直径AB的上方沿 AB以1/cm s的速度向点B运动,连接AF,BF.设点F运动的时间为()t s.(1)求证:ABC DEC∽.D D(2)填空:①当t= s时,四边形AEBF为正方形;②当t = s 时,12ABF ABE S S D D =.【答案】见解析【详解】(1)证明:Q 四边形ABCD 是圆内接四边形,180ABC DEA \Ð+Ð=°,180DEA DEC Ð+Ð=°Q ,ABC DEC \Ð=Ð,C C Ð=ÐQ ,ABC DEC \D D ∽;(2)解:①当32t s p =时,四边形AEBF 为正方形,AB Q 为O e 直径,90F AEB \Ð=Ð=°,45BAE Ð=°Q ,45ABE BAE \Ð=Ð=°,AE BE \=,Q 四边形AEBF 是正方形,90FAE \Ð=°,45BAF \Ð=°,AFB \D 是等腰直角三角形,\AF BF =,6AB cm =Q ,3OA cm \=,\ AF 的长为90331802p p ×´=,Q 点F 的速度为1/cm s ,32t p \=,故当32t s p =时,四边形AEBF 为正方形,故答案为:32p ;②当12t p =或52s p 时,12ABF ABE S S D D =.ABE D Q 是等腰直角三角形,211922ABE S AB D \=´=,连接OF ,过FH AB ^于H ,12ABF ABE S S D D =Q .\1196222AB FH FH ×=´=,32FH \=,312sin 32FH FOH OF \Ð===,30FOA \Ð=°,\ 30311802AF p p ×´==,12t p \=,当 BF AF <时,150AOF Ð=°,\ AF 的长150351802p p ×´==,52t p \=,综上所述,当12t p =或52s p 时,12ABF ABE S S D D =.19.(9分)如图,在矩形OABC 中,4BC =,OC ,OA 分别在x 轴、y 轴上,对角线OB ,AC 交于点E ;过点E 作EF OB ^,交x 轴于点F .反比例函数(0)k y x x=>的图象经过点E ,且交BC 于点D ,已知5OEF S D =,1CD =.(1)求OF 的长;(2)求反比例函数的解析式;(3)将OEF D 沿射线EB O E F ¢¢¢,则EF 的对应线段E F ¢¢的中点 (填“能”或“不能” )落在反比例函数(0)k y x x =>的图象上.【答案】见解析【详解】(1)连接BF ,由矩形的性质可知,OE BE =,5BEF OEF S S D D \==,10OBF S D \=,\1102OF BC ×=,即14102OF ´´=,5OF \=;(2)OE BE =Q ,EF OB ^,5BF OF \==,3FC\===,8OC OF CF\=+=,1CD=Q,(8,1)D\,Q反比例函数(0)ky xx=>的图象经过点D,818k\=´=,\反比例函数的解析式为8yx=;(3)(8,4)BQ,(4,2)E\,(5,0)FQ,EF\中点的坐标为9(2,1),将OEFD沿射线EB O E F¢¢¢,则EF的对应线段E F¢¢的中点为9(12+,112+,即11(2,3)2,Q113822´¹,EF\的对应线段E F¢¢的中点不能落在反比例函数(0)ky xx=>的图象上.故答案为:不能.20.(9分)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?【答案】见解析【详解】(1)设销售一台A 型新能源汽车的利润是x 万元,销售一台B 型新能源汽车的利润是y 万元,依题意得:25 3.12 1.3x y x y +=ìí+=î,解得:0.30.5x y =ìí=î.答:销售一台A 型新能源汽车的利润是0.3万元,销售一台B 型新能源汽车的利润是0.5万元.(2)设需要采购A 型新能源汽车m 台,则采购B 型新能源汽车(22)m -台,依题意得:1215(22)300m m +-…,解得:10m ….答:最少需要采购A 型新能源汽车10台.21.(10分)小明根据学习函数的经验,对函数2|2|2y x x =--的图象与性质进行了探究,下面是小明的探究过程,请补充完整:x ¼2-1-01234¼y ¼6m 2-1-2-n 6¼(1)在给定的平面直角坐标系中;画出这个函数的图象,①列表,其中m = ,n = .②描点:请根据表中数据,在如图所示的平面直角坐标系中描点:③连线:画出该函数的图象.(2)写出该函数的两条性质: .(3)进一步探究函数图象,解决下列问题:①若平行于x 轴的一条直线y k =与函数2|2|2y x x =--的图象有两个交点,则k 的取值范围是 ;②在网格中画出2y x =-的图象,直接写出方程2|2|22x x x --=-的解为 .【答案】见解析【详解】(1)将1x =-,代入到2|2|2y x x =--中,得:|12|21y =+-=;将3x =,代入到2|2|2y x x =--中,得:|96|21y =--=;1m \=,1n =,如图:故答案为:1,1;(2)观察图象,①函数的图象关于直线1x =对称;②函数有最小值2-;故答案为:①函数的图象关于直线1x =对称;②函数有最小值2-;(3)①由图形可知,若平行于x 轴的一条直线y k =与函数2|2|2y x x =--的图象有两个交点,则k 的取值范围是2k =-或1k >-,②在网格中画出2y x =-的图象如图:由图形可知,直线2y x =-与函数2|2|2y x x =--的图象有三个交点,分别为(0,2)-、(1,1)-、(3,1),\方程2|2|22x x x --=-的解为0x =或1x =或3x =,故答案为:①2k =-或1k >-;②0x =或1x =或3x =.22.(10分)在平面直角坐标系xOy 中,抛物线23y x mx =-+-交x 轴于A ,B 两点,且点A 在点B 的左侧,交y 轴于点C ,已知对称轴为直线2x =.(1)求抛物线的解析式;(2)在y 轴上有一动点(0,)P n ,过点P 作垂直y 轴的直线交抛物线于点1(E x ,1)y ,2(F x ,2)y ,其中12x x <,当215x x -=时,求出n 的值;(3)把线段BC 沿直线x 轴的方向水平移动n 个单位长度,若线段BC 与抛物线有唯一交点,结合函数图象直接写出n 的取值范围.【答案】见解析【详解】(1)Q 抛物线的对称轴为直线22(1)m x =-=´-,4m \=,\抛物线解析式为243y x x =-+-;(2)EF y ^Q 轴,\点E 、F 为抛物线上的对称轴点,即E 、F 关于直线2x =对称,2122x x \-=-,即214x x +=,215x x -=Q ,112x \=-,292x =,当12x =-时,22112143()4(3224y x x =-+-=--+´--=-;E Q 点的纵坐标为214-,n \的值为214-;(3)当0y =时,2430x x -+-=,解得11x =,23x =,(1,0)A \,(3,0)B ,当0x =时,2433y x x =-+-=-,则(0,3)C -,C 点关于直线2x =的对称点C ¢的坐标为(4,0),当线段BC 沿直线x 轴的方向水平向左移动,使B 点移动A 点时,如图,线段BC 与抛物线有唯一交点,即02n <…;当线段BC 沿直线x 轴的方向水平向右移动,使C 点移动C ¢点时,线段BC 与抛物线有唯一交点,即04n <…;综上所述,n 的取值范围为02n <….23.(11分)在ABC D 中,CA CB m ==,在AED D 中,12DA DE m ==,请探索解答下列问题.【问题发现】(1)如图1,若90ACB ADE Ð=Ð=°,点D ,E 分别在CA ,AB 上,则CD 与BE 的数量关系是 ,直线CD 与BE 的夹角为 ;【类比探究】(2)如图2,若120ACB ADE Ð=Ð=°,将AED D 绕点A 旋转至如图2所示的位置,则CD 与BE 之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若2m =,将AED D 绕点A 旋转过程中,当B ,E ,D 三点共线.请直接写出CD的长.【答案】见解析【详解】(1)90ACB ADE Ð=Ð=°Q ,CA CB =,DA DE =,45A B DEA \Ð=Ð=Ð=°,AB \==,AE ==,12CD AC AD m \=-=,BE AB AE =-=,BE \=,45A Ð=°Q ,\直线CD 与BE 的夹角为45°,故答案为:BE =,45°;(2)不满足,BE =,直线CD 与BE 的夹角为30°,理由如下:如图2,过点C 作CH AB ^于H ,延长CD 、BE 交于点F ,CA CB =Q ,AH HB \=,120ACB ADE Ð=Ð=°Q ,CA CB =,DA DE =,30CAB CBA \Ð=Ð=°,30DAE DEA Ð=Ð=°,2AC CH \=,CAD BAE Ð=Ð,由勾股定理得:AH =,AB \,同理可得:AE =,\AB AE AC AD=,CAD BAE Ð=ÐQ ,CAD BAE \D D ∽,\BE AB CD AC==,ACD ABE Ð=,BE \=,30F CAB Ð=Ð=°,BE \=,直线CD 与BE 的夹角为30°;(3)如图3,点E 在线段BD 上,2m =Q ,1AD DE \==,AB =,由勾股定理得:BD ==,1BE BD DE \=-=-,CD\==,如图4,点D在线段BE上,BE=CD\==,综上所述:当B,E,D三点共线.CD.。

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。

2024年河南省中考数学模拟卷 含答案

2024年河南省中考数学模拟卷   含答案

2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是  .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为  .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为  .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m =  ,n = ,p =  ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。

河南省中考数学模拟测试卷-附参考答案与解析

河南省中考数学模拟测试卷-附参考答案与解析

河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若|a|=3,则a的值是( )A. −3B. 3C. 13D. ±32. 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A. 1.05×105B. 0.105×10−4C. 1.05×10−5D. 105×10−73.如图所示的几何体的俯视图为( )A.B.C.D.4. 计算2aa+1÷aa+1的结果是( )A. 2B. 2a+2C. 1D. 4aa+15.如图,将一副三角尺按图中所示位置摆放,点F在AC上,AB//DE,则∠EFC的度数是( )A. 65°B. 60°C. 70°D. 75°6. 防晒衣的主要作用是阻隔太阳紫外线的直接照射,如图为某品牌防晒衣某分店2022年1~8月的销量(单位:件)情况.这8个月销量(单位:件)的中位数是( )A. 1952B. 2387C. 2822D. 29847.如图,E是四边形ABCD的边BC延长线上的一点,且AB//CD,则下列条件中不能判定四边形ABCD是平行四边形的是( )A. ∠D=∠5B. ∠3=∠4C. ∠1=∠2D. ∠B=∠D8. 若关于x的一元二次方程x2+6x−a=0有实数根,则a的取值范围是( )A. a≤−9B. a>−9C. a≥−9D. a≥99.如图,等边△ABC的边长为1,D是AC和BC边上的一点,过D作AB边的垂线,交AB于G,设线段AG的长度为x,Rt△AGD的面积为y,则y与关于x的函数图象正确的是( )A. B.C. D.10. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2 (1,−1),A3(0,0),则依图中所示规律,A2022的坐标为( )A. (2,1010)B. (2,1011)C. (1,−1010)D. (1,−1011)二、填空题(本大题共5小题,共15.0分)11. 一个二次三项式分解因式后,其中一个因式为x+1,请写出一个满足条件的二次三项式:______.12. 如图,在△ABC中,AC=BC,以点A为圆心,任意长为半径画弧,分别交AB、AC于点M、N,再分别以点M、N为圆心,MN的长为半径画弧,两弧交于点P,连接AP并延长交BC大于12于点D,若∠C=36°,则∠ADB的度数是______.13. 2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是______.14.正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG=______.15. 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形AB CD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.三、解答题(本大题共8小题,共75.0分。

2022年河南省中考数学模拟试卷(五)

2022年河南省中考数学模拟试卷(五)

(满分120分,建议用时100分钟)一、选择题(每小题3分,共30分)1. 2 022的相反数是( )A .-2 022B .2 022C .12022D .12022- 2. 下列说法正确的是( )A .为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B .若甲组数据的方差s 2甲=0.03,乙组数据的方差是s 2乙=0.2,则乙组数据比甲组数据稳定C .郑州市明天一定会下雨D .一组数据4,5,6,5,2,8的众数是53. 如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A .仅有甲和乙相同B .仅有甲和丙相同C .仅有乙和丙相同D .甲、乙、丙都相同4. 如图,已知AE 交CD 于点O ,AB ∥CD ,OC =OE ,∠A =50°,则∠C 的大小为( )A .10°B .15°C .25°D .30°5. 光的速度约是3×105 km/s ,太阳光照射到地球表面所需的时间约是5×102 s ,那么地球与太阳之间的距离约是(用科学记数法表示)( ) A .1.5×107 kmB .1.5×108 kmC .15×107 kmD .15×108 km 6. 在平面直角坐标系内,点A (2,3),B (-1,4),C (2,a )分别在三个不同的象限.若反比例函数k y x =(k ≠0)的图象经过其中两点,则a 的值为( )A .-3B .-2C .2D .3 7. 定义运算:a ※b =2ab 2-ab -1.例如:1※2=2×1×22-1×2-1=5.则方程1※x =-2的根的情况为( ) A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 8. 冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染,若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是( ) A .3x (x +1)=363B .3+3x +3x (1+x )=363C .3+3x +3x 2=363D .3+3(1+x )+3(1+x )2=363甲212乙212丙212OEDC B A2022年河南中考数学模拟试卷(五)9. 如图,在平面直角坐标系xOy 中,Rt △AOB 的直角顶点B 在y 轴上,点A 的坐标为(1,将Rt △AOB沿直线y =-x 翻折,得到Rt △A′OB′,过A′作A′C ⊥OA′交y 轴于点C ,则点C 的坐标为( )A .(0,-B .(0,-3)C .(0,-4)D .(0,-)第9题图 第10题图10. 如图,在△ABC 中,AB =ACBAC =120°,分别以点A ,B 为圆心,以AB 的长为半径作弧,两弧相交于M ,N 两点,连接MN 交BC 于点D ,连接AD ,AN ,则△ADN 的周长为( )A.3 B.3- C.2- D.2二、填空题(每小题3分,共15分)11. 请写出一个大于-4且小于-1的无理数__________.12. 若不等式(a -3)x <3-a 的解集在数轴上表示如图所示,则a 的取值范围是_________.13. 如图是超市的两个摇奖转盘,只有当两个转盘指针同时指在偶数上时才能获一等奖,则摇奖人中一等奖的概率是___________.14. 如图,四边形ABCD 为菱形,AB =3,∠ABC =60°,点M 为BC 边上一点且BM =2CM ,过M 作MN ∥AB 交AC ,AD 于点O ,N ,连接BN .若点P ,Q 分别为OC ,BN 的中点,则PQ 的长度为__________.第14题图 第15题图 15. 如图,扇形AOB 中,OA =3,∠AOB =60°,点C 是AB ︵上的一个定点(不与A ,B 重合),点D ,E 分别是OA ,OB 上的动点,则△CDE 周长的最小值为________.三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值:2311244a a a a -⎛⎫⎛⎫-÷ ⎪ ⎪+++⎝⎭⎝⎭,其中2a =.N M CD B APOQ N D C M BAO17. (9分)某校八、九年级各有学生200人,为了了解学生的运动状况,从八、九年级各随机抽取40名学生进行了体能测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格) a .八年级学生成绩的频数分布直方图如图(数据分为五组:50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b .八年级学生成绩在70≤x <80这一组的是:70 71 73 73 73 74 76 77 78 79;c .九年级学生成绩的平均数、中位数、众数、优秀率如表:(1)在此次测试中,小腾的成绩是74分,在年级排名是第17名,由此可知他是___________年级的学生(填“八”或“九”);(2)假设八、九年级全体学生都参加了此次测试.①预估九年级学生达到优秀的约有___________人;②如果年级排名在前70名的学生可以被评选为“运动达人”,预估八年级学生至少要达到___________分才可以入选.(3)根据上述信息,推断哪个年级学生运动状况更好,并说明理由.18. (9分)中原福塔,又名“河南广播电视塔”,是郑州市著名地标之一.小明和小亮利用卷尺和自制的测角仪测量福塔的高度.如图,小明站在点A 处测得福塔顶端D 的仰角为60°,小亮站在点B 处测得福塔顶端D 的仰角为72.3°.已知测角仪高度为1 m ,两人相距100 m (点A ,B ,C 在一条直线上).(1)求中原福塔CD 的高度;(结果精确到0.1 m .参考数据:sin72.3°≈0.95,cos72.3°≈0.30,tan72.3°≈3.13)(2)“景点简介”显示,中原福塔总高388 m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.72.3°60°F EDC B A19.(9分)“双十一”期间,甲、乙两家商场以相同价格销售同样的商品,它们的优惠方案分别为:甲商场,一次购物中不超过m元无优惠,超过m元后的价格部分打n折;乙商场,一次购物中不超过600元无优惠,超过600元后的价格部分打六折.设商品原价为x元(x≥0),购物应付金额为y元.(1)求在乙商场购物时y2与x之间的函数关系;(2)如图所示,在甲商场购物时y1与x之间的函数图象为线段OA和射线AC,在乙商场购物时y2与x之间的函数图象为线段OB和射线BC,且点A在OB上,请直接写出AC与BC的交点C的坐标,以及甲商场的优惠方案;(3)根据函数图象,请直接写出“双十一”期间选择哪家商场购物更优惠.20.(9分)婆罗摩笈多(公元598-660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,⊙O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E 作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在⊙O的内部,AB⊥CD,垂足为E,EF⊥BC,____________________.求证:______________________________.21. (10分)已知抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A ,B 两点,其中点B 在点A 的右侧,与y 轴交于点C .(1)求点A ,B 的坐标;(2)若a =-1,点P 为抛物线上一点且在第一象限内,求△BCP 面积的最大值;(3)若M (0,2),N (4,2),抛物线与线段MN 只有一个公共点,结合函数图象,求a 的取值范围.22. (10分)如图,在△ABC 中,AE 平分∠BAC 交BC 于点E ,D 是AB 边上一动点,连接CD 交AE 于点P ,连接BP .已知AB =6 cm ,设B ,D 两点间的距离为x cm ,B ,P 两点间的距离为y 1 cm ,A ,P 两点间的距离为y 2 cm .小明根据学习函数的经验,分别对函数y 2,y 2随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值:1),(x ,y 2),并画出函数y 1,y 2的图象:(3)结合函数图象,回答下列问题:①当AP =2BD 时,AP 的长度约为__________cm ;②当BP 平分∠ABC 时,BD 的长度为__________cm .PE DC BA23. (11分)在Rt △ABC 与Rt △ECD 中,∠ABC =∠ECD =90°,∠ACB =∠EDC =30°,AB =2,CD =3,连接BE ,以BE ,AB 为邻边作平行四边形ABEF ,连接BD ,CF .(1)如图1,当点E 在边BC 上时,FC BD的值为________,直线FC 与直线BD 的位置关系是__________. (2)将Rt △ECD 由图1的位置绕点C 顺时针旋转一周.①(1)中的两个结论是否始终成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由. ②当以B ,C ,D ,E 为顶点的四边形是平行四边形时,请直接写出FC 的长度.图1FDCE B A A B E C DF 图2。

2022届河南省郑州市市级名校中考五模数学试题(含答案解析)

2022届河南省郑州市市级名校中考五模数学试题(含答案解析)

2022届河南省郑州市市级名校中考五模数学测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°2.在0.3,﹣3,0,﹣3这四个数中,最大的是( ) A .0.3 B .﹣3 C .0 D .﹣33.下列事件中是必然事件的是( )A .早晨的太阳一定从东方升起B .中秋节的晚上一定能看到月亮C .打开电视机,正在播少儿节目D .小红今年14岁,她一定是初中学生4.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .705.如图,已知AB ∥CD ,DE ⊥AC ,垂足为E ,∠A =120°,则∠D 的度数为( )A.30°B.60°C.50°D.40°6.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=2,BP=3,AP的最大值是()A.2+3 B.4 C.5 D.327.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于()A.40°B.70°C.60°D.50°8.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A.0.13×105B.1.3×104C.1.3×105D.13×1039.下列图案是轴对称图形的是()A.B.C.D.10.如图,以O为圆心的圆与直线y x3=-+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π11.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南中考数学模拟试卷(五)(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1.下列四个数中,比0小的是( )A .﹣2B .1C .D .42. 大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1063. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )德美种是容宽 德美种是容宽德美种是容宽德美种是容宽A .B .C .D .4. 下列计算正确的是( )A .a 3÷a 2=aB .(﹣2a 2)3=8a 6C .2a 2+a 2=3a 4D .(a ﹣b )2=a 2﹣b 2 5. 如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,过点F 作FG ⊥FE ,交直线AB 于点G ,若∠1=42°,则∠2的大小是( )A .56°B .48°C .46°D .40°6. 小明在去年暑假帮某服装店买卖T 恤衫时发现:在一段时间内,T 恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T 恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x 元,那么下列所列方程正确的是( )A .(80)(20) 1 200x x -+=B .(80)(202) 1 200x x -+=C .(40)(20) 1 200x x -+=D .(40)(202) 1 200x x -+= 7. 在下列调查中,适宜采用普查方式的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .监测一批电灯泡的使用寿命D .了解郑州电视台《郑州大民生》栏目的收视率8. 如图,▱ABCD 中,AB=4,BC=6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A.6 B.8 C.10 D.129.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7第9题图第10题图10.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是( )A.B.C.D.二、填空题(每小题3分,共15分)11. 计算:=__________.12. 抛物线y=ax2+bx+c经过点(﹣3,0)和(1,0),则其对称轴是__________.13. 有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.14. 已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为.第14题图第15题图15.如图,矩形ABCD中,AB=4,AD=9,点E、F分别是BC、AD上的动点,∠FEC 为钝角,沿直线EF翻折矩形,点C、D的对应点分别为C′、D′,若C′、D′、B在同一条直线上,且=时,则AF的长为__________.三、解答题(本大题共8小题,共75分)16.(8分)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根..17.(9分).某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=__________,并写出该扇形所对圆心角的度数为__________,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?18.(9分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上的一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时.①四边形BECD是__________形;②则当∠A等于__________度时,四边形BECD是正方形.19.(9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A观测到∠PAB=67.5°,同时,巡逻船B观测到∠PBA=36.9°,两巡逻船相距63海里,求此时巡逻船A与落水人P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)67.5°36.9°PAB20.(9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22m k +称为朋友距离.如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向_____,再向下平移7个单位,相应的朋友距离为_____;(2)探究二:将函数451x y x +=+化成y =__________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.21.(9分)某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x 千克(x >0),总费用为y 元,现有两种购买方式.方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)方式二:总费用y (元)与购买茶叶数量x (千克)满足下列关系式:y=.请回答下面问题:(1)写出购买方式一的y 与x 的函数关系式;(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱;(3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?22.(10分)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(-2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD ∥y轴,交直线AC于点D.(1)求该抛物线的函数关系式.(2)当△ADP是直角三角形时,求点P的坐标.(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请简单说明理由.河南中考数学模拟试卷(五)(答案)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 9 10 答案BACABDBCCD二、填空题(每小题3分,共21分) 题号 1112 13 14 15答案32-1x -=75.33三、解答题(本大题共8小题,共75分) 16. 解:(1)∵方程没有实数根,∴b 2﹣4ac=[﹣2(m+1)]2﹣4m 2=8m+4<0, ∴m <﹣,∴当m <﹣时,原方程没有实数根;(2)由(1)可知,当m ≥﹣时,方程有实数根, 当m=1时,原方程变为x 2﹣4x+1=0, 设此时方程的两根分别为x 1,x 2, 解得x 1=2+,x 2=2﹣. 17.解:(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%, 圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天; (3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人. 18.证明:∵DE ⊥BC , ∴∠DFB=90°, ∵∠ACB=90°, ∴∠ACB=∠DFB , ∴AC ∥DE ,∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形, ∴CE=AD ;(2)解:①四边形BECD 是菱形,理由如下: ∵D 为AB 中点, ∴AD=BD , ∵CE=AD , ∴BD=CE , ∵BD ∥CE ,∴四边形BECD 是平行四边形, ∵∠ACB=90°,D 为AB 中点, ∴CD=AB=BD ,∴四边形BECD 是菱形; 故答案为:菱;②当∠A=45°时,四边形BECD 是正方形;理由如下: ∵∠ACB=90°,当∠A=45°时,△ABC 是等腰直角三角形, ∵D 为AB 的中点, ∴CD ⊥AB , ∴∠CDB=90°,∴四边形BECD 是正方形; 故答案为:45.19. 过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒. 在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒. ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36. ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里). ∴巡逻船A 与落水人P 的距离为39海里.21.(9分)解:(1)y=130x+11500;(2)∵x >150,∴对于方式二有:y=150x+7500, 令150x+7500>130x+11500, 则x >200,∴当150<x <200时,选择方式二购买更省钱;当x=200时,选择两种购买方式花费都一样;当x >200时,选择方式一购买更省钱;(3)设乙商家购买茶叶x 千克,若x≤150,则200x+130(400﹣x)+11500=74600,解得x=158>150(不符合题意),若x>150,则150x+7500+130(400﹣x)+11500=74600,解得x=180.答:乙商家购买茶叶180千克.22.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,∴DF=BD,∠BFD=60°,∵BD=CD,∴DF=CD∴∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADB=∠ADC=90°,∴∠ADF=∠ECD=30°,在△AFD与△EDC中,,∴△AFD≌△DCE(ASA),∴AD=DE;(2)AD=DE;证明:如图2,过点D作DF∥AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°,又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°,∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD,∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠ADF=∠EDC,在△AFD≌△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:∵BC=CD ,∴AC=CD ,∵CE 平分∠ACD ,∴CE 垂直平分AD ,∴AE=DE ,∵∠ADE=60°,∴△ADE 是等边三角形,∴△ABC ∽△ADE ,在R t △CDO 中,, ∴,∴, ∴==.23.解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y . 将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分 (2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x , 32-=x .∵点A 在点B 的左边, ∴B(-1,0), A (-3,0). ∴P 1(-1,0). …………………………………………5分②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC = 90, ∴∠OAD 2= 45.当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2 . 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分 ∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x )=0.0652=++x x , ∴21-=x , 32-=x (舍). ∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分 F 1(-22-,1), F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形PAFE 是平行四边形. ∵P (-2,-1), ∴可令F (x ,1).∴1342=++x x .解之得: 221--=x , 222+-=x . ∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。

相关文档
最新文档