2005年浙江专升本《高数二》试卷及答案

合集下载

2005年考研数学二真题答案解析

2005年考研数学二真题答案解析

1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得x xx x y ys i n 1c o s )s i n 1l n (1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即x x y x ln ][22=',两边积分得 Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k 【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算.6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。

浙江专升本《高数二》试卷及答案

浙江专升本《高数二》试卷及答案

2005年浙江省普通高校“专升本”联考《高等数学(二)》试卷1.函数x e x x xy --=)1(sin 2的连续区间是____________________.2.___________________________)4(1lim 2=-+-∞→x x x x .3.写出函数的水平渐近线和垂直渐近线4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy .(2)当θ是常数,r 是参数时,则=dxdy_____________.二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , )(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim000=--+→hh x f h x f h).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0,00,0x ,)(22x e x e x f x x ,则积分⎰-11)(dx x f =( ). .2)( ,e1)( 0)( ,1)(D C B A -4.可微函数在点处有是函数在点处取得极值的 ()。

2005年考研数学二真题及解析

2005年考研数学二真题及解析

a+b = π.
2D
24
2
应选(D).
11…【分析】 (同 2005 年数学一题二(9),这里从略)
12...【详解】 由于函数 f(x)在 x=0,x=1 点处无定义,因此是间断点.
且 lim f (x) = ∞ ,所以 x=0 为第二类间断点; x→ 0
lim f (x) = 0 , lim f (x) = −1,所以 x=1 为第一类间断点,故应选(D).
dy = y′(π )dx = −π dx. x= π
3
.(2)【详解】
因为 a= lim
f (x)
(1 + x) 2
= lim
= 1,
x x →+∞
x→+∞ x x
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问
3
3
b = lim [ f ( x) − ax] = lim (1 + x) 2 − x 2 = 3 ,于是所求斜渐近线方程为 y = x + 3 .
D = {(x, y) x2 + y2 ≤ 1}上的最大值和最小值. 4
(21)(本题满分 9 分)
计算二重积分 ∫∫ x2 + y2 − 1dσ ,其中 D ={(x, y) 0 ≤ x ≤1,0 ≤ y ≤1}.
D
(22)(本题满分 9 分)
确 定 常 数 a, 使 向 量 组 α1 = (1,1, a)T , α 2 = (1, a,1)T , α 3 = (a,1,1)T 可 由 向 量 组
x→+∞
x→+∞
x
2
2
(3)【详解】 令 x = sin t ,则

浙江省专升本历年真题卷(完整资料).doc

浙江省专升本历年真题卷(完整资料).doc

【最新整理,下载后即可编傅】2005年浙江省普通商校“专升本”联考《高等数学(一)》试卷 一、填空题1. 函数的连续区间是c■V -(A-l)-------------------------2.lim --------- =ogY x(x +4)3.(1) x 轴在空间中的直线方程是 ___________(2)过原点且与x 轴垂直的平面方程是 ______________点X=1处连续。

5.设参数方程[s :cos2:y = r sin 2&(1)当厂是常数,&是参数时,则2=ax (2)当&是常数,厂是参数时,则字二CIX ------------二. 选择题1 •设函数y = f(x)在[°,b ]上连续可导,ce(a.b),且/ (c) = 0,则当( )时,fW 在x = C •处取得极大值。

(A) 当“ 5 X V c时,当 C V A : S /?时, f'(x)>0, (B) 当0 W X V C 时, / «>0,当c < xSb时〉 /«<o, (C) 当 <7 5 X V C 时〉 / W<o ,当 c < x S Z?时, /(A )>0,(D) 当Sx vc 时, / W<o ,当 c v x S Z?时〉2.设函数y = /(x)在点"心处可导,则4.设函数f(x)= < ("IFG,bx + 1,x=\,当 G = ____ ,b =X<1时,函数门X )在lim /(儿+3力)一/(如一2力)=( )o(A)f(x°), (B)3f'(x0), (C)4f(x°), (D)5fg・F, x> 03.设函数/(x) = < 0, x = 0,则积分£/(%>/%= ( )o-e』,x<0 _(A) — l, (3)0 (C)l, (£>)2.e5.设级数f?”和级数都发散,则级数是( ). n=l ;f=l w-l(A)发散(B)条件收敛(C)绝对收敛(D)可能发散或者可能收敛三•计算题1.求函数y = U2-x + ir的导数。

05年高数真题

05年高数真题

专升本 高等数学一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1、lim sin x xx→05等于( )A 0B 15C 1D 52、设y x=+-33,则y '等于( )A --34xB --32xC 34x -D -+-334x 3、设f x x ()cos =2,则f '()0等于( )A -2B -1C 0D 2 4. 曲线y x =3的拐点坐标是( )A (-1,-1)B (0,0)C (1,1)D (2,8) 5、sin xdx ⎰等于( )A cos xB -cos xC cos x C +D -+cos x C 6、11201+⎰x dx 等于( )A 0B π4C π2D π 7、设0()()xt x e t dt φ=+⎰,则φ'()x 等于( )A 0B e x x+22C e x x +D e x+18、设函数z e x y=+,则∂∂zx等于( ) A ex y+ B yex y+ C xex y+ D ()x y ex y++9、设函数z x y =2,则∂∂∂2zx y等于( )A x y +B xC yD 2x 10. 已知事件A 的概率P (A )=0.6,则A 的对立事件A 的概率P A ()等于( ) A. 0.3B. 0.4C. 0.6D. 0.7二、填空题:11~20小题,每小题4分,共40分。

把答案填写在题中横线上。

11、lim()x x x →-+=132____________________。

12、lim()x xx→∞-=13____________________。

13、函数y x =+ln()12的驻点为x =____________________。

14、设函数y ex=2,则y "()0=____________________。

2005年考研数学二真题及答案解析

2005年考研数学二真题及答案解析

d cos t
arctan(cos 1 cos2 t
04
【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等.
4...【分析】直接套用一阶线性微分方程 y P(x) y Q(x) 的通解公式:
y e P(x)dx [ Q(x)e P(x)dx dx C] ,
(15)(本题满分11分)
x
设函数f(x)连续,且 f (0) 0 ,求极限 lim 0 (x t) f (t)dt .
x0
x
x
f (x t)dt
0
(16)(本题满分11分)
如图, C1 和 C2
分别是
y

1 2
(1
ex)

y

ex
的图象,过点(0,1)的曲线 C3 是一
单调增函数的图象. 过 C2 上任一点M(x,y)分别作垂直于x轴和y轴的直线 lx 和 l y .
则有
m a m1 1 am2 2 amn n ,
a11 a21 am1
1
2


m


1
,
2
,,
n
a12

a22

am
2
(13)设 1, 2 是矩阵A的两个不同的特征值,对应的特征向量分别为1, 2 ,
则1 , A(1 2 ) 线性无关的充分必要条件是
(A) 1 0 . (B) 2 0 . (C) 1 0 . (D) 2 0 .
[]
(14)设A为n( n 2 )阶可逆矩阵,交换A的第1行与第2行得矩阵B,
后转化为隐函数求导.
【详解】 方法一: y (1 sin x) x = e x ln(1sin x) ,于是 y e x ln(1sin x) [ln(1 sin x) x cos x ] , 1 sin x

2005年普通专升本高等数学真题

2005年普通高等学校选拔 优秀专科生进入本科阶段考试试题高等数学一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题不得分。

1.函数xx y --=5)1ln(的定义域为( )。

A.x>1B.x<5C.1<x<5D.1<x ≤5 2.下列函数中,图形关于y 轴对称的是( )。

A.y=xcosx B.13++=x x y C.222xxy --=D. 222xxy -+=3.当x →0时,12-xe等价的无穷小量是 ( )。

A.x B.x 2 C.2x D.2x 2 4.∞→n lim 1)21(++n n=( )。

A.eB.e 2C.e 3D.e 45.设函数f(x)=⎪⎩⎪⎨⎧=≠--0,0,11x a x xx在x=0处连续,则a=( )。

A. 1 B. -1 C. 21 D. 21-6.设函数f(x)在点x=1出可导,则21)1()21(lim =--∞→hf h f h ,则=)1('f ( )。

A. 21B. 21-C.41 D. 41-7.由方程y x e xy +=确定的隐函数x(y)的导数dxdy 为( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x8.设函数f(x)具有任意阶导数,且()()[]x f x f n =)('=( )。

A.()[]1+n x f n B.()[]1!+n x f n C.()[]1)1(++n x f n D.()[]1)!1(++n x f n9.下列函数在给定区间上满足罗尔定理条件的是( )。

A.[]1,1,1)(2--=x x f B.[]1,1,)(-=-xxe x fC.[]1,1,11)(2--=xx f D. []1,1,)(-=x x f10.设)12)(1()('+-=x x x f ,),(+∞-∞∈x ,则在(21,1)内,f(x)单调( )。

2005年考研数学数学二真题及答案解析

- 1 - 2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy p ==______ . (2)曲线xx y 23)1(+=的斜渐近线方程为______ . (3)=--ò10221)2(xxxdx ______ . (4)微分方程x x y y x ln 2=+¢满足91)1(-=y 的解为______ . (5)当0®x 时,2)(kx x =a 与x x x x cos arcsin 1)(-+=b 是等价无穷小,则k= ______ . (6)设321,,a a a 均为3维列向量,记矩阵),,(321a a a =A ,)93,42,(321321321a a a a a a a a a ++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn x x f 31lim )(+=¥®,则f(x)在),(+¥-¥内(A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M Û表示“M 的充分必要条件是N ”,则必有(A)F(x)是偶函数Ûf(x)是奇函数. (B )F(x)是奇函数Ûf(x)是偶函数. (C) F(x)是周期函数Ûf(x)是周期函数. (D) F(x)是单调函数Ûf(x)是单调函数. [ ] (9)设函数y=y(x)由参数方程îíì+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ] (10)设区域}0,0,4),{(22³³£+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++òòs d y f x f y f b x f a D)()()()((A) p ab . (B) p 2ab . (C) p )(b a +. (D) p 2b a +. [ ] (11)设函数ò+-+-++=yx yx dt t y x y x y x u )()()(),(y j j , 其中函数j 具有二阶导数,y 具有一阶导数,则必有则必有(A) 2222y u x u ¶¶-=¶¶. (B ) 2222yu x u ¶¶=¶¶. (C) 222yu y x u ¶¶=¶¶¶. (D) 222x u y x u ¶¶=¶¶¶. [ ] (12)设函数,11)(1-=-x xex f 则(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ] (13)设21,l l 是矩阵A 的两个不同的特征值,对应的特征向量分别为21,a a ,则1a ,)(21a a +A 线性无关的充分必要条件是无关的充分必要条件是(A) 01¹l . (B) 02¹l . (C) 01=l . (D) 02=l . [ ] (14)设A 为n (2³n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且)0(¹f ,求极限.)()()(lim 0òò--®x xx dtt x f xdtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21xe y+=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x j =(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l与2l分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分ò¢¢¢+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos p <<=t t x 化简微分方程0)1(2=+¢-¢¢-y y x y x ,并求其满足2,10=¢===x x y y的特解. (19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:证明: (I )存在),1,0(Îx 使得x x -=1)(f ;(II )存在两个不同的点)1,0(,Îz h ,使得.1)()(=¢¢z h f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22£+=y x y x D 上的最大值和最小值. (21)(本题满分9分) 计算二重积分sd y x Dòò-+122,其中}10,10),{(££££=y x y x D . (22)(本题满分9分) 确定常数a,使向量组,),1,1(1Ta =a ,)1,,1(2Ta =a Ta )1,1,(3=a 可由向量组,),1,1(1Ta =b ,)4,,2(2Ta -=b Ta a ),,2(3-=b 线性表示,但向量组321,,b b b 不能由向量组321,,a a a 线性表示. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵úúúûùêêêëé=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上)(1)设xx y )sin 1(+=,则p=x dy= dx p - . 【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导. 【详解】 方法一:方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是,于是]sin 1cos )sin 1[ln()sin 1ln(xx x x e y x x +×++×=¢+,从而从而 p=x dy=)(dx dx y p p -=¢方法二:方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得求导,得xx x x yy sin 1cos )sin 1ln(1+++=¢, 于是于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x+×++×+=¢,故,故p=x dy=.)(dx dx y p p -=¢(2) 曲线x x y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=,1)1(lim)(lim 23=+=+¥®+¥®xx x xx f x x[]23)1(lim )(lim 2323=-+=-=+¥®+¥®xx x ax x f b x x ,于是所求斜渐近线方程为.23+=x y(3)=--ò1221)2(xx xdx4p . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则,则=--ò1221)2(xx xdx ò-22cos )sin 2(cos sin pdt t t t t =.4)arctan(cos cos 1cos 20202p pp=-=+-òt ttd(4) 微分方程x x y y x ln 2=+¢满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+¢的通解公式:的通解公式: ò+òò=-])([)()(C dx e x Q e y dxx P dxx P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为原方程等价为x y xy ln 2=+¢,于是通解为于是通解为 òò+×=+ò×ò=-]ln [1]ln [2222C xdx x x C dx e x e y dx xdx x=2191ln 31x C x x x +-,由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0®x 时,2)(kx x =a 与x x x x cos arcsin 1)(-+=b 是等价无穷小,则k= 43. 【分析】 题设相当于已知1)()(lim 0=®x x x a b ,由此确定k 即可. 【详解】 由题设,20cos arcsin 1lim )()(lim kx x x x x x x x -+=®®a b =)cos arcsin 1(cos 1arcsin lim 2x x x kx x x x x ++-+®=k 21143cos 1arcsin lim 20==-+®k x x x x x ,得.43=k (6)设321,,aa a 均为3维列向量,记矩阵维列向量,记矩阵),,(321a a a =A ,)93,42,(321321321a a a a a a a a a ++++++=B , 如果1=A ,那么=B 2 . 【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有由题设,有 )93,42,(321321321a a a a a a a a a ++++++=B=úúúûùêêêëé941321111),,(321a a a ,于是有于是有 .221941321111=´=×=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=¥®,则f(x)在),(+¥-¥内 (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=¥®n nn x x f ;当1=x 时,111lim )(=+=¥®n n x f ; 当1>x 时,.)11(lim )(3133x xx x f nn n =+=¥® 即.1,11,1,,1,)(33>££--<ïîïíì-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C). (8)设F(x)是连续函数f(x)的一个原函数,""N M Û表示“M 的充分必要条件是N ”,则必有,则必有(B) F(x)是偶函数Ûf(x)是奇函数. (B ) F(x)是奇函数Ûf(x)是偶函数. (C) F(x)是周期函数Ûf(x)是周期函数. (D) F(x)是单调函数Ûf(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为ò+=xC dt t f x F 0)()(,且).()(x f x F =¢当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F ¢=-×-¢,即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则òxdt t f 0)(为偶函数,从而ò+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程îíì+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是标是(A) 32ln 81+. (B) 32ln 81+--. (C) 32ln 8+-. (D) 32ln 8+. [ A ] 【分析】 先由x=3确定t 的取值,的取值,进而求出在此点的导数及相应的法线方程,进而求出在此点的导数及相应的法线方程,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标从而可得所需的横坐标. 【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是,于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22³³£+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++òòs dy f x f y f b x f a D)()()()((A) p ab . (B) p2ab . (C) p )(b a +. (D) p 2b a + . [ D ] 【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性. 【详解】 由轮换对称性,有由轮换对称性,有=++òòs d y f x f y f b x f a D)()()()(s d x f y f x f b y f a Dòò++)()()()(=sd x f y f x f b y f a y f x f y f b x f a Dòò+++++])()()()()()()()([21=.2241222p p s b a b a d ba D+=××+=+òò应选(D). (11)设函数ò+-+-++=yx yx dtt y x y x y x u )()()(),(y j j , 其中函数j 具有二阶导数,y具有一阶导数,则必有数,则必有(A) 2222y u x u ¶¶-=¶¶. (B ) 2222y u x u ¶¶=¶¶. (C) 222yu y x u ¶¶=¶¶¶. (D) 222xu yx u ¶¶=¶¶¶. [ B ] 【分析】 先分别求出22x u ¶¶、22yu ¶¶、y x u ¶¶¶2,再比较答案即可. 【详解】 因为)()()()(y x y x y x y x xu --++-¢++¢=¶¶y y j j ,)()()()(y x y x y x y x yu -+++-¢-+¢=¶¶y y j j ,于是 )()()()(22y x y x y x y x xu -¢-+¢+-¢¢++¢¢=¶¶y y j j ,)()()()(2y x y x y x y x y x u-¢++¢+-¢¢-+¢¢=¶¶¶y y j j ,)()()()(22y x y x y x y x y u-¢-+¢+-¢¢++¢¢=¶¶y y j j , 可见有2222yux u ¶¶=¶¶,应选(B).(12)设函数,11)(1-=-x xex f 则(B) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ] 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ¥=®)(l i m 0x f x ,所以x=0为第二类间断点;为第二类间断点; 0)(l i m 1=+®x f x ,1)(lim 1-=-®x f x ,所以x=1为第一类间断点,故应选(D). (13)设21,l l 是矩阵A 的两个不同的特征值,的两个不同的特征值,对应的特征向量分别为对应的特征向量分别为21,a a ,则1a ,)(21a a +A 线性无关的充分必要条件是性无关的充分必要条件是(A) 01¹l . (B) 02¹l . (C) 01=l . (D) 02=l . [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令方法一:令 0)(21211=++a a a A k k ,则,则022211211=++a l a l a k k k , 0)(2221121=++a l a l k k k . 由于21,a a 线性无关,于是有线性无关,于是有îíì==+0,022121l l k k k当02¹l 时,显然有0,021==k k ,此时1a ,)(21a a +A 线性无关;反过来,若1a ,)(21a a +A 线性无关,则必然有02¹l (,否则,1a 与)(21a a +A =11a l 线性相关),故应选(B). 方法二:方法二: 由于由于 úûùêëé=+=+21212211121101],[],[)](,[l l a a a l a l a a a a A ,可见1a ,)(21a a +A 线性无关的充要条件是.001221¹=l l l 故应选(B). (14)设A 为n (2³n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ C ] 【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可. 【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得使得 B A E =12,于是于是 12*11212*12***12*)(E A E E A EA A EB -=×===-,即,即*12*B E A -=,可见应选(C). 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(¹f ,求极限.)()()(lim 0òò--®xxx dtt x f xdtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形. 【详解】 由于òòò=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是于是òòòòò-=--®®xxx x x xx duu f xdtt tf dt t f xdtt x f xdtt f t x 0)()()(lim )()()(lim=òò+-+®xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =òò+®xxx x xf du u f dtt f 0)()()(lim=)()()(lim 0xf x duu f x dtt f xxx +òò®=.21)0()0()0(=+f f f(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x j =【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有如图,有ò--=+-=xxt t xe dt e e x S 01)1(21)]1(21[)(,ò-=ydt t t y S 12))((ln )(j ,由题设,得由题设,得 ò-=--yxdt t t x e 1))((ln )1(21j ,而x e y =,于是ò-=--ydt t t y y 1))((ln )1ln (21j 两边对y 求导得求导得)(ln )11(21y y y j -=-,故所求的函数关系为:.21ln )(yy y y x --==j(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分ò¢¢¢+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,的函数值与导数值,在在x=3处的函数值及一阶、处的函数值及一阶、二阶导数值二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(=¢f ; f(3)=2, .0)3(,2)3(=¢¢-=¢f f 由分部积分,知由分部积分,知òòò+¢¢-¢¢+=¢¢+=¢¢¢+33302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dxx f x f x x f d xòò¢+¢+-=¢+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos p <<=t t x 化简微分方程0)1(2=+¢-¢¢-y y x y x ,并求其满足2,10=¢===x x y y的特解. 【分析】 先将y y ¢¢¢,转化为22,dty d dt dy ,再用二阶常系数线性微分方程的方法求解即可. 【详解】 dt dyt dx dt dt dy y sin 1-=×=¢,)sin 1(]sin 1sin cos [222t dt y d t dt dy t t dx dt dt y d y -×-=×¢=¢¢, 代入原方程,得代入原方程,得 022=+y dt yd . 解此微分方程,得解此微分方程,得 221211s i n c o s x C x C t C t C y -+=+=, 将初始条件2,10=¢===x x yy代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:证明: (I )存在),1,0(Îx 使得x x -=1)(f ;(II )存在两个不同的点)1,0(,Îz h ,使得.1)()(=¢¢z h f f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论. 【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值于是由介值定理知,存在),1,0(Îx 使得)(=x F ,即xx -=1)(f . (II ) 在],0[x 和]1,[x 上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(x z x h ÎÎ,使得0)0()()(--=¢x x h f f f ,x x z --=¢1)()1()(f f f于是于是 .1111)(1)()()(=-×-=--×=¢¢xxx x x x x x zh f f f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22£+=y x y x D 上的最大值和最小值. 【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值. .【详解】 由题设,知由题设,知 x x f 2=¶¶,y yf 2-=¶¶,于是于是 )(),(2y C x y x f +=,且,且 y y C 2)(-=¢,从而,从而 C y y C +-=2)(,再由f(1,1)=2,得,得 C=2, 故 2),(22+-=y x y x f令0,0=¶¶=¶¶y f x f 得可能极值点为x=0,y=0. 且 2)0,0(22=¶¶=xf A ,0)0,0(2=¶¶¶=yx f B ,2)0,0(22-=¶¶=y f C ,042>=-=D AC B ,所以点(0,0) 不是极值点,从而也非最值点. 再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F ll ,解 ïïïîïïïíì=-+=¢=+-=+¶¶=¢=+=+¶¶=¢,014,02122,0)1(2222y x F y y y y f F x x x fF y x l l l l l 得可能极值点4,2,0===l y x ;4,2,0=-==l y x ;1,0,1-===l y x ;.1,0,1-==-=l y x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22£+=y x y x D 内的最大值为3,最小值为-2. (21)(本题满分9分) 计算二重积分sd y x Dòò-+122,其中}10,10),{(££££=y x y x D . 【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可. 【详解】 记}),(,1),{(221Dy x y x y x D Σ+=,}),(,1),{(222D y x y x y x D Î>+=,于是于是s d y x Dòò-+122=òò-+-1)1(22D dxdy y x òò-++2)1(22D dxdy y x=òò--221)1(p qrdr r d òò-++Ddxdy y x )1(22òò-+-1)1(22D dxdyy x=8p +òòòò---+20102210210)1()1(pq rdr r d dy y x dx =.314-p(22)(本题满分9分) 确定常数a,使向量组,),1,1(1Ta =a ,)1,,1(2Ta =a Ta )1,1,(3=a 可由向量组,),1,1(1Ta =b ,)4,,2(2Ta -=b Ta a ),,2(3-=b 线性表示,但向量组321,,b b b 不能由向量组321,,a a a 线性表示. 【分析】向量组321,,a a a 可由向量组321,,b b b 线性表示,相当与方程组:线性表示,相当与方程组:3,2,1,332211=++=i x x x i b b b a . 均有解,问题转化为),,(321b b b r =3,2,1),,,(321=i r i a b b b 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,b b b 不能由向量组321,,a a a 线性表示,相当于至少有一个向量)3,2,1(=j j b 不能由321,,a a a 表示,即至少有一方程组表示,即至少有一方程组3,2,1,332211=++=j x x x j a a a b ,无解. 【详解】 对矩阵),,,,(321321a a a b b b =A 作初等行变换,有作初等行变换,有),,,,(321321a a a b b b =A =úúúûùêêêëé--11411111221a a a a a a a ® úúúûùêêêëé--+-++--a a a a a a a a 110324001022011221®úúúûùêêêëé----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,®A úúúûùêêêëé-----330600030000211221 , 显然2a 不能由321,,b b b 线性表示,因此2-¹a ;当a=4时,时,®A úúúûùêêêëé----390000030660411221 ,然32,a a 均不能由321,,b b b 线性表示,因此4¹a . 而当2-¹a 且4¹a 时,秩3),,(321=b b b r ,此时向量组321,,a a a 可由向量组321,,b b b 线性表示. 又úúúûùêêêëé--==a a a a a a a B 41111122111),,,,(321321 b b b a a aúúúûùêêêëé+--++----®a a a a a a a a a3240110220110221112úúúûùêêêëé++--++----®24360200220110221112a a aa a a a a a ,由题设向量组321,,b b b 不能由向量组321,,a a a 线性表示,必有01=-a 或022=--a a ,即a=1或2-=a . 综上所述,满足题设条件的a 只能是:a=1. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵úúúûùêêêëé=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解. 【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩. 【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(£+B r A r(1)若k 9¹, 则r(B)=2, 于是r(A)1£, 显然r(A)1³, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ÷÷÷øöçççèæ+÷÷÷øöçççèæ=为任意常数. (2) 若k=9,则r(B)=1, 从而2)(1££A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ÷÷÷øöçççèæ=为任意常数. 2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0¹a ,则其通解为2121,,1001k k a c k a b k x ÷÷÷÷÷øöçççççèæ-+÷÷÷÷÷øöçççççèæ-=为任意常数. 3)。

2005年考研数学二真题与解析

2005年考研数学二真题与解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设x x y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xxxdx______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yux u ∂∂=∂∂.(C) 222yu y x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设x x y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x xxdx4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt tt tt =.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43. 【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkxxx x x x x x -+=→→αβ =)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k xx x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标. 【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为: )3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ D ] 【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D ⎰⎰+++++])()()()()()()()([21 =.2241222ππσb a b a d b a D+=⋅⋅+=+⎰⎰ 应选(D). (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yux u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yu x u ∂∂=∂∂,应选(B). (12)设函数,11)(1-=-x xex f 则 (B) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系.【详解】 如图,有⎰--=+-=xx tt x e dt e e x S 01)1(21)]1(21[)(, ⎰-=ydt t t y S 12))((ln )(ϕ,由题设,得 ⎰-=--y xdt t t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,100='===x x y y 的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可. 【详解】 dtdy t dx dt dt dy y sin 1-=⋅=', )sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,得 022=+y dt y d . 解此微分方程,得 221211s i n c o s x C x C t C t C y -+=+=, 将初始条件2,100='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f 于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. 【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f 2=∂∂,y yf 2-=∂∂, 于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(,再由f(1,1)=2,得 C=2, 故 .2),(22+-=y x y x f 令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=x f A ,0)0,0(2=∂∂∂=y x f B ,2)0,0(22-=∂∂=y f C ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点. 再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x f F y x λλλλλ 得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y x D ⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是 σd y x D ⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x =⎰⎰--20210)1(πθrdr r d ⎰⎰-++D dxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x =8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j j β不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时, →A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a . 而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a , 由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--a a ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。

2005年考研数学二试题及答案

2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdx(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年浙江省普通高校“专升本”联考《高等数学(二)》试卷1.函数x e x x xy --=)1(sin 2的连续区间是____________________.2.___________________________)4(1lim 2=-+-∞→x x x x .3.写出函数的水平渐近线和垂直渐近线4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy .(2)当θ是常数,r 是参数时,则=dxdy_____________.二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , )(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim000=--+→hh x f h x f h).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0,00,0x ,)(22x e x e x f x x ,则积分⎰-11)(dx x f =( ). .2)( ,e1)( 0)( ,1)(D C B A -4.可微函数在点处有是函数在点处取得极值的()。

充分条件,必要条件,充分必要条件,既非充分又非必要条件。

5.设级数∑∞=1n na和级数∑∞=1n nb都发散,则级数∑∞=+1)(n n nb a是( ).)(A 发散, )(B 条件收敛, )(C 绝对收敛,)( D 可能发散或者可能收敛.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共10个小题,每小题7分,共70分)1.求函数xx x y )1(2+-=的导数.2. 求函数1223+-=x x y 在区间(-1,2)中的极大值,极小值.3. 求函数xe x xf 2)(=的3阶导数33dx fd .4.计算极限)1sin()1(lim 1--+-→x x e e x x .5.计算积分⎰+dx e x 211. 6.计算积分⎰-+12)2(dx e x x x.7.函数方程,其中变量是变量的函数,求和8.把函数11+=x y 展开成1-x 的幂级数,并求出它的收敛区间.9.求微分方程x y x dxdyxsin )(sin cos =+的通解.10.直线1=x 把圆422=+y x 分成左,右两部分,求右面部分绕y 轴旋转一周所得的旋转体体积.四.综合题: (本题共2个小题,每小题10分,共20分)1.设m n ,是整数,计算积分⎰πcos cos mxdx nx .2.已知函数d cx bx ax x f +++=234)(23, 其中常数0,,,,=+++d c b a d c b a 满足, (1)证明函数)(x f 在(0,1)内至少有一个根,(2)当ac b 832<时,证明函数)(x f 在(0,1)内只有一个根.2005年高数(二)答案(A 卷)一.填空题:(每空格5分,共40分)1.连续区间是),1()1,0()0,(+∞-∞Y Y ,2.21, 3.(1)0y =, (2)2x = 4.1,0-==b a ,5.(1)y x r 2-, (2)xy23.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,每小题7分,共70分) 1.解 :令)1ln(ln 2+-=x x x y , (3分)则x x x x x x x x x y )1)](1ln(1)12([222'+-+-++--= (7分) 2.解:)43(432'-=-=x x x x y ,驻点为34,021==x x (2分)(法一) 46''-=x y ,04)0(''<-=y , 1)0(=y (极大值), (5分) 04)34(''>=y , 275)34(-=y (极小值). (7分)(5分)当0=x 时,1=y (极大值),当34=x 时,275-=y (极小值) (7分)3.解:(法一)利用莱布尼兹公式xe x x dxf d ]66[233++= (7分) (法二)xe x x xf )2()(2'+=, (3分)xe x x xf )24()(2''++=, x e x x x f)66()(2)3(++= (7分)4.解:)1sin()1(lim 1--+-→x x e e x x =)1cos(1lim 1-+→x e x x =1+=e5.解:⎰+dx ex211==+-+⎰dx e e e x xx 22211 (3分) ++-=)1ln(212x e x C (7分)6. 解:⎰-+12)2(dx e x x x ==+--+⎰dx e x ex x x x 1102)12()2( (3分)=2-⎰+1)12(dx e x x=2-)13(-e +102x e==e e e -=-+-12233。

(7分)7.解:()22,220F x y x xy y =++=2222222233422202(2)2()021()()(1)()()()220()()dy dy x y xy dx dxdyx y x y dxdy x y x dx x y x y x dy x y x x x x y x d y x y dx dx x y x y x y x x xy y x y x y ∴+++=⇒+++=+⇒=-=--+++-+++-++=-=-++++++=-=-=++ (3分)(7分)8.解:])21()1()21()21(211[21]2111[211132ΛΛ+--++---+--=-+=+=nn x x x x x x y=∑∞=+--012)1()1(n n n n x , (5分) 收敛区间为(-1, 3). (7分) 9.解: xxx y 2cos sin )'cos (=(5分)1cos +=x C y (其中C 为任意常数) (7分)10.解:直线1=x 与圆422=+y x 的交点是)3,1(),3,1(21-P P , (2分) 右面部分绕y 轴旋转一周的所得几何体的体积.⎰---=332]1)4[(dy y V π(5分) =ππ34)33(233=-y y (7分) 四.综合题:1.解:⎰π0cos cos mxdx nx =⎰-++π])cos()[cos(21dx x m n x m n (3分)=⎪⎪⎩⎪⎪⎨⎧≠==≠=m n m n m n ,00 ,0 ,2ππ(10分) 2.证明:证明:(1)考虑函数dx cx bx ax x F +++=234)(, (2分) )(x F 在[0,1]上连续,在(0,1)内可导,0)1()0(==F F , (4分)由罗尔定理知,存在)1,0(∈ξ,使得0)('=ξF ,即0)()('==ξξf F ,就是=)(ξf 023423=+++d c b a ξξξ,所以函数)(x f 在(0,1)内至少有一个根. (7分)(2)c bx ax x F x f 2612)()(2'''++==因为ac b 832<,所以0)83(129636)2)(12(4)6(222<-=-=-ac b ac b c a b ,)('x f 保持定号,)(x f 函数)(x f 在(0,1)内只有一个根. (10分)。

相关文档
最新文档