湖南省长沙市明德天心中学2019-2020学年初三第二学期入学考试数学试卷(无答案)

合集下载

湖南省长沙市明德中学2019-2020学年中考数学模拟学业水平测试试题

湖南省长沙市明德中学2019-2020学年中考数学模拟学业水平测试试题

湖南省长沙市明德中学2019-2020学年中考数学模拟学业水平测试试题一、选择题1.以下多边形中,既是轴对称图形又是中心对称图形的是( )A .正五边形B .矩形C .等边三角形D .平行四边形2.如图,A 、B 、C 、D 是⊙O 上的四个点,弧AB=弧BC,58AOB ∠=︒,则BDC ∠的度数是( )A .58°B .42°C .32°D .29°3.在2015-2016CBA 常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )A .易建联罚球投篮2次,一定全部命中B .易建联罚球投篮2次,不一定全部命中C .易建联罚球投篮1次,命中的可能性较大D .易建联罚球投篮1次,不命中的可能性较小4.下列各式的计算中正确的是( )A .325a a a +=B .236a a a ⋅=C .632a a a ÷=D .326()a a -= 5.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为2110(014)2h t t t =-≤≤. 若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( ) A .042a ≤≤ B .050a ≤<C .4250a ≤<D .4250a ≤≤ 6.关于x 的一元二次方程2(23)210a x x ---=有实数根,则a 满足( )A .a≥1B .a>1且a≠32C .a≥1且a≠32D .a≠32 7.化简211x x x x -++的结果为( ) A .2x B .1x x - C .1x x + D .1x x - 8.下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相垂直平分的四边形是正方形D .对角线互相平分的四边形是平行四边形9.如图,O 是平行四边形ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若平行四边形ABCD 的面积为16. 则△DOE 面积是( )A.1B.32C.2D.9410.2018年,淮南市经济运行总体保持平稳增长,全年GDP 约为1130亿元,GDP 在全省排名第十三.将1130亿用科学记数法表示为( )A .11.3×1010B .1.13×1010C .1.13×1011D .1.13×1012 11.2018年某区域GDP (区域内生产总值)总量为90.03亿元,用科学计数法表示90.03亿为( )A .9.003×1010B .9.003×109C .9.003×108D .90.03×108 12.下列说法正确的是( )A.了解“贵港市初中生每天课外阅读书籍时间的情况“最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,若22s s 甲乙则甲的成绩比乙的稳定C.平分弦的直径垂直于弦D.“任意画一个三角形,其内角和是360°”是不可能事件二、填空题13.已知一粒大米的质量约为0.000021㎏,这个数用科学记数法表示为____kg .14.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE =________.15.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.16.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.17.如图,△ABC 中,∠ACB =90°,∠B =50°,△ABC 绕点C 顺时针旋转得到△A′B′C,点B′恰好落在线段AB 上,AC 、A′B′相交于O ,则∠COA′的度数为_________.18.小明同学把一个含有45°角的直角三角板放在如图的两条平行线m ,n 上,测得∠α=120°,则∠β的度数是_____.三、解答题19.解方程:1112x xx x-+-=.20.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售?21.某特产店出售大米,一天可销售20袋,每袋可盈利40元,为了扩大销售,增加盈利,尽快减少库存,决定采取降价措施,据统计发现,若每袋降价2元,平均每天可多售4袋.(1)设每袋大米降价为x(x为偶数)元时,利润为y元,写出y与x的函数关系式.(2)若每天盈利1200元,则每袋应降价多少元?(3)每袋大米降价多少元时,商店可获最大利润?最大利润是多少?22.阅读有助于提高孩子的学习兴趣和积极性,但近年来出现很多中学生在学校看武侠小说的现象,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生在校看武侠小说”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有名,“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数是;(2)请补全条形统计图(标上柱高数值);(3)该学校共3000名学生家长,请估计该校抱“不赞同”态度的学生家长人数.23.如图是集体跳绳的示意图,绳子在最高处和最低处时可以近似看作两条对称的抛物线,分别记为C1和C2,绳子在最低点处时触地部分线段CD=2米,两位甩绳同学的距离AB=8米,甩绳的手最低点离地面高度AE=BN=1516米,最高点离地AF=BM=2316米,以地面AB、抛物线对称轴GH所在直线为x轴和y轴建立平面直角坐标系.(1)求抛物线C1和C2的解析式;(2)若小明离甩绳同学点A距离1米起跳,至少要跳多少米以上才能使脚不被绳子绊住?(3)若集体跳绳每相邻两人(看成两个点)之间最小距离为0.8米,腾空后的人的最高点头顶与最低点脚底之距为1.5米,请通过计算说明,同时进行跳绳的人数最多可以容纳几人?(温馨提醒:所有同学起跳处均在直线CD上,不考虑错时跳起问题,即身体部分均在C1和C2之间才算通过),(参考数据:=1.41424.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED =∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.25.如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.【参考答案】***一、选择题13.1×10-514.245(或4.8)1516.1217.60°18.75°.三、解答题19.x=﹣3【解析】【分析】两边都乘以2x化分式方程为整式方程,解整式方程求得x的值,最后代入最简公分母检验即可得;【详解】解:方程两边都乘以2x ,得2(x ﹣1)﹣(x+1)=2x2x ﹣2﹣x ﹣1=2x﹣x =3x =﹣3检验:把x =﹣3代入2x =﹣6≠0,∴原方程的解为:x =﹣3.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.20.(1)100元;(2) 7.5折【解析】【分析】(1)设第一次每个足球的进价是x 元,则第二次每个足球的进价是1.2x 元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可;(2)设商店对剩余的足球按同一标准一次性打a 折销售时,可使利润不少于450元.先根据(1)中求得的数得到第二次购进足球的数量和价格,再根据数量关系:第一次销售完10个获得的利润+第二次打折销售完足球获得的利润≥450元,列出不等式,然后求解即可得出答案.【详解】(1)设第一次每个足球的进价是x 元,则第二次每个足球的进价是1.2x 元, 根据题意得,400036001.2x x-=10, 解得:x =100,经检验:x =100是原方程的根,答:第一次每个足球的进价是100元;(2)设该商店最低可打a 折销售, 根据题意得,150×10+(36001.2100⨯﹣10)×150×10a ﹣3600≥450, 解得:a =7.5答:该商店最低可打7.5折销售.【点睛】本题考查分式方程及一元一次不等式的应用,关键是理解题意,第一问以数量作为等量关系列方程求解,第二问以利润作为不等量关系列不等式求解.21.(1)y=-2x 2+60x+800(2)x=20(3)x=14或16时获利最大为1248元【解析】【分析】(1)根据题意设出每天降价x 元以后,准确表示出每天大米的销售量,列出利润y 关于降价x 的函数关系式;(2)根据题意列出关于x 的一元二次方程,通过解方程即可解决问题;(3)运用函数的性质即可解决.【详解】(1)当每袋大米降价为x (x 为偶数)元时,利润为y 元,则每天可出售20+4×2x =20+2x ;由题意得:y=(40-x )(20+2x )=-2x 2+80x-20x+800=-2x 2+60x+800;(2)当y=1200时,-2(x-15)2+1250=1200,整理得:(x-15)2=25,解得x=10或20但为了尽快减少库存,所以只取x=20,答:若每天盈利1200元,为了尽快减少库存,则应降价20元;(3)∵y=-2(x-15)2+1250=1200,解得x=15,∵每袋降价2元,则当x=14或16时获利最大为1248元.【点睛】题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.22.(1)200, 162° ;(2)见解析;(3)1350.【解析】【分析】(1)根据统计图中的数据可以求得本次调查的人数,进而可以求得“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数;(2)根据题意和(1)中的结果可以求得无所谓和很赞同的人数,本题得以解决;(3)根据统计图中的数据可以求得该校抱“不赞同”态度的学生家长人数.【详解】解:(1)本次调查的学生家长有:50÷25%=200(名),“不赞同”初中生在校看武侠小说的家长所对应的圆心角度数是360°×90200 =162°, 故答案为:200,162°;(2)“无所谓”的人数是200×20%=40(名),“很赞同”的人数是200﹣50﹣40﹣90=20(名),补全条形统计图如右图所示;(3)3000×90200=1350(名). 答:估计该校抱“不赞同”态度的学生家长人数有1350名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1) 221213911,y x 16161616y x =+=-;(2) 至少要12跳米以上才能使脚不被绳子绊住;(3) 8人.【解析】【分析】(1)先写出点C 、D 、E 、F 的坐标,然后设解析式代入求解即可;(2)小明离甩绳同学点A 距离1米起跳,可得此点的横坐标,代入C 2解析式,即可求得;(3)用y 1减去y 2,让其等于1.5,解出相应点的横坐标,求出这两个点的横坐标之间的距离,然后用间隔0.8乘以人数减1,即可解出.【详解】解:(1)由已知得:C (﹣1,0),D (1,0),E (﹣4,1516),F (﹣4,2316), 设C 2解析式为:2y = a ( x + 1 ) ( x - 1 ),把154,16⎛⎫- ⎪⎝⎭代入得15a =1516, ∴116a =, ∴22111616y x =-. 由对称性,设C 1解析式21116y x c =-+,把F (﹣4,2316)代入得c =3916, ∴211391616y x =-+ 故答案为:抛物线C 1和C 2的解析式分别为:211391616y x =-+,22111616y x =-. (2)把x =﹣3代入22111616y x =-得2111916162y =⨯-=, ∴至少要跳12米以上才能使脚不被绳子绊住. (3)由y 1﹣y 2=1.5得:2213911 1.516161616x x -+-+=∴12x x ==-,∴x 1﹣x 2= 5.656,设同时进行跳绳的人数最多可以容纳x 人则0.8(x ﹣1)≤5.656,∴x≤8.07∴同时进行跳绳的人数最多可以容纳8人.【点睛】本题是二次函数的实际应用题,需要分析题意,构建函数模型,从而求解,难点在于如何分析题意列式.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BPA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论【详解】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.【点睛】此题考查菱形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于利用全等三角形的性质求解25.当AP=52时,矩形PMDN的面积取得最大值.【解析】【分析】延长MP,交EF于点Q,设AP的长x,矩形PMDN的面积为y,由△APQ∽△ABF得到AQ=45x,PQ=3 5x,则y=PN·PM=(45x+4)( 6-35x) =2121224255x x-++,然后根据二次函数的性质求得当AP=52时,矩形PMDN的面积取得最大值.【详解】解:延长MP,交EF于点Q.设AP的长x,矩形PMDN的面积为y.∵四边形CDEF为矩形,∴∠C=∠E=∠F=90°.∵四边形PMDN为矩形,∴∠PMD=∠MPN=∠PND=90°.∴∠PMC=∠QPN=∠PNE=90°.∴四边形CMQF、PNEQ为矩形.∴MQ=CF,PN=QE,且PQ∥BF.∵EF、FC的中点分别为A、B,且EF=8,CF=6,∴AF=4, BF=3,∴AB=5∵PQ∥BF,∴△APQ∽△ABF.∴AQ PQ APAF BF AB==.即435AQ PQ x==.解得AQ=45x,PQ=35x.∴PN=QE=AQ+AE=45x+4,PM=MQ-PQ=6-35x.∴y=PN·PM=(45x+4)( 6-35x) =2121224255x x-++.当x=1255122225-=⎛⎫⨯- ⎪⎝⎭时,y取得最大值.即当AP=52时,矩形PMDN的面积取得最大值.【点睛】本题主要考查了相似三角形的判定和性质以及二次函数的应用,根据相似三角形对应边成比例用AP的长表示出AQ和PQ是解题关键.。

2019-2020学年湖南省长沙市天心区长郡教育集团九年级下学期期中数学试卷 (含解析)

2019-2020学年湖南省长沙市天心区长郡教育集团九年级下学期期中数学试卷 (含解析)

2019-2020学年湖南省长沙市天心区长郡教育集团九年级第二学期期中数学试卷一、选择题(共12小题).1.下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)02.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a94.估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.6.如图所示的几何体的左视图是()A.B.C.D.7.如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°8.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,509.一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.10.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)11.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.412.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D 到BC′的距离为()A.B.C.D.二、填空题(共6小题).13.函数y=中,自变量x的取值范围是.14.分解因式:3a3﹣6a2+3a=.15.若关于x的分式方程+=2m有增根,则m的值为.16.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.17.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD =2,BC=4,则EF=.18.如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为.三、解答题(共66分)19.计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°20.先化简,再求值:÷(+1),其中x为整数且满足不等式组21.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)23.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.24.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)25.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.26.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.参考答案一、选择题(共12小题).1.下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)0【分析】直接利用绝对值以及零指数幂的性质、相反数的性质分别化简得出答案.解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.2.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.3.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.4.估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:∵3=,36<45<49,∴6<7,故选:C.5.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.6.如图所示的几何体的左视图是()A.B.C.D.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.解:图中几何体的左视图如图所示:故选:D.7.如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【分析】过点E作EF∥11,利用平行线的性质解答即可.解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.8.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,50【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.解:设有x人,物价为y,可得:,解得:,故选:B.9.一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.解:∵一次函数y1=ax+b图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.10.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.11.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.4【分析】由切线的性质得出AC⊥OD,求出∠A=30°,证出∠ODB=∠CBD,得出OD ∥BC,得出∠C=∠ADO=90°,由直角三角形的性质得出∠ABC=60°,BC=AB=6,AC=BC=6,得出∠CBD=30°,再由直角三角形的性质即可得出结果.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.12.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D 到BC′的距离为()A.B.C.D.【分析】根据折叠的性质和点到直线的距离即可求解.解:过B作BM⊥DC于M,过D作DN⊥BC于N,如下图所示,∵把△BDC沿BD翻折,得到△BDC′,∴CD=C′D=2,∠CDB=∠C′DB,∵AD=AC′=2,∴△ADC′为等边三角形,∴∠C′DA=60°,∴,∵BM⊥DC,∴,∴,∴,∵S△BDC=,∴DN=,故选:D.二、填空题(共6个小题,每小题3分,共18分)13.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.14.分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【分析】先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.15.若关于x的分式方程+=2m有增根,则m的值为1.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为116.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A 从而确定不等式的解集.解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.17.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD =2,BC=4,则EF=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:18.如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为20.【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=2﹣2,即:y2=2﹣2,同理:y3=2﹣2,y4=2﹣2,……y100=2﹣2∴y1+y2+…+y100=2+2﹣2+2﹣2……2﹣2=20,故答案为20.三、解答题(共66分)19.计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°【分析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别进行化简即可;解:原式=﹣1+3﹣1﹣2×=1﹣2×3=﹣5;20.先化简,再求值:÷(+1),其中x为整数且满足不等式组【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解,继而代入计算可得.解:原式=÷(+)=•=,解不等式组得2<x≤,则不等式组的整数解为3,当x=3时,原式==.21.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.22.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)【分析】(1)作BH⊥AF于点K,交MN于点H,则△ABK∽△ACG,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x的值;(2)求得CG的长,然后在直角△ACG中,求得AC即可解决问题;解:(1)作BH⊥AF于点K,交MN于点H.则BK∥CG,△ABK∽△ACG.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)在Rt△ACG中,CG=80﹣8=72(cm).则sin∠CAF=,∴AC=80,(cm)∴BC=AC﹣AB=80﹣50=30(cm).23.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.【分析】(1)连接EO,由∠EOG=2∠C、∠ABG=2∠C知∠EOG=∠ABG,从而得AB∥EO,根据EF⊥AB得EF⊥OE,即可得证;(2)由∠ABG=2∠C、∠ABG=∠C+∠A知∠A=∠C,即BA=BC=6,在Rt△OEG中求得OG==5、BG=OG﹣OB=2,在Rt△FGB中求得BF=BG sin∠EGO,根据AF=AB﹣BF可得答案.解:(1)如图,连接EO,则OE=OC,∴∠EOG=2∠C,∵∠ABG=2∠C,∴∠EOG=∠ABG,∴AB∥EO,∵EF⊥AB,∴EF⊥OE,又∵OE是⊙O的半径,∴EF是⊙O的切线;(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC=6,在Rt△OEG中,∵sin∠EGO=,∴OG===5,∴BG=OG﹣OB=2,在Rt△FGB中,∵sin∠EGO=,∴BF=BG sin∠EGO=2×=,则AF=AB﹣BF=6﹣=.24.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【分析】(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额﹣总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得:,解得,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.25.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠MON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ON cos60°=,∴OD=OP cos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.26.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.【分析】(1)把点A、C坐标代入抛物线解析式即可求得b、c的值.(2)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.(3)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠PAB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3),∴解得:,∴抛物线的函数表达式为y=x2+2x﹣3.(2)结论:DM+DN为定值.理由:∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1,∴D(﹣1,0),x M=x N=﹣1,设Q(t,t2+2t﹣3)(﹣3<t<1),设直线AQ解析式为y=dx+e∴解得:,∴直线AQ:y=(t+3)x﹣t﹣3,当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6,∴DM=0﹣(﹣2t﹣6)=2t+6,设直线BQ解析式为y=mx+n,∴解得:,∴直线BQ:y=(t﹣1)x+3t﹣3,当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2,∴DN=0﹣(2t﹣2)=﹣2t+2,∴DM+DN=2t+6+(﹣2t+2)=8,为定值.(3)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I.∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1,∴B(﹣3,0),∵A(1,0),C(0,﹣3),∴OA=1,OC=3,AC==,AB=4,∴Rt△AOC中,sin∠ACO==,cos∠ACO==,∵AB=AH,G为BH中点,∴AG⊥BH,BG=GH,∴∠BAG=∠HAG,即∠PAB=2∠BAG,∵∠PAB=2∠ACO,∴∠BAG=∠ACO,∴Rt△ABG中,∠AGB=90°,sin∠BAG==,∴BG=AB=,∴BH=2BG=,∵∠HBI+∠ABG=∠ABG+∠BAG=90°,∴∠HBI=∠BAG=∠ACO,∴Rt△BHI中,∠BIH=90°,sin∠HBI==,cos∠HBI==,∴HI=BH=,BI=BH=,∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣),设直线AH解析式为y=kx+a,∴解得:,∴直线AH:y=x﹣,∵解得:(即点A)或,∴P(﹣,﹣).②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称.∴H'(﹣,),设直线AH'解析式为y=k'x+a',∴解得:,∴直线AH':y=﹣x+,∵解得:(即点A)或,∴P(﹣,).综上所述,点P的坐标为(﹣,)或(﹣,﹣).。

湖南省长沙市明德麓谷学校2020-2021学年九年级下学期入学考试数学试卷(word版,无答案)

湖南省长沙市明德麓谷学校2020-2021学年九年级下学期入学考试数学试卷(word版,无答案)

2021年明德麓谷学校九年级下学期入学考试数学问卷一、选择题(本大题共12个小题,每小题3分,共36分,答案写在答题卡上) 1.下列四个数中,最大的数是( )A.2-B.1C.2D.122.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.科克曲线C.笛卡尔心形线D.斐波那契螺旋线 3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为( ) A.33.610⨯B.43.610⨯C.53.610⨯D.43610⨯4.下列计算正确的是( ) A.325a b ab +=B.326a a a ⋅=C.()2362a ba b -=D.233a b a b ÷=5.在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( ) A. (3,0) B.(1,2) C. (5,2) D.(3,4)6.社会实践活动时,某班同学分小组到A 、B 、C 、D 、E 五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A.5,7 B.5,11 C.5,12 D.7,117.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC=6,AD=2,则BD 的长为( )A.2B.3C.4D.68.疫情防控,我们一直在坚守,某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查,若这两个检查组在辖区内的某三个小区各自随机抽取一个进行检查,则他们恰好抽到同一个小区的概率是( ) A.13B.49C.19D.239.己知圆锥的母线长为9,底面半径为为3,则该圆锥的侧面积为( ) A.18π B.27π C.36π D.54π10.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角∠ABC 约为26.5°,则立柱根部与圭表的冬至线的距离(即BC 的长)约为( ) A.sin 26.5a ︒B.tan 26.5a︒C.cos26.5a ︒D.cos 26.5a︒第10题图 第12题图 第15题图11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.()1552x x =-- B.()1552x x =+- C.()255x x =-- D.()255x x =+-12.如图,在平面直角坐标系中,已知A (5,0),点P 为线段OA 上任意一点.在直线34y x =上取点E ,使PO=PE ,延长PE 到点F ,使PA=PF ,分别取OE 、AF 中点M 、N ,连接MN ,则MN 的最小值是( ) A.2.5 B.2.4 C.2.8 D.3二、填空题(本大题共4个小题,每小题3分,共12分,答案写在答题卡上) 13.分解因式:23x x += .14.一次函数()212y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为 . 15.如图,A ,B ,C 是⊙O 上的三个点,∠AOB=50°,∠B=55°,则∠A 的度数为 . 16.已知关于x 的一元二次方程230x px +-=的一个根为3-,则它的另一个根为 .三、解答题(本大题共9个小题,共72分,解答过程写在答题卡上)17.计算:212sin 6022-⎛⎫︒++ ⎪⎝⎭18.先化简,再求值:212139x x x +⎛⎫-÷ ⎪+-⎝⎭,其中3x =19.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2,并求出点A 1经过的路径长.20.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ; (3)若该校有1200名学生,则选择田径的学生约有多少人?21.如图,一次函数1y k x b =+(10k ≠)与反比例函数2k y x=(20k ≠)的图象交于点A (1-,2),B (m ,1-). (1)求这两个函数的表达式; ((2)求△AOB 的面积.22.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C 作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求⊙O的半径.23.某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?24.规定,我们把一个函数关于某条直线或者某点对称后形成的新函数,称之为原函数的“对称函数”;(1)己知一次函数23y x =-+的图象,求关于直线y x =-的对称函数的解析式; (2)己知二次函数2441y ax ax a =++-的图象为C 1;①求C 1关于点R (1,0)的对称函数图象C 2的函数解析式;②若两抛物线与y 轴分别交于A ,B 两点,当AB=16时,求a 的值;(3)若直线23y x =--关于原点的对称函数的图象上存在点P ,不论m 取何值,抛物线223238y mx m x m ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭都不通过点P ,求符合条件的点P 的坐标.25.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于A (1-,0),B (4,0)两点,与y 轴交于点C (0,2-). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求12S S 的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点,试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB ?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。

湖南省长沙市2019-2020学年中考数学二模试卷含解析

湖南省长沙市2019-2020学年中考数学二模试卷含解析

湖南省长沙市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计112-的值在( )A .0到l 之间B .1到2之间C .2到3之间D .3到4之间2.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450x B .60050x +=450x C .600x =45050x + D .600x =45050x - 3.方程x 2﹣4x+5=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根4.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )A .5个B .4个C .3个D .2个5.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°6.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒7.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =3,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C ,则OC =( )A .1B .2C .3D .48.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣69.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 10.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元11.不等式组325521x x +>⎧⎨-≥⎩的解在数轴上表示为( ) A . B . C .D .12.如图,△ABC 中,AB=2,AC=3,1<BC <5,分别以AB 、BC 、AC 为边向外作正方形ABIH 、BCDE 和正方形ACFG ,则图中阴影部分的最大面积为( )A .6B .9C .11D .无法计算二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y =2x 2+4向左平移2个单位长度,得到新抛物线的表达式为_____.14.计算:21m m ++112m m++=______. 15.若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是_________.16.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.17.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x 个白球,然后从箱中随机取出一个白球的概率是,则x 的值为_____18.已知a+b=4,a-b=3,则a 2-b 2=____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?20.(6分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了12m %,香橙每千克的进价在11月份的基础上下降了m %,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了5m 8%,香橙购进的数量比11月份增加了2m %,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m 的值.21.(6分)如图,四边形ABCD 的四个顶点分别在反比例函数y=与y=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为1.(1)当m=1,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.22.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m =________,n =________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.23.(8分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD 45o ∠=,AF 22=,过点B 作BG FC ⊥于点G ,连接DG.依题意补全图形,并求四边形ABGD 的面积.24.(10分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息: 信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?25.(10分)解方程:1+231833x x x x x-=-- 26.(12分)如图1,在Rt △ABC 中,∠C=90°,AC=BC=2,点D 、E 分别在边AC 、AB 上,AD=DE=12AB ,连接DE .将△ADE 绕点A 逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BE CD= ; ②当θ=180°时,BE CD = . (2)拓展探究试判断:当0°≤θ<360°时,BE CD的大小有无变化?请仅就图2的情形给出证明; (3)问题解决①在旋转过程中,BE 的最大值为 ;②当△ADE 旋转至B 、D 、E 三点共线时,线段CD 的长为 .27.(12分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF .求证:(1)△ABE ≌△CDF ;四边形BFDE 是平行四边形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】∵9<11<16,∴34<<,∴122<-<故选B.2.B【解析】【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+.故选B.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.D【解析】【分析】【详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.4.C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.5.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.7.B【解析】【分析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.【详解】解:在Rt△ABO中,sin∠OAB=OBOA=23=3,∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.8.C【解析】【分析】如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CH⊥y轴于H.由题意B(0,2),∵11 2OB CH⋅⋅=,∴CH=1,∵tan∠BOC=1,3 CHOH=∴OH=3,∴C(﹣1,3),把点C (﹣1,3)代入2k y x=,得到k 2=﹣3, 故选C .【点睛】 本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.9.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.10.C【解析】【详解】解:设该商品的进价为x 元/件,依题意得:(x+20)÷510=200,解得:x=1. ∴该商品的进价为1元/件.故选C .11.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x >5-2,解得x >1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C .故选C .【点睛】考核知识点:解不等式组.12.B【解析】【分析】有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC 最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3×12×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=2(x+2)2+1试题解析:∵二次函数解析式为y=2x2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.1.【解析】【分析】利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=1211 2121m m mm m+++==++.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.15.2【解析】【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入()32n n-中即可得出结论.【详解】∵一个正n边形的每个内角为144°,∴144n=180×(n-2),解得:n=1.这个正n边形的所有对角线的条数是:()32n n-=1072⨯=2.故答案为2.【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.16.2【分析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.17.1.【解析】【分析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数. 18.1.【解析】【分析】【详解】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.20.(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】【详解】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有4006001520024x yy x+=⎧⎨=+⎩,解得820xy=⎧⎨=⎩,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣12m%)×400(1+58m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.21.(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论.详解:(1)①如图1,∵m=1,∴反比例函数为y=,当x=1时,y=1,∴B(1,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=-x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(1,1),∵BD∥y轴,∴D(1,5),∵点P是线段BD的中点,∴P(1,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=1-=,PC=-1=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=1时,y==,∴B(1,),∴A(1-t,+t),∴(1-t)(+t)=m,∴t=1-,∴点D的纵坐标为+2t=+2(1-)=8-,∴D(1,8-),∴1(8-)=n,∴m+n=2.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.22.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160, 补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.23.(1)证明见解析;(2)补图见解析;ABGD S 2四边形=【解析】【分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论;()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x ,解直角三角形得到22BF BG x == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论.【详解】解:()1AB AD Q =, ABD ADB ∠∠∴=,ADB CDE ∠∠=Q ,ABD CDE ∠∠∴=,BAC 90∠=o Q ,ABD ACB 90∠∠∴+=o ,CE AE ⊥Q ,DCE CDE 90∠∠∴+=o ,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=o Q ,BAC 90∠=o ,BAE CAE 45∠∠∴==o ,F ACF 45∠∠==o ,AE CF ⊥Q ,BG CF ⊥,AD //BG ∴,BG CF ⊥Q ,BAC 90∠=o ,且ACB DCE ∠∠=,AB BG ∴=,AB AD =Q ,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =Q ,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF 2BG 2x ∴==,AB BF x 2x 22∴+==x 2∴=过点B 作BH AD ⊥于H ,2BH AB 12∴==. ABGD S AD BH 2∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD =2S 四边形.【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.24.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x 个宣传栏,则乙广告公司每天能制作1.2x 个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键. 25.无解.【解析】【分析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x 2﹣3x ﹣x 2=3x ﹣18,解得:x =3,经检验x =3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.26.(122,②(2)无变化,证明见解析;(3)①2+23,②+13 1.【解析】【分析】(1)①先判断出DE ∥CB ,进而得出比例式,代值即可得出结论;②先得出DE ∥BC ,即可得出,AE AD AB AC =,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE ,进而判断出△ADC ∽△AEB 即可得出结论;(3)分点D 在BE 的延长线上和点D 在BE 上,先利用勾股定理求出BD ,再借助(2)结论即可得出CD .【详解】解:(1)①当θ=0°时,在Rt △ABC 中,AC=BC=2, ∴∠A=∠B=45°,AB=22,∵AD=DE=12AB=2, ∴∠AED=∠A=45°,∴∠ADE=90°,∴DE ∥CB ,∴CD BE AC AB=, ∴222CD =, ∴2BE CD =, 故答案为2,②当θ=180°时,如图1,∵DE ∥BC ,∴AE AD AB AC=, ∴AE AB AD AC AB AC++=, 即:BE CD AB AC =, ∴2222BE AB CD AC ===故答案为2; (2)当0°≤θ<360°时,BE CD的大小没有变化, 理由:∵∠CAB=∠DAE ,∴∠CAD=∠BAE ,∵AD AE AC AB =, ∴△ADC ∽△AEB , ∴2222BE AB CD AC ==; (3)①当点E 在BA 的延长线时,BE 最大, 在Rt △ADE 中,AE=2AD=2,∴BE 最大=AB+AE=22+2;②如图2,当点E 在BD 上时,∵∠ADE=90°,∴∠ADB=90°,在Rt △ADB 中,2,2,根据勾股定理得,22-AB AD 6, ∴62,由(2)知,2BE CD=, ∴62322+==+1, 如图3,当点D 在BE 的延长线上时,在Rt △ADB 中,2,2,根据勾股定理得,22-AB AD 6,∴BE=BD ﹣62,由(2)知,2BE CD=, ∴62322==1. 3 +131.【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE ∥BC ,解(2)的关键是判断出△ADC ∽△AEB ,解(3)关键是作出图形求出BD ,是一道中等难度的题目.27.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD ∥BC ,AD=BC ,又由AE=CF ,即可证得DE=BF .根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE 是平行四边形.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD ,在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF ,∴△ABE ≌△CDF (SAS ).(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .∵AE=CF ,∴AD ﹣AE=BC ﹣CF ,即DE=BF .∴四边形BFDE 是平行四边形.。

湖南省长沙市天心区明德中学 2019年 中考数学模拟试卷(含答案)

湖南省长沙市天心区明德中学 2019年 中考数学模拟试卷(含答案)

2019年中考数学模拟试卷一、选择题1.互为相反数的两个数的和为()A.0 B.﹣1 C.1 D.22.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为( )A.812×106B.81.2×107C.8.12×108D.8.12×1093.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y24.下列图形中,既是轴对称图形又是中心对称图形的是 ( )5.不等式组的解集在数轴上表示正确的是()6.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.左视图和俯视图7.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或208.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A. B. C. D.9.设n=﹣1,那么n 值介于下列哪两数之间( )A.1与2B.2与3C.3与4D.4与510.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图所示,下列结论错误的是( )A.轮船的速度为20千米/小时B.快艇的速度为380千米/小时 C.轮船比快艇先出发2小时 D.快艇比轮船早到2小时11.已知Rt △ABC 中,∠C=90°,AC=3,BC=4,AD 平分∠BAC,则点B 到AD 的距离是( )A.1.5B.2C.D.12.如图,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0.1<x 2<2.下列结论:4a+2b+c <0;2a+b <0;b 2+8a >4ac ;a <﹣1;其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题13.化简:的结果是 .14.实验中学九(1)班全体同学的综合素质评价“运动与健康”方面的等级统计图如图所示,其中评价为“A ”所在扇形的圆心角是 度.15.若点M (1+a,2b-1)在第二象限,则点N (a-1,1-2b)在第_________象限.16.从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是17.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x、x2,则x1(x2+x1)+x22的最小值1为.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.三、解答题19.计算:3tan30°﹣2tan45°+2sin60°+4cos60°.20.已知3x2+2x-1=0,求代数式3x(x+2)+(x-2)2-(x-1)(x+1).21.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)根据以上信息,解答下列问题:(1)该班共有名学生;(2)在扇形统计图中,185型校服所对应的扇形圆心角的大小为;(3)该班学生所穿校服型号的众数为,中位数为;(4)如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?22.如图,大海中某岛C的周围25km范围内有暗礁.一艘海轮向正东方向航行,在A处望见C在北偏东60°处,前进20km后到达点B,测得C在北偏东45°处.如果该海轮继续向正东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.41,≈1.73)23.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?24.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求∠BEC正切值.25.如图,一次函数y=0.5x-2的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数y=kx-1(k>0)的图象于Q,S△OQC=1.5,(1)求A点和B点的坐标;(2)求k的值和Q点的坐标.26.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒错误!未找到引用源。

2019-2020学年长沙市中考数学模拟试卷(有标准答案)(word版)

2019-2020学年长沙市中考数学模拟试卷(有标准答案)(word版)

湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:= .14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

2019-2020学年人教新版湖南长沙市长郡双语中学九年级第二学期开学数学试卷 含解析

2019-2020学年人教新版湖南长沙市长郡双语中学九年级第二学期开学数学试卷 含解析

2019-2020学年九年级第二学期开学数学试卷一、选择题1.﹣4的绝对值是()A.4B.﹣4C.D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.点M(m+1,m+3)在y轴上,则M点的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)5.下列说法正确的是()A.“打幵电视机,正在播足球赛”是必然事件B.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,則乙组数据比甲组数据稳定C.一组数据2、4、5、3、6的众数和中位数都是5D.“掷一枚硬币正面朝上的概率是”表示一枚硬币每抛2次就有1次正面朝上6.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.58.如图,P为⊙O外一点,PA切⊙O于点A,⊙O的半径为6,且PA=8,则cos∠APO 等于()A.B.C.D.9.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3B.﹣1C.﹣3D.﹣210.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()A.B.C.D.11.如图,∠ACB=90°,CD是AB边上的高,若AD=24,BD=6,则CD的长是()A.8B.10C.12D.1412.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x >0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),若△OAB的面积为3,则k的值为()A.B.1C.2D.3二、填空题(共6个小题)13.要使代数式有意义,则x的取值范围是.14.分解因式:xy2﹣4x=.15.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是cm2(结果保留π)16.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是(只填写一个条件,不使用图形以外的字母和线段).17.三角形的中位线把三角形分成两部分面积之比是.18.如图,抛物线y=的图象与坐标轴交于点A,B,D,顶点为E,以AB为直径画半圆交y正半轴交于点C,圆心为M,P是半圆上的一动点,连接EP.①点E在⊙M的内部;②CD的长为;③若P与C重合,则∠DPE=15°;④在P的运动过程中,若AP=,则PE=⑤N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是2π.以上5个结论正确的是;(填写序号)三、解答题((共8小题)19.计算:()﹣1﹣2cos30°++(3﹣π)020.先化简,再求值:,其中x请从不等式组的解集中选取一个合适的值代入.21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)求证:∠BAP=∠CAP;(2)判断直线PC与⊙O的位置关系,并说明理由;(3)若AB=5,BC=10,求PC的长.25.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.26.若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、梯形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=3,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC 为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.参考答案一、选择题(本题共12个小题,每小题3分,共36分)1.﹣4的绝对值是()A.4B.﹣4C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故D选项正确.故选:D.4.点M(m+1,m+3)在y轴上,则M点的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)【分析】根据y轴上点的横坐标为0列方程求出m的值,然后求解即可.解:∵点M(m+1,m+3)在y轴上,∴m+1=0,解得m=﹣1,所以,m+3=﹣1+3=2,所以,点M的坐标为(0,2).故选:D.5.下列说法正确的是()A.“打幵电视机,正在播足球赛”是必然事件B.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,則乙组数据比甲组数据稳定C.一组数据2、4、5、3、6的众数和中位数都是5D.“掷一枚硬币正面朝上的概率是”表示一枚硬币每抛2次就有1次正面朝上【分析】结合随机事件、概率的意义、众数、中位数、方差等概念一一判断,即可得出答案.解:A、“打幵电视机,正在播足球赛”是随机事件,故本选项错误;B、甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,則乙组数据比甲组数据稳定,故本选项正确;C、一组数据2、4、5、3、6的众数是2、4、5、3、6,中位数都是4,故本选项错误;D、“掷一枚硬币正面朝上的概率是”表示在大量重复试验下,抛掷硬币正面朝上次数占一半,不是一定每抛掷硬币2次就有1次正面朝上,故本选项错误;故选:B.6.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选:D.8.如图,P为⊙O外一点,PA切⊙O于点A,⊙O的半径为6,且PA=8,则cos∠APO 等于()A.B.C.D.【分析】连接OA,由AP为圆O的切线,根据切线的性质得到OA与AP垂直,在直角三角形OPA中,由OA及AP的长,利用勾股定理求出OP的长,再由锐角三角函数定义:一个角的余弦值为在直角三角形中,邻边与斜边之比,故由∠APO的邻边AP与斜边OP的比值即可得到cos∠APO的值.解:连接OA,如图所示:∵AP为圆O的切线,∴OA⊥AP,∴∠OAP=90°,在直角三角形OPA中,OA=6,PA=8,根据勾股定理得:OP2=OA2+AP2=62+82=100,∴OP=10,∴cos∠APO==.故选:A.9.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3B.﹣1C.﹣3D.﹣2【分析】根据根与系数的关系可得出两根的积,即可求得方程的另一根.解:设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选:C.10.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一平面直角坐标系中的大致图象为()A.B.C.D.【分析】直接利用二次函数图象得出a,b,c的符号,进而得出答案.解:由二次函数图形可得:开口向上,则a>0,对称轴在x轴的右侧,则﹣>0,故b<0,图象与y轴交在正半轴上,故c>0;则反比例函数y=图象分布在第一、三象限,一次函数y=ax+b图象经过第一、三象限,且图象与y轴交在负半轴上,故选:D.11.如图,∠ACB=90°,CD是AB边上的高,若AD=24,BD=6,则CD的长是()A.8B.10C.12D.14【分析】根据射影定理得到CD2=AD•BD=24×6,然后利用算术平方根的定义求解.解:∵CD是斜边AB边上的高,∴CD2=AD•BD=24×6=144,∴CD=12.故选:C.12.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x >0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),若△OAB的面积为3,则k的值为()A.B.1C.2D.3【分析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k.解:∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB=2AC=2,∵△OAB的面积为3,∴,解得,n=3,∴C(3,1),∴k=3×1=3.故选:D.二、填空题(本题共6个小题,每小题3分,共18分)13.要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.解:根据题意,得,解得x≥﹣1且x≠0.14.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)15.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10πcm2(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解:圆锥的侧面积=2π×2×5÷2=10π(cm2).故答案为:10π.16.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是AB=CD(只填写一个条件,不使用图形以外的字母和线段).【分析】已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组分别平行的四边形是平行四边形来判定.解:∵在四边形ABCD中,AB∥CD,∴可添加的条件是:AB=DC,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.17.三角形的中位线把三角形分成两部分面积之比是1:3.【分析】三角形的中位线平行于第三边,且等于第三边的一半,因而中位线分三角形得到的小三角形与原三角形一定相似,且相似是1:2,因而面积的比是1:4,那么分成的三角形与梯形面积之比就可以求得了.解:三角形的中位线把三角形分成的三角形与原三角形的面积之比为1:4,∴分成两部分面积之比是1:3.18.如图,抛物线y=的图象与坐标轴交于点A,B,D,顶点为E,以AB为直径画半圆交y正半轴交于点C,圆心为M,P是半圆上的一动点,连接EP.①点E在⊙M的内部;②CD的长为;③若P与C重合,则∠DPE=15°;④在P的运动过程中,若AP=,则PE=⑤N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是2π.以上5个结论正确的是②③④;(填写序号)【分析】①ME=2=AM,∴E应该在⊙M上,即可求解;②CD=2×=3,故CD的长为,即可求解;③过点D作DH⊥ME,由DH=1,MD=R=2,故∠DME=30°,则∠DPE=15°,即可求解;④AK=AE sinα=2×=,同理EK=,则PK=,即可求解;⑤点N的运动轨迹为以R为圆心的半圆,则N运动的路径长=×2πr=π,即可求解;解:抛物线y=的图象与坐标轴交于点A,B,D,则点A、B、D的坐标分别为:(﹣1,0)、(3,0)、(0,﹣),则点M(1,0),顶点E的坐标为:(1,﹣2),AB=4,CO=,OD=,故点D不在⊙M上;①ME=2=AM,∴E应该在⊙M上,故不符合题;②C是圆M与y轴交点,圆M半径为2,M(1,0)由勾股定理得OC=,CD=2×=3,故CD的长为,符合题意;③如图1,连接PM、PE,点E(﹣1,2),故点E在圆上,CO=,OM=1,PM=2,故∠OPM=30°,EM∥y轴,则∠MEP=∠EPC,而∠MEP=∠MPE,∴∠DPE=DOM=15°,符合题意;④如图2,连接PB、PA、AE,∵点B、E均在圆上,则∠ABP=∠AEP=α,sin∠AEP=sin∠ABP===sinα,则cosα=,过点A作AK垂直于PE于K,则AK=AE sinα=2×=,EK=AE cosα═,则PK=AK=,故则PE=,符合题意;⑤如图3,图中实点G、N、M、F是点N运动中所处的位置,则GF是等腰直角三角形的中位线,GF=AB=2,ME交AB于点R,则四边形GEFM 为正方形,当点P在半圆任意位置时,中点为N,连接MN,则MN⊥PE,连接NR,则NR=ME=MR=RE=RG=RF=GF=1,则点N的运动轨迹为以R为圆心的半圆,则N运动的路径长=×2πr=π,故不符合题意;故答案为:②③④.三、解答题((本题共8个小题,6+6+8+8+9+9+10+10,共66分)19.计算:()﹣1﹣2cos30°++(3﹣π)0【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=2﹣2×++1,=2﹣++1,=3.20.先化简,再求值:,其中x请从不等式组的解集中选取一个合适的值代入.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的解集确定出x的值,代入计算即可求出值.解:原式=÷=•=x,不等式组,解得:﹣2<x<0.5,由题意得:x≠0,1,当x=﹣1时,原式=﹣1.21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.【分析】(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△AOD和△EOC中,,∴△AOD≌△EOC(AAS);(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.解:(1)由题意得出:w=(x﹣20)•y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.24.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)求证:∠BAP=∠CAP;(2)判断直线PC与⊙O的位置关系,并说明理由;(3)若AB=5,BC=10,求PC的长.【分析】(1)根据切线的性质得到OA⊥AD,根据垂径定理、圆周角定理证明结论;(2)过C点作直径CE,连接EB,根据圆周角定理得到∠EBC=90°、∠BAC=∠E,得到∠PCE=90°,根据切线的判定定理证明;(3)根据勾股定理求出⊙O的半径,证明Rt△PCM∽Rt△CEB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:∵AD是⊙O的切线,∴OA⊥AD,∵BC∥AD,∴OA⊥BC,∴=,∴∠BAP=∠CAP;(2)解:PC与圆O相切,理由如下:过C点作直径CE,连接EB,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(3)解:∵AD是⊙O的切线,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=5,AC=AB=5,在Rt△AMC中,AM===5,设⊙O的半径为r,则OC=r,OM=AM﹣r=5﹣r,在Rt△OCM中,OM2+CM2=OC2,即(5﹣r)2+52=r2,解得:r=3,∴CE=2r=6,OM=5﹣r=2,∴BE=2OM=4,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=,∴PC=.25.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)将点C、D的坐标代入抛物线表达式,即可求解;(2)当△AOC∽△AEB时,=()2=()2=,求出y E=﹣,由△AOC∽△AEB得:,即可求解;(3)如图2,连接BF,过点F作FG⊥AC于G,当折线段BFG与BE重合时,取得最小值,即可求解;(4)①当点Q为直角顶点时,由Rt△QHM∽Rt△FQM得:QM2=HM•FM;②当点H为直角顶点时,点H(0,2),则点Q(1,2);③当点F为直角顶点时,同理可得:点Q(1,﹣).解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).26.若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、梯形、菱形、正方形”中,一定不是“美丽四边形”的有菱形、正方形;②若矩形ABCD是“美丽四边形”,且AB=3,则BC=3或;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC 为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.【分析】(1)①由菱形、正方形的对角线互相垂直即可判断.②矩形ABCD对角线相等且互相平分,再加上对角线夹角为60°,即出现等边三角形,所以得到矩形相邻两边的比等于tan60°.由于AB边不确定是较长还是较短的边,故需要分类讨论计算.(2)过O点作OH垂直BD,连接OD,由∠DPC=60°可求得OH,在Rt△ODH中勾股定理可求DH,再由垂径定理可得BD=2DH.(3)由BD与x轴成60°角可知直线BD解析为y=,由二次函数图象与x轴交点为A、C可设解析式为y=a(x+3)(x﹣2),把两解析式联立方程组,消去y后得到关于x的一元二次方程,解即为点B、D横坐标,所以用韦达定理得到x B+x D和x B•x D进而得到用a表示的(x B﹣x D)2.又由四边形面积可求得x B﹣x D=6,即得到关于a的方程并解方程求得a.解:(1)①∵菱形、正方形的对角线互相垂直∴菱形、正方形不是“美丽四边形”.故答案为:菱形、正方形.②设矩形ABCD对角线相交于点O∴AC=BD,AO=CO,BO=DO,∠ABC=90°∴AO=BO=CO=DO∵矩形ABCD是“美丽四边形”∴AC、BD夹角为60°i)如图1,若AB=3为较短的边,则∠AOB=60°∴△OAB是等边三角形∴∠OAB=60°∴Rt△ABC中,tan∠OAB=∴BC=AB=3ii)如图2,若AB=3为较长的边,则∠BOC=60°∴△OBC是等边三角形∴OCB=60°∴Rt△ABC中,tan∠OCB=∴BC=故答案为:3或.(2)过点O作OH⊥BD于点H,连接OD∴∠OHP=∠OHD=90°,BH=DH=BD∵AP=1,PC=5∴⊙O直径AC=AP+PC=6∴OA=OC=OD=3∴OP=OA﹣AP=3﹣1=2∵四边形ABCD是“美丽四边形”∴∠OPH=60°∴Rt△OPH中,sin∠OPH=∴OH=OP=∴Rt△ODH中,DH=∴BD=2DH=2(3)过点B作BM⊥x轴于点M,过点D作DN⊥x轴于点N∴∠BMO=∠DNO=90°∵四边形ABCD是“美丽四边形”∴∠BOM=∠DON=60°∴tan∠DON=,即∴直线BD解析式为y=x∵二次函数的图象过点A(﹣3,0)、C(2,0),即与x轴交点为A、C∴用交点式设二次函数解析式为y=a(x+3)(x﹣2)∵整理得:ax2+(a﹣)x﹣6a=0∴x B+x D=﹣,x B•x D=﹣6∴(x B﹣x D)2=(x B+x D)2﹣4x B•x D=(﹣)2+24∵S四边形ABCD=S△ABC+S△ACD=AC•BM+AC•DN=AC(BM+DN)=AC(y D﹣y B)=AC(x D﹣x B)=(x B﹣x D)∴(x B﹣x D)=15∴x B﹣x D=6∴(﹣)2+24=36解得:a1=,a2=∴a的值为或.。

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷 解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷  解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)02.(3分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a94.(3分)估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.(3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示的几何体的左视图是()A.B.C.D.7.(3分)如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°8.(3分)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,509.(3分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.10.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC 相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.412.(3分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D到BC′的距离为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中,自变量x的取值范围是.14.(3分)分解因式:3a3﹣6a2+3a=.15.(3分)若关于x的分式方程+=2m有增根,则m的值为.16.(3分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.17.(3分)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD =1,BD=2,BC=4,则EF=.18.(3分)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为.三、解答题(共66分)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°20.(6分)先化简,再求值:÷(+1),其中x为整数且满足不等式组21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)23.(9分)如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.24.(9分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)25.(10分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA 中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.26.(10分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠P AB=2∠ACO.求点P的坐标.2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)0【分析】直接利用绝对值以及零指数幂的性质、相反数的性质分别化简得出答案.【解答】解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.【点评】此题主要考查了绝对值以及零指数幂的性质、相反数的性质,正确化简各数是解题关键.2.(3分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.【点评】本题考查了单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质.熟练掌握法则是解题的关键.4.(3分)估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:∵3=,36<45<49,∴6<7,故选:C.【点评】此题主要考查了估算无理数的大小,正确估算无理数是解题关键.5.(3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握不等式组的解法是解题关键.6.(3分)如图所示的几何体的左视图是()A.B.C.D.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.7.(3分)如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【分析】过点E作EF∥11,利用平行线的性质解答即可.【解答】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.8.(3分)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,50【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设有x人,物价为y,可得:,解得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+b图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.4【分析】由切线的性质得出AC⊥OD,求出∠A=30°,证出∠ODB=∠CBD,得出OD ∥BC,得出∠C=∠ADO=90°,由直角三角形的性质得出∠ABC=60°,BC=AB=6,AC=BC=6,得出∠CBD=30°,再由直角三角形的性质即可得出结果.【解答】解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.【点评】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出OD∥BC是解题的关键.12.(3分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D到BC′的距离为()A.B.C.D.【分析】根据折叠的性质和点到直线的距离即可求解.【解答】解:过B作BM⊥DC于M,过D作DN⊥BC于N,如下图所示,∵把△BDC沿BD翻折,得到△BDC′,∴CD=C′D=2,∠CDB=∠C′DB,∵AD=AC′=2,∴△ADC′为等边三角形,∴∠C′DA=60°,∴,∵BM⊥DC,∴,∴,∴,∵S△BDC=,∴DN=,故选:D.【点评】本题考查了折叠的性质和点到直线的距离,解题的关键是求出CD和BC的长度.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【分析】先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.(3分)若关于x的分式方程+=2m有增根,则m的值为1.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.(3分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.17.(3分)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD =1,BD=2,BC=4,则EF=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【解答】解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:【点评】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.18.(3分)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为20.【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【解答】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=2﹣2,即:y2=2﹣2,同理:y3=2﹣2,y4=2﹣2,……y100=2﹣2∴y1+y2+…+y100=2+2﹣2+2﹣2……2﹣2=20,故答案为20.【点评】考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.三、解答题(共66分)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°【分析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别进行化简即可;【解答】解:原式=﹣1+3﹣1﹣2×=1﹣2×3=﹣5;【点评】本题考查实数的运算,零指数幂,特殊角的三角函数值;牢记特殊角的三角函数值,掌握实数的运算性质是解题的关键.20.(6分)先化简,再求值:÷(+1),其中x为整数且满足不等式组【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解,继而代入计算可得.【解答】解:原式=÷(+)=•=,解不等式组得2<x≤,则不等式组的整数解为3,当x=3时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)【分析】(1)作BH⊥AF于点K,交MN于点H,则△ABK∽△ACG,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x的值;(2)求得CG的长,然后在直角△ACG中,求得AC即可解决问题;【解答】解:(1)作BH⊥AF于点K,交MN于点H.则BK∥CG,△ABK∽△ACG.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)在Rt△ACG中,CG=80﹣8=72(cm).则sin∠CAF=,∴AC=80,(cm)∴BC=AC﹣AB=80﹣50=30(cm).【点评】本题考查解直角三角形的应用,切线的性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.23.(9分)如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.【分析】(1)连接EO,由∠EOG=2∠C、∠ABG=2∠C知∠EOG=∠ABG,从而得AB ∥EO,根据EF⊥AB得EF⊥OE,即可得证;(2)由∠ABG=2∠C、∠ABG=∠C+∠A知∠A=∠C,即BA=BC=6,在Rt△OEG中求得OG==5、BG=OG﹣OB=2,在Rt△FGB中求得BF=BG sin∠EGO,根据AF=AB﹣BF可得答案.【解答】解:(1)如图,连接EO,则OE=OC,∴∠EOG=2∠C,∵∠ABG=2∠C,∴∠EOG=∠ABG,∴AB∥EO,∵EF⊥AB,∴EF⊥OE,又∵OE是⊙O的半径,∴EF是⊙O的切线;(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC=6,在Rt△OEG中,∵sin∠EGO=,∴OG===5,∴BG=OG﹣OB=2,在Rt△FGB中,∵sin∠EGO=,∴BF=BG sin∠EGO=2×=,则AF=AB﹣BF=6﹣=.【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键.24.(9分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【分析】(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额﹣总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.【解答】解:(1)由题意,得:,解得,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.25.(10分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA 中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠MON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ON cos60°=,∴OD=OP cos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.26.(10分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠P AB=2∠ACO.求点P的坐标.【分析】(1)把点A、C坐标代入抛物线解析式即可求得b、c的值.(2)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.(3)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3),∴解得:,∴抛物线的函数表达式为y=x2+2x﹣3.(2)结论:DM+DN为定值.理由:∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1,∴D(﹣1,0),x M=x N=﹣1,设Q(t,t2+2t﹣3)(﹣3<t<1),设直线AQ解析式为y=dx+e∴解得:,∴直线AQ:y=(t+3)x﹣t﹣3,当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6,∴DM=0﹣(﹣2t﹣6)=2t+6,设直线BQ解析式为y=mx+n,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020级明德天心中学初三数学入学考试
时量:120分钟 满分:120分
班级: 姓名: 学号: 一、选择题(本题共12小题,每题3分,共36分) 1.有理数-2020的相反数是( )
A .2020
B .-2020
C .
1
2020
D .-
1
2020
2.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万
B .420510⨯
C .62.0510⨯
D .72.0510⨯
3.奔驰,奥迪,欧宝和大众都是德国产汽车,它们的标志如下图,其中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
4.下列运算中,正确的是( ) A .6410·a a a =
B .2
1
22a
a
-=
C .236(3)9a a =
D .235a a a +=
5.下列各组中的三条线段(单位:cm ),能围成三角形的是( ) A .1,2,3
B .2,3,4
C .10,20,35
D .4,4,9
6.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是( )
A .
B .
C .
D .
7.下列说法正确的是( )
A. 为了解长沙市中学生的睡眠情况,应该采用全面调查的方式
B. 一组数据1,5,3,2,3,4,8的众数和中位数都是3
C.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖
D. 若甲组数据的方差s 2甲=0.1,乙组数据的方差s 2乙=0.2,则乙组数据比甲组数据稳定 8.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( ) A .0k ≥ B .0k ≤
C .k 0<且1k ≠-
D .0k ≤且1k ≠-
9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )
A .83
74y x y x -=⎧⎨
-=⎩
B .83
74y x x y -=⎧⎨
-=⎩
C .83
74x y y x -=⎧⎨
-=⎩
D .83
74x y x y -=⎧⎨
-=⎩
10.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A .6
B .8
C .14
D .16
11.如图,二次函数y=ax 2+bx+c(a ≠0)的部分图象如图所示,图象过点(−1,0),对称轴为直线x =1,下列结论:①abc <0 ②b<c ③3a+c =0 ④当y >0时,−1<x <3;其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
第11题图
第15题图

17题图
第18题图
第16题图
12.如图,A 、B 是函数x
y 6
=
上两点,P 为一动点,作PB ∥y 轴,PA ∥x 轴,下列说法正确的是( ) ①△AOP ≌△BOP; ②S △AOP =S △BOP ;
③若OA=OB,则OP 平分∠AOB; ④若S △BOP =2,则S △ABP =8 A. ①③ B. ②③ C. ②④ D. ③④
二、填空题(本题共6小题,每题3分,共18分) 13.因式分解:a 2b-9b =______.
14.分式
12
x -有意义时,x 的取值范围是_____.
15.如图,Rt △ABC 中,∠C =90°,∠B =25°,分别以点A 和点B 为圆心,大于 AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是______. 16.如图,圆O 的直径AB 垂直于弦CD,垂足是E,∠A=22.5∘,OC=4,CD 的长为______.
17.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径 ,扇形的圆心角 ,则该圆锥的母线l 长为______cm .
18.如图,正方形ABCD 的边长为8,E 为BC 上一点,且BE=2,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为_____.
x
y 6=
第12题图
120θ=o
2r cm =
三、解答题(共66分)
19.(6分)()31
8
12360sin 2---+-+︒-
20.(6分)先化简⎪⎭
⎫ ⎝⎛-÷-+-x x x x x x 1122
2,其中x=2.
21.(8分)为了解中考体育科目训练情况,从全市九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图。

请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是___;
(2)图1中∠α的度数是__ _,并把图2条形统计图补充完整;
(3)测试老师想从4位同学(分别记为E 、 F 、G 、H,其中G 为小康)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小康的概率。

22.(8分)如图,南海某海域有两艘外国渔船A ,B 在小岛C 的正南方向同一处捕鱼.一段时间后,渔船B 沿北偏东30°的方向航行至小岛C 的正东方向20海里处. (1)求渔船B 航行的距离;
(2)此时,在D 处巡逻的中国渔政船同时发现了这两艘渔船,其中B 渔船在点D 的南偏西60°方向,A 渔船在点D 的西南方向,我国渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)
23.(9分)如图,在矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F.
(1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.
24.(9分)如图,已知直角△ABC 中,∠ABC=90∘,BC 为⊙O 的直径,D 为⊙O 与斜边AC 的交点,作∠ECB 使得CA 平分∠ECB ,且CE ⊥DE ;DE 与AB 交与点F. (1)猜想并证明直线DE 与⊙O 的位置关系; (2)若DE=3,CE=4,求⊙O 的半径;
(3)记△BCD 的面积为S 1,△CDE 的面积为S 2,若S 1:S 2=3:2.求sin ∠AFD 的值。

25.(10分)对于一次函数y=kx+b (k ,b 为常数)经过二次函数c bx ax y ++=2
(a 、b 、c 为常数)的顶点,我们把()
()()b kx t c bx ax t y +-+++=12
称为这两个函数的“生成函数”,其中t 是不为常数.
(1)若一次函数y=x+m 和二次函数()322
+-=x a y 的“生成函数”图像是一根直线,求其“生成函数”解析式;
(2)若二次函数c bx ax y ++=2
的顶点在反比例函数x
y 4
-=的图像上,它与一次函数y=2x-6的“生成函数”的图像为抛物线,且经过点(3,0),求a 的值;
(3)二次函数c bx x y ++=2
的最小值为t ,一次函数y=x+1与“生成函数”()
()()
112
+-+++=x t c bx x t y 图像交于两个不同的点A ,B ,若△OAB (O 为原点)为等腰三角形,求t 的值.
26.(10分)如图1,在平面直角坐标系中,抛物线y =1
8
-x 2+bx+c 与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C (0,3),过点C 作x 轴的平行线交抛物线于点P (2,3).连接AC .
(1)求y =1
8
-x 2+bx+c 中b 、c 的值以及直线AC 的解析式;
(2)如图2,过点P 作x 轴的垂线,垂足为E ,将线段OE 绕点O 逆时针旋转得到OF ,旋转角为α(0°<α<90°),连接F A 、FC .求AF +
2
3
CF 的最小值; (3)如图3,点M 为线段OA 上一点,以OM 为边在第一象限内作正方形OMNG ,当正方形OMNG 的顶点N 恰好落在线段AC 上时,将正方形OMNG 沿x 轴向右平移,记平移中的正方形OMNG 为正方形O ′MNG ,当点M 与点A 重合时停止平移.设平移的距离为t ,正方形O ′MNG 的边MN 与AC 交于点R ,连接O ′P 、O ′R 、PR ,是否存在t 的值,使△O ′PR 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.。

相关文档
最新文档