反函数和反三角函数(最新)

合集下载

2023年最新的反三角函数14篇

2023年最新的反三角函数14篇

2023年最新的反三角函数14篇百科名片是一种数学术语。

反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。

它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。

数学术语为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2 反三角函数(2)反三角函数是一种基本初等函数。

它并不能狭义的理解为三角函数的反函数,是个多值函数。

它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数,而不是。

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2 反三角函例1、求下列各反三角函数的值:(2)arcsin(-1)(3)例2、求下列各式的值:例3、求下列各式的值:例4、求下列各式的值:例5、求下列各式的值:(2)例6、求下列函数的定义域和值域例7、求下列各式的值:例8、求下列各式的值:例9、求的反函数例10、已知求(用反三角函数表示)例11、解不等式:例12、已知函数,1)求函数的定义域、值域和单调区间。

常用反三角函数公式表

常用反三角函数公式表

常用反三角函数公式表在数学的广阔天地中,反三角函数是一个重要的概念,它们在解决各种数学问题时经常被用到。

为了更好地理解和运用反三角函数,我们有必要熟悉一些常用的反三角函数公式。

首先,让我们来了解一下什么是反三角函数。

反三角函数是三角函数的反函数,简单来说,如果给定一个三角函数的值,反三角函数可以帮助我们求出对应的角度。

常见的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。

一、反正弦函数公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其图像关于原点对称。

2、 arcsin(sinx) = x (π/2 ≤ x ≤ π/2)这是反正弦函数的基本定义,意味着在其定义域内,对正弦函数的值求反正弦,就可以得到原来的角度。

3、 sin(arcsinx) = x (-1 ≤ x ≤ 1)这是反正弦函数与正弦函数的相互转换关系。

二、反余弦函数公式1、 arccos(x) =π arccosx与反正弦函数类似,反余弦函数也是一个非奇非偶函数。

2、 arccos(cosx) = x (0 ≤ x≤ π)3、 cos(arccosx) = x (-1 ≤ x ≤ 1)三、反正切函数公式1、 arctan(x) = arctanx反正切函数是一个奇函数。

2、 arctan(tanx) = x (π/2 < x <π/2)3、 tan(arctanx) = x (x 为任意实数)四、反余切函数公式1、 arccot(x) =π arccotx2、 arccot(cotx) = x (0 < x <π)3、 cot(arccotx) = x (x 为任意实数)五、其他常用公式1、 arcsinx + arccosx =π/2 (-1 ≤ x ≤ 1)这个公式表明,在定义域内,反正弦函数和反余弦函数的值之和为常数π/2。

2、 arctanx + arccotx =π/2 (x 为任意实数)反正切函数和反余切函数的值之和也为常数π/2。

反三角函数公式大全

反三角函数公式大全

反三角函数公式大全三角函数的反函数,是多值函数。

它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。

为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)。

全部反三角函数

全部反三角函数

全部反三角函数
反三角函数是数学中非常重要的一类函数,它们是三角函数的反函数。

在一些数学问题中,使用反三角函数可以简化计算,同时也有一些实际应用。

本文将介绍全部的反三角函数,包括正弦函数的反函数arcsin(x),余弦函数的反函数arccos(x),正切函数的反函数arctan(x),余切函数的反函数arccot(x),正割函数的反函数arcsec(x),余割函数的反函数arccsc(x)。

同时,本文将讨论这些函数的性质和图像,以及它们在实际问题中的应用。

希望读者通过本文的学习,能够更好地理解反三角函数,并能够熟练运用它们解决实际问题。

- 1 -。

常用反三角函数公式表

常用反三角函数公式表

常用反三角函数公式表在数学的广袤领域中,反三角函数是一个重要的概念,它们在解决各种数学问题和实际应用中都发挥着关键作用。

反三角函数包括反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。

为了更好地理解和运用这些函数,我们需要熟悉一些常用的反三角函数公式。

一、反正弦函数(arcsin)公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其函数值的正负与自变量的正负相反。

2、 sin(arcsinx) = x ,其中-1 ≤x ≤ 1这是反正弦函数的定义式,意味着对一个在-1, 1范围内的数 x ,其反正弦函数的正弦值就是 x 本身。

3、 arcsinx + arcsin(x) = 0 ,其中-1 ≤ x ≤ 1这个公式进一步说明了反正弦函数的奇偶性。

二、反余弦函数(arccos)公式1、 arccos(x) =π arccosx反余弦函数不是奇函数,而是满足上述关系。

2、 cos(arccosx) = x ,其中-1 ≤ x ≤ 1与反正弦函数类似,这是反余弦函数的定义式。

3、 arccosx + arccos(x) =π ,其中-1 ≤ x ≤ 1体现了反余弦函数的特殊性质。

三、反正切函数(arctan)公式1、 arctan(x) = arctanx反正切函数是奇函数。

2、 tan(arctanx) = x ,x 为实数这是反正切函数的定义式。

3、 arctanx + arctan(1/x) =π/2 ,其中 x > 0这个公式在一些计算和证明中经常用到。

四、反三角函数的和差公式1、 arcsinx + arcsiny=arcsin(x√(1 y²) +y√(1 x²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 1 2、 arcsinx arcsiny=arcsin(x√(1 y²) y√(1 x²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 1 3、 arccosx + arccosy=arccos(xy √(1 x²)√(1 y²)),其中-1 ≤ x ≤ 1 ,-1 ≤ y ≤ 14、 arccosx arccosy= arccos(xy +√(1 x²)√(1 y²)),其中-1 ≤ x≤ 1 ,-1 ≤ y ≤ 15、 arctanx + arctany= arctan((x + y)/(1 xy)),其中xy ≠ 16、 arctanx arctany= arctan((x y)/(1 + xy)),其中xy ≠ -1五、反三角函数的倍角公式1、arcsin(2x√(1 x²))= 2arcsinx ,其中-1/√2 ≤ x ≤ 1/√22、 arccos(2x² 1) = 2arccosx ,其中0 ≤ x ≤ 13、 arctan(2x/(1 x²))= 2arctanx ,其中-1 < x < 1六、反三角函数的半角公式1、arcsin(√((1 x)/2))=(1/2)arcsinx ,其中0 ≤ x ≤ 12、arccos(√((1 + x)/2))=(1/2)arccosx ,其中-1 ≤ x ≤ 13、arctan(√((1 x)/(1 + x)))=(1/2)arctanx ,其中-1 <x < 1七、反三角函数的万能公式1、 arcsin(2tan(x/2)/(1 + tan²(x/2)))= x ,其中π/2 ≤ x ≤ π/22、 arccos((1 tan²(x/2))/(1 + tan²(x/2)))= x ,其中0 ≤ x ≤ π3、 arctan(2tan(x/2)/(1 tan²(x/2)))= x ,其中π/2 < x <π/2掌握这些常用的反三角函数公式,对于解决涉及三角函数和反三角函数的问题非常有帮助。

(完整版)反三角函数公式大全

(完整版)反三角函数公式大全

反三角函数公式大全三角函数的反函数,是多值函数。

它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。

为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。

其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=∏-arccosxarctan(-x)=-arctanxarccot(-x)=∏-arccotxarcsinx+arccosx=∏/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x当x∈〔0,∏〕,arccos(cosx)=xx∈(—∏/2,∏/2),arctan(tanx)=xx∈(0,∏),arccot(cotx)=xx〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)。

反函数与反三角函数

反函数与反三角函数
反函数与反三角函数
反函数与反三角函数
1
反函数与反三角函数
一、 反函数
函数 x 定义域 D 例如, 一对一函数 f
y
值域 W
f ( x) x3
y
y x3
g( x ) x 2
y
y x2
同样的y值 1
非一对一函数
o
x
1
o
图1-1(b)
1
x
x1 x2 , f ( x1 ) f ( x2 )
o
图1-3
y x2
x
y x
2 函数 y x , x 0与 y x 互为反函数.
6
反函数与反三角函数
二、反三角数函数 正弦函数
f ( x ) sin x
x
定义域 R
Байду номын сангаас
f
y
值域 [1,1] 不是一对一的
sin( 2n x ) sinx
f ( x ) sin x是一对一的, 当x , 时 , 所以它有反函数. 2 2
y
y

1
O
y cos x
2

2 y arccos x
x
1 x
O x1
x
图1-5(a)
图1-5(b)
定义域: 1,1
值域: 0,
在定义域内单减.
cosarccosx x,
arccos( x ) arccosx, x 1,1
9
图1-6
10
反函数与反三角函数
反余切函数
y arc cot x
定义域: , 值域: 0, 在定义域内单减.

反函数和反三角函数(最新)

反函数和反三角函数(最新)
许多角。
2
2
正切函数 ytanx,x(,) 有反函数吗? 有,因为它是一一对应函2数2,
同一个三角函数值只对应一个角。 --
3.反正切函数
(1)定义:正切函数
ytanx(x( , )的反函数 22
叫反正切函数,记作 xarctany (本义反函数)
习惯记作 yarctanx(矫正反函数)
xR, y(
反函数和反三角函数 一、反函数 二、反三角函数
--
一、反函数
--
--
--
二、反三角函数
1.反正弦函数 arcsixn 2.反余弦函数 arccxos 3.反正切函数 arctaxn 4.反余切函数 arccoxt
--
(1)什么样的函数有反函数?
一一对应函数有反函数
(2)互为反函数图象之间有什么关系
②这个角的范围是
2
,
2
即arcsina2,2.
--
(2)反正弦函数 yarc x,x s i [ 1 n , 1 ]的图象
与性质: ①定义域:[-1,1]。
②值域: [ , ]
22
y
③单调性: 是增函数。
yarcsinx,x [ 1 ,1 ],y [, ]
2
22
1.5
④奇函数 ⑤有界函数
arccos
0
___2 ___(4)
arccos
1 2
__3____
2
(5) arccos( 1 ) __3 ____(6) arccos 2
2 2
__4 ______
(7) arccos(
2 2
)
3
__4 ______(8)
arccos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
5 y=arccosx,x∈[-1,1]
4.5
4 y∈[0,π]
3.5 3
2.5
是减函数。
2
1.5
1
④有界函数
0.5
π
-4
-3
-2
-1
-1
o 11
-0.5
2
3
x 4
-1
y=cosx,x∈[0,π]
yx
y∈[-1,1]
(3)熟记特殊值的反正弦函数值
(1)arccos1 __0____(2)arccos(1) ______
有,因为它是一一对应函数,
同一个三角函数值只对应一个角。
2.反余弦函数
(1)定义:余弦函数 y cos x(x [0, ]) 的反函数
叫反余弦函数,记作 x arccos y (本义反函数)
习惯记作y arccos x(矫正反函数)
x[1,1], y [0, ]
若x a [1,1],有y arccos a,
(3)正弦函数y=sinx ,余弦函数y=cosx,
正切函数y=tanx在定义域上有反函数吗?
(4)正弦函数y=s没inx有在,[因为 他, 不] 是一上一有对反应函函数数吗?
22
余弦函数y=cosx在[0,π] 上有反函数吗?
正切函数y=tanx在( , ) 上有反函数吗?
22
正弦函数 y sin x(x R) 有反函数吗?
arcsin
2
2 2
__4______
(7) arcsin(
2 2
)
___4_____(8)
arcsin
3 2
__3____
(9) arcsin(
3 2
)
___3_____
只有正弦(函4数)主已值知区三间角函[数值,求 角] 上的角才能用
反正弦表示
22
2
a
F
x4
x3
-2 2
2
,
2
即arcsin
a
2
,
2
.
(2)反正弦函数 y arcsin x,x [1,1]

图象
与性质: ①定义域:[-1,1]。
②值域: [ , ]
22 ③单调性: 是增函数。
y
y arcsin x, x [1,1], y [ , ]
2
22
1.5
④奇函数 ⑤有界函数
21
0.5
y sin x, x [ , ], y [1,1]

23
(2) arccos 1
32
错 1
3
(3) arccos 0 2k (k Z) 错
2
(4) arccos( ) arccos
3
3

1
3
总结 y arccos x,x [1,1]
y [0,π]。
正切函数 y tan x(x k , k z) 有反函数吗?
3
3

1
3
总结 y arcsin x,x [1,1]
y [ , ]
22
余弦函数 y cos x(x R) 有反函数吗?
没有,因为他不是一一对应函数,同一个三角函数值会对应
许多角。
y
1
· · -2
-
o
· · · ·x
2 3
4
-1
余弦函数 y cos x(x [0, ]) 有反函数吗?
没有,因为他不是一一对应函数,同一个三角函数值会对应
许多角。
y
1
· · · · · · 2
-2
-
o
2 3
x
4
2
-1
正弦函数y sin x(x [ , ]) 有反函数吗?
有,因为它是一一对应函2 数2,
同一个三角函数值只对应一个角。
1.反正弦函数
(1)定义:正弦函数 y sin x(x [ , ]) 的反函数
2
没有,因为他不是一一对应函数,同一个三角函数值会对应
许多角。
2
2
正切函数 y tan x, x ( , ) 有反函数吗?
22
有,因为它是一一对应函数,
同一个三角函数值只对应一个角。
3.反正切函数
(1)定义:正切函数
y
tan x(x (
2
,
) 2
的反函数
叫反正切函数,记作 x arctan y (本义反函数)
(3)
arccos
0
___2___(4)
arccos
1 2
__3____
2 (5) arccos( 1) __3____(6) arccos
2
2 2
__4______
(7) arccos(
2 2
)
3 __4______(8)
arccos
3 2
_6_____
(9) arccos(
3 2
)
2 -1
22
-3
-2
-1
o
-0.5
1
1
2 2
x 3
-1
-1.5
y x -2
2
(3)熟记特殊值的反正弦函数值
(1)
arcsin1
__2____(2)
arcsin(1)
___2___
(3)
arcsin
0
__0____(4)
arcsin
1 2
__6____
(5)
arcsin(
1
)
___6___(6)
这里的“ arccos a ”是一个角的符号.
理解和掌握arccos( a 1) 符号
① arccos a 表示一个角
②这个角的范围是 0,
即arccos0, .
(2)反余弦函数 y arccos x,x [1,1] 的图象与性质
①定义域: [-1,1]。
②值域: [0,π]。
③单调性:
反函数和反三角函数 一、反函数 二、反三角函数
一、反函数
二、反三角函数
1.反正弦函数 arcsin x 2.反余弦函数 arccos x 3.反正切函数 arctan x 4.反余切函数 arc cot x
(1)什么样的函数有反函数?
一一对应函数有反函数
(2)互为反函数图象之间有什么关系
关于直线y=x对称
2
x2
y sin x, x [ , ] 22
-2
arcsina
例1:判断下列各式是否正确?并简述理由。
(1) arcsin 3
23 (2) arcsin 3
32
对 错 1
3
(3) arcsin1 2k (k Z)
2

arcsin1
2
(4) arcsin( ) arcsin
5 __6______
(4)已知三角函数值求角
只有余弦函数主值区 间[0,π]上的角才能 用反余弦表示
2
y cos x, x [0, ]
a
F
π
-2
x x O
E1
1
2
x2
x3
-arccosa -2 arccosa
2π-arccosa 2π+arccosa
例题:判断下列各式是否正确?并简述理由。
(1) arccos 1
22
叫反正弦函数,记作 x arcsin y
习惯记作 y arcsin x
x [1,1], y [ , ]
22 若x a [1,1],有y arcsin a,
这里的“arcsina ”是一个角的符号.
理解和掌握arcsin a( a 1) 符号
① arcsin a 表示一个角
②这个角的范围是
相关文档
最新文档