2013厦门市中考数学试题(含答案)
2013年厦门市中考数学试卷-答案

11.【答案】6
【解析】∵ ,∴ ,∴ ,即 解得: .
【提示】根据 ,可判断 ,利用对应边成比例的知识可求出BC.
【考点】相似三角形的判定与性质
12.【答案】
【解析】按从小到大的顺序排列后,最中间的数是 ,所以中位数是 米.
【提示】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
4.【答案】C
【解析】∵任意抛掷一个均匀的正方体骰子,朝上的点数总共会出现6种情况,且每一种情况出现的可能性相等,而朝上一面的点数为5的只有一种,∴朝上一面的点数为5的概率是 .
【提示】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.
二者的比值就是其发生的概率的大小.
【考点】概率公式
,∵事件B为“向上一面的数字是3的整数倍”,
∴符合要求的数有:3,6,9,12一共有4个,则 ,
∵ ,
∴
【提示】让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,进而得出事件B的概率,进而得出答案.
【考点】概率公式
21.【答案】见解析
【解析】证明:∵ ,
∴ ,
∴ ,
∵ ,
二、填空题
8.【答案】6
【解析】根据相反数的概念,得 的相反数是 .
【提示】求一个数的相反数,即在这个数的前面加负号.
【考点】相反数
9.【答案】
【解析】
【提示】根据同底数幂相乘,底数不变指数相加进行计算即可得解.
【考点】同底数幂的乘法
10.【答案】
【解析】根据题意得 ,解得
【提示】根据被开方数大于等于0列式进行计算即可求解.
2013厦门中考数学试题(解析版)

20.(6分)(2013•厦门)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面只有一个整数且互不相同).投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=+P(B)是否成立,并说明理由.,,∵+≠,+P=21.(6分)(2013•厦门)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.(×22.(6分)(2013•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.∴x+20x+20=523.(6分)(2013•厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.,中,24.(6分)(2013•厦门)已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC 的面积S的取值范围.(mn+n上,n=+(≤,),∴.25.(6分)(2013•厦门)如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.(r=OA=aAB=a BG=aa BM=,,即((.∵=r=OF=r=26.(11分)(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.﹣b∵是偶系二次方程,×﹣﹣,b bb。
【2013中考真题】福建厦门中考数学试卷及答案(有答案)

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.(2013福建厦门,1,3分).下列计算正确的是( )A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 【答案】A(2013福建厦门,2,3分).已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°. 【答案】B(2013福建厦门,3,3分).图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体.俯视图左视图主视图图1【答案】C(2013福建厦门,4,3分).掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是A .1.B .15.C .16. D .0.【答案】 C .(2013福建厦门,5,3分).如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B = A .150°. B .75°. C .60°. D .15°.图2【答案】B(2013福建厦门,6,3分).方程2x -1=3x的解是 A .3. B .2. C .1. D .0. 【答案】A(2013福建厦门,7,3分).在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4).【答案】 D .二、填空题(本大题有10小题,每小题4分,共40分) (2013福建厦门,8,4分).-6的相反数是 . 【答案】6(2013福建厦门,9,4分).计算:m 2·m 3= . 【答案】m 5(2013福建厦门,10,4分).式子x -3在实数范围内有意义,则实数x 的取值范围 是 . 【答案】x ≥3(2013福建厦门,11,4分).如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3, DE =2,则BC = .图3ED CB【答案】6(2013福建厦门,12,4分).在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数是 米. 【答案】1.65.(2013福建厦门,13,4分).x 2-4x +4= ( )2. 【答案】x —2(2013福建厦门,14,4分).已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 【答案】m >1(2013福建厦门,15,4分).如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E , F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.图4FE ODCA【答案】3(2013福建厦门,16,4分).某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 米. 【答案】1.3 .(2013福建厦门,17,4分).如图5,在平面直角坐标系中,点O 是原点,点B (0,3), 点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) .【答案】(1,3)三、解答题(本大题有9小题,共89分)(2013福建厦门,18(1),7分).(1)计算:5a+2b+(3a—2b);解:(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b=8a.(2013福建厦门,18(2),7分).在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3, -1),请在图6上画出△ABC,并画出与△ABC关于原点O对称的图形;【解答过程】解:正确画出△ABC正确画出△DEF(2013福建厦门,18(3),7分).如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°. 求证:AB∥CD.D CBA图7证明∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.(2013福建厦门,19(1),7分).(1;解:20×0.15+5×0.20+10×0.1820+5+10≈0.17(公顷/人).∴这个市郊县的人均耕地面积约为0.17公顷.(2013福建厦门,19(2),7分).先化简下式,再求值:2x2+y2 x+y -x2+2y2x+y,其中x=2+1,y=22—2;解:(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y=x-y. 当x=2+1,y=22—2时,原式=2+1-(22—2)=3—2.(2013福建厦门,19(3),7分).如图8,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.图8证明∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A =∠E . ∴ AD =DE .∴△ADE 是等腰三角形.(2013福建厦门,20,6分).有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为 “向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.解: 不成立∵ P(A)=812=23,又∵P(B) =412=13,而12+13=56≠23.∴ 等式不成立.(2013福建厦门,21,6分).如图9,在梯形ABCD 中,AD ∥BC , 对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .图9E DC BA证明∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB . ∴△EDA ∽△EBC .∴ AD BC =AE EC =12.即:BC =2AD .∴54=12×365( AD +2AD )∴AD =5. 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ∴∠AED =90°. ∴ AC ⊥BD .(2013福建厦门,22,6分).一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.解1: 当0≤x ≤3时,y =5x .当y >5时,5x >5, 解得 x >1.∴1<x ≤3. 当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20.当y >5时,-53x +20>5,解得 x <9.∴ 3<x <9. ∴容器内的水量大于5升时,1<x <9 .解2: 当0≤x ≤3时,y =5x . 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ∴ 1<x ≤3. 当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20.当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小, ∴当y >5时,有x <9. ∴3<x <9. ∴容器内的水量大于5升时,1<x <9 .(2013福建厦门,23,6分).如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH .求证:∠ABH =∠CDE .H G FE DC B图11A证明∵四边形ABCD 是正方形,∴∠F AD =90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF .∵AG =DE +HG ,AG =AH +HG ∴DE =AH又AD =AB ,∴ △ADE ≌△ABH ∴∠AHB =∠AED =90°. ∵∠ADC =90°,∴∠BAH +∠ABH =∠ADF +∠CDE∴∠ABH =∠CDE.(2013福建厦门,24,6分).已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.解:∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ∴q =-p +m +n .又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m. 即p -m =p -mpm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ∵ nm =1,∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12.∵S =12( p +q ) p=12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大.12<S ≤58.(2013福建厦门,25,6分).如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心,r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.图12证明∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3.延长BC ,作ON ⊥BC ,垂足为N . ∵ 四边形OABC 是菱形 ∴ BC ∥AO , ∴ ON ⊥OA .∵∠AOC =60°, ∴∠NOC =30°.设NC =x ,则OC =2x ,ON =3x . 连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x . ∴四边形MONC 是平行四边形. ∵ ON ⊥BC ,∴四边形MONC 是矩形. ∴CM ⊥BC . ∴ CM =ON =3x . 在Rt △BCM 中,(3x )2+(2x )2=(7)2, 解得x =1.∴ 直线BC 与⊙O 相切.(2013福建厦门,26,11分).若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2 =2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.(1)解: 不是 解方程x 2+x -12=0得,x 1=-4,x 2=3. x 1+x 2=4+3=2×3.5.∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.(2)解法1:存在∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n .当 b =-6,c =-27时,有 -27=36m +n .∴n =0,m =- 34.即有c =- 34b 2.又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =- 34×32=-274.∴可设c =- 34b 2.对任意一个整数b ,当c =- 34b 2时,∵△=b 2-4c =4b 2.∴ x =-b ±2b2.∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.∵方程x 2-6x -27=0,的两个根是x 1=3,x 2=-9,而3=12×6,-9=32×6,又“偶系二次方程”x 2+6x -27=0,x 2+3x -274=0的两根的绝对值x 1、x 2与b 也有同样的规律.假设方程x 2+bx +c =0两根的绝对值x 1、x 2与b 满足 x 1=12b ,x 2=32b (x 1<x 2).可得c =- 34b 2.对任意一个整数b ,当c =- 34b 2时,△=b 2-4c=4b 2.∴x =-b ±2b2 .∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.解法3: 存在∵x 2-6x -27=0可化为(x -3)2=62,同理“偶系二次方程”x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0可化为(x -1)2=32,(x +32)2=32,(x +3)2=62. 由x 2+bx +c =0 得(x +b2)2=b 24-c .假设 b 24-c =m 2(m 是整数). 即c =b 24-m 2,取m =b .得c =-34b 2.对任意一个整数b ,当c =-34b 2时,△=b 2-4c=4b 2.∴x =-b ±2b2 .∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.当c =- 154b 2时,△=b 2-4c=16b 2.∴x =-b ±4b 2 .∴ x 1=-52b ,x 2=32b .∴ x 1+x 2=52b +32b =4b =22b .∵b 是整数,∴2b 也是整数.∴ 当c =- 154b 2(b 是整数)时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.。
厦门六中2012-2013学年上学期期中考数学试卷

福建省厦门六中2012—2013学年上学期高一期中考试数 学 试 卷满分150分 考试时间120分钟 考试日期:2012.11.一、选择题:本题共10个小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填在答题卡的指定位置上.1.下列四个选项中正确的是( )A. }1,0{1∈B. }1,0{1∉C. }1,0{1⊆D. }1,0{}1{∈2、已知全集{}8,7,6,5,4,3,2,1=U ,集合{}4,3,2=M ,{}6,3,1=P ,则集合{}5,7,8是( )()A P M()B P M ()C ()U M P C ()D ()U M P C3.下列函数中,与函数xy 1=有相同定义域的是( )A.x x f ln )(=B.xx f 1)(=C.3)(x x f =D.x e x f =)(4.若a>0,a≠1,且m>0,n>0,则下列各式中正确的是 ( ) A.log a m•log a n=log a (m+n) B.a m•a n=am•nC.a a a a log mlog m log n log n=- D. m m n n a a a -=5.下列函数中,在其定义域内既是奇函数又是增函数的是( )A 、2xy = B 、2log y x = C 、y=x 3 D 、-1x y =6.函数f (x )=12x x -的零点所在的区间是( ) A .(0,21) B .(21,1) C .(1,23) D .(23,2)7.已知f(x)=a x,g(x)=log a x(a>0,a≠1),若f(3)×g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能为( )8.三个数23.0=a ,3.022,3.0log ==c b 之间的大小关系是( )A.a ﹤c ﹤b B. a ﹤b ﹤c C. b ﹤a ﹤c D.b ﹤c ﹤a9.设函数),在(且0)10(|,|log )(∞-≠>=a a x x f a 上单调递增,则)2()1(f a f 与+的大小关系为( )A )2()1(f a f =+B )2()1(f a f >+ C. )2()1(f a f <+ D.不确定10.已知21()log x ()3xf x =-,若实数0x 是方程()0f x =的解,且100x x <<,则1()f x 的值是( )A .恒为负B .等于零C .恒为正D .不小于零二、填空题(本大题共5小题,每小题4分,共20分)11.已知幂函数m ()=x f x 的图象过点)2,2(,则1()4f =______.12.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是 .13.函数2()log 3+1xf x =()的值域是____________(用区间表示)。
2013年厦门市中考数学试卷

2013年福建省厦门市中考数学一、选择题(共7小题;共35分)1. 下列计算正确的是 ( )A. B. C. D.2. ,则的补角是 ( )A. B. C. D.3. 如图是下列一个立体图形的三视图,则这个立体图形是 ( )A. 圆锥B. 球C. 圆柱D. 正方体4. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为的概率是 ( )A. B. C. D.5. 如图所示,在中,,,则 ( )A. B. C. D.6. 方程的解是 ( )A. B. C. D.7. 在平面直角坐标系中,将线段向左平移个单位,平移后,点,的对应点分别为点,.若点,,则点,的坐标分别是 ( )A. ,B. ,C. ,D. ,二、填空题(共10小题;共50分)8. 的相反数是.9. 计算:.10. 若在实数范围内有意义,则的取值范围是.11. 如图,在中,,,,,则 = .12. 在一次中学生田径运动会上,参加男子跳高的名运动员成绩如下表则这些运动员成绩的中位数是米.13. ()14. 已知反比例函数的图象的一支位于第一象限,则常数的取值范围是.15. 如图平行四边形的对角线,相交于点,点,分别是线段,的中点,若厘米,的周长是厘米,则厘米.16. 某采石场爆破时,点燃导火线的甲工人要在爆破前转移到米以外的安全区域.甲工人在转移过程中,前米只能步行,之后骑自行车.已知导火线燃烧的速度为米秒,步行的速度为米秒,骑车的速度为米秒.为了确保甲工人的安全,则导火线的长要大于米.17. 如图,在平面直角坐标系中,点是原点,点,点在第一象限且,点是线段的中点,点在线段上.若点和点关于直线对称,则点的坐标是(,).三、解答题(共9小题;共117分)18. (1)计算:;(2)在平面直角坐标系中,已知点,,.请在图1上画出,并画出与关于原点对称的图形;(3)如图2所示,已知,,.求证:.19. (1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:(2)先化简,再求值:,其中,;(3)如图,已知,,,是上的四点,延长,相交于点,若.求证:是等腰三角形.20. 有一个质地均匀的正面体,个面上分别写有这个整数(每个面只有一个整数且互不相同).投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,记事件为“向上一面的数字是的整数倍”,请你判断等式是否成立,并说明理由.21. 如图,在梯形中,,对角线,相交于点.若,,,梯形的高是,面积是.求证:.22. 一个有进水管与出水管的容器,从某时刻开始的分内只进水不出水,在随后的分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示.当容器内的水量大于升时,求时间的取值范围.23. 如图所示,在正方形中,点是边上任意一点,,垂足为,延长交于点.在线段上取点,使得,连接.求证:.24. 已知点是平面直角坐标系的原点,直线与双曲线交于两个不同的点和.直线与轴交于点,求的面积的取值范围.25. 如图所示,已知四边形是菱形,,点是边的中点,以点为圆心,为半径作分别交,于点,,连接.若,的长是.求证:直线与相切.26. 若,是关于的方程的两个实数根,且(是整数),则称方程为“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.(1)判断方程是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数,是否存在实数,使得关于的方程是“偶系二次方程”,并说明理由.答案第一部分1. A2. B3. C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.4. C5. B【解析】在中,,,是等腰三角形,;又,(三角形内角和定理).6. A 【解析】去分母得解得经检验是分式方程的解.7. D 【解析】线段向左平移个单位,点,,点,的坐标分别是,.第二部分8.9.10.11.12.13.14.15.【解析】提示:由题意知,,.16.17. ,【解析】有题意可知,为的中点,.,,, .点 和点 关于直线 对称, 平分 , , , . 第三部分18. (1)(2) 如图所示: 与 关于原点 对称;(3) , , , , .19. (1) 甲市郊县所有人口的人均耕地面积是(公顷).(2)原式当 , 时, 原式(3) 因为 , , , 四点共圆, 所以 , 因为 , 所以 , 所以 , 所以 ,即是等腰三角形. 20. 不成立,理由:投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,符合要求的数有,,,,,,,一共个,则,事件为“向上一面的数字是的整数倍”,符合要求的数有,,,一共有个,则,,.21. ,,,,,,,梯形,,过作交延长线于,则四边形是平行四边形,,,在中,,,,,,.22. ①时,设,则,解得,;②时,设,函数图象经过点,,解得.当时,由得,,由得,,当容器内的水量大于升时,时间的取值范围是.23.在正方形中,,,,,又,,在和中,,,,,,,,在和中,,,,,,.24. 如图,直线与轴交于点,点坐标为,点坐标为,则为等腰直角三角形,点与点关于直线对称,则点坐标为,,点在双曲线上,,即..,,,.25. 如图,过点作于,过点作于,则四边形为矩形,.设菱形的边长为,则.菱形中,,,,,.在中,,,,,,即,解得,.的长为,,,即圆心到直线的距离等于圆的半径,直线与相切.26. (1)不是,解方程得,..不是整数,不是“偶系二次方程.(2)存在.理由如下:和是偶系二次方程,假设,当,时,.是偶系二次方程,时,,.是偶系二次方程,当时,.可设.对于任意一个整数,时,,,,.,是整数,对于任何一个整数,时,关于的方程是“偶系二次方程”.。
2013年厦门市中考数学试卷(word版无答案)

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 2.已知∠A=60°,则∠A 的补角是A .160°B .120°C .60°D .30° 3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥 B .球 C .圆柱 D .正方体4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是A .1B .51 C .61D .0 5.如图2,在圆O 中,弧AB=弧AC ,∠A=30°,则∠B= A .150° B .75° C .60° D .15° 6.方程xx 312=-的解是 A .3 B .2 C .1 D .07.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1,若O (0,0),A (1,4),则点O 1、A 1的坐标分别是A .(0,0),(1,4)B .(0,0),(3,4)C .(-2,0),(1,4)D .(-2,0)(-1,4) 二、填空题(本大题有10小题,每小题4分,共40分) 8.-6的相反数是 9.计算:m 2·m 3=10.式子3-x 在实数范围内有意义,则实数x 的取值范围是 11.如图3,在△ABC 中,DE ∥BC ,AD=1,AB=3,DE=2,则BC= 12.在一次中学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/米 1.50 1.60 1.65 1.70 1.75 1.8 人数233241则这些运动员成绩的中位数是 米. 13.x 2-4x +4=( )2 14.已知反比例函数xm y 1-=的图像的一支位于第一象限,则常数m 的取值范围是15.如图4,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 16.某采石场爆破时,点燃导火线的甲工人摇在爆破前转移到400米以外的安全区,甲工人在转移过程中,前40米只能步行,之后骑自行车,已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒,为了确保加工人的安全,则导火线的长要大于 米.17.如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上, 若点B 和点E 关于直线OM 对称,则点M 的坐标是( , ) 三、解答题(本大题有9小题,共89分) 18.(本题满分21分) (1)计算:5a +2b+(3a -2b)(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3,-1),请在图6上画出△ABC ,并画出与△ABC 关于原点O 对称的图形:(3)如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,求证:AB ∥CD .19.(本题满分21分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示: 郊县 人数/万 人均耕地面积/公顷 A 20 0.15 B 5 0.20 C100.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷) (2)先化简下式,再求值:yx y x y x y x ++-++222222,期中12+=x ,222-=y (3)如图8,已知A 、B 、C 、D 是圆O 上的四点,延长DC ,AB 相交于点E ,若BC=BE , 求证:△ADE 是等腰三角形20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1-12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是2或3的整数倍”, 记事件B 为“向上一面的数字是3的整数倍”,请你判断等式P (A )=P (B )+21是否成立,并说明理由.21.(本题满分6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE=4,CE=8,DE=3,梯形ABCD 的高是536,面积是54,求证:AC ⊥BD .22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数,容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示,当容器内的水量大于5升时,求时间x 的取值范围.23.(本题满分6分)如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F ,在线段AG 上取点H ,使得AG=DE+HG ,连接BH . 求证:∠ABH=∠CDE .24.(本题满分6分)已知点O 是平面直角坐标系的原点,直线y=-x +m+n 与双曲线xy 1=交于两个不同点A (m ,n )(m ≥2)和B (p ,q ),直线y=-x +m+n 与y 轴交于点C ,求△OBC 的面试S 的取值范围.25.(本题满分6分)如图12,已知四边形OABC 是菱形∠O=60°,点M 是边OA 的中点,以点O 为圆心,r 为半径作圆O 分别交OA ,OC 于点D ,E ,连接BM ,若BM=7,弧DE 的长是33π,求证:直线BC 与圆O 相切.26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+b x +c=0的两个实数根,且k x x 221=+(k 是整数),则称方程x 2+b x +c=0为“偶系二次方程”,如方程x 2-6x -27=0,x 2-2x -8=0,42732-+x x ,x 2+6x -27=0,x 2+4x +4=0,都是“偶系二次方程”, (1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+b x +c=0是“偶系二次方程”,并说明理由.。
福建省厦门市2013届九年级数学上学期质量检测试题

2012—2013学年(上)某某市九年级质量检测数 学(试卷满分:150分 考试时间:120分钟)某某号 某某 座位号 注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1. 下列计算正确的是A 3-3=0B 3+3=3C 33=633=32. 计算25()的值是 A .±5B .5C .553. 掷一个均匀正方体骰子,当骰子停止后,朝上一面的点数为2的概率是A .1B .12C .13D .164. 若2是方程x 2-2x +c =0的根,则c 的值是A .-3B .-1C .0D .1 5. 下列事件,是随机事件的是A.从0,1,2,3,…,9这十个数中随机选取两个数,和为20 B .篮球队员在罚球线上投篮一次,未投中DC .度量三角形的内角和,结果是360 °D .度量正方形的内角和,结果是360 °6. 如图1,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上, ∠BAE =30°.若线段AE 绕点A 逆时针旋转后与线段AF 重合, 则旋转的角度是A .30°B .45°C .60°D .90°7. 如图2,在△ABC 中,AB =AC =2,BCA 为圆心作 圆弧切BC 于点D ,且分别交边AB 、AC 于点E 、F ,则扇形AEF 的面积是 A .π8B .π4C .π2D .π二、填空题(本大题有10小题,每小题4分,共40分) 8. 二次根式2x 有意义,则x 的取值X 围是 .9. 方程x 2=3的根是.10.如图3,A 、B 、C 、D 是⊙O 上的四点,若∠ACD =30°,则∠ABD =度. 1AB 、CD 是⊙O 的两条弦,若︵AB =︵CD ,且AB =2,则CD =.12. 若一元二次方程x 2+4x +c =0有两个相等的实数根,则c 的值是 .13. 一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红 色区域的概率是.14. 已知点A (a ,-1)、A 1(3,1)是关于原点O 的对称点,则a =.图3ODCBA图2FECBA15. 把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形x 米,若要求出未知数x , 则应列出方程(列出方程,不要求解方程).16. 如图4,AB 是⊙O 的弦,AB =2,△AOB 的面积是3,则∠AOB =度. 17. 若1x a =+,1y a =-,x 2-y 2=8,则a =.三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1)计算2(32)26⨯+-;(2)如图5,画出△ABC 关于点C 对称的图形;(3)如图6,已知A 、B 、C 是⊙O 上的三点,∠ACB =90°,BC =3,AC =4,求⊙O 直径的长度.19.(本题满分7分)解方程x 2+2x -2=0.20.(本题满分7分)第一盒乒乓球中有1个白球和2个黄球,第二盒乒乓球中有2个白球和1个黄球.(1)从第一盒乒乓球中随机取出1个球,求这个球恰好是黄球的概率; (2)分别从每盒中随机取出1个球,求这2个球恰好都是黄球的概率.21.(本题满分8分)我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样图5CBA图6OC 图4OBA的,当两个实数(a +与(a 的积是1时,我们仍然称这两个实数互为倒数. (1)判断(4+与(4是否互为倒数,并说明理由;(2)若实数是的倒数,求点(x ,y )中纵坐标随横坐标变化的函数解析式,并画出函数图象.22.(本题满分8分)某公司举办产品鉴定会,参加会议的是该公司的林经理和邀请的专家.在专家到会时,林经理和每位专家握一次手表示欢迎;在专家离会时,林经理又和他 们每人握一次手表示道别.且参加会议的每两位专家都握了一次手.(1)若参加会议的专家有a 人,求所有参加会议的人共握手的次数(用含a 的代数式表示);(2)所有参加会议的人共握手10次的情况是否会发生,请说明理由.23.(本题满分9分)如图7,四边形ABCD 是等腰梯形,AD ∥BC ,BC =2.以线段BC 的中点O为圆心,以OB 为半径作圆,连结OA 交⊙O 于点M . (1)若∠ABO =120°,AO 是∠BAD 的平分线,求︵BM 的长;(2)若点E 是线段AD 的中点,AE,OA =2,求证:直线AD 与⊙O 相切.24.(本题满分10分)已知关于x 的方程(a 2+1) x 2-2(a +b ) x +b 2+1=0. (1)若b =2,且2是此方程的根,求a 的值;(2)若此方程有实数根,当-3<a <-1时,求b 的取值X 围.图725.(本题满分10分)已知双曲线y =k x(k >0),过点M (m ,m )(m作MA ⊥x 轴,MB ⊥y 轴,垂足分别是A 和B ,MA 、MB 分别交双曲线y =k x(k >0)于点E 、F . (1)若k =2,m =3,求直线EF 的解析式;(2)O 为坐标原点,连结OF ,若∠BOF °,多边形BOAEF 的面积是2,求k 的值.26.(本题满分12分)已知A 、B 、C 、D 是⊙O 上的四点,︵CD =︵BD ,AC 是四边形ABCD 的对角线.(1) 如图8,连结BD ,若∠CDB =60°,求证:AC 是∠DAB 的平分线;(2) 如图9,过点D 作DE ⊥AC ,垂足为E ,若AC =7, AB =5 ,求线段AE 的长度.学年(上) 3分,共21二、填空题(本大题共10小题,每题4分,共40分)8. x ≥2; 9. ±3; 10. 30; 11. 2; 12. 4; 13. 13;14. -3; 15. 4πx 2=π(x +5)2; 16. 60; 17. 4.说明:☆ 第9题写对1个给2分; 第15题写成4x 2=(x +5)2不扣分. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:2×(3+2)-26;=6+2-26……………………………………………………4分=2- 6. …………………………………………………………6分 说明:☆ 写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分;☆ 没有写正确答案的,按步给分.(2)能在图中看出对称点是C 点 ……………2分 能画出对称图形是三角形 ……………4分以上两点都有 …………………6分(3)证明:∵∠ACB =90°,…………………………1分 ∴AB 是直径. …………………………3分 在Rt △ABC 中,∵BC =3,AC =4,∴AB =5. ……………………………6分19.(本题满分7分)解法一: x 2+2x -2=0,∵b 2-4ac =22+8=12, …………………………………………2分 ∴x =-b ±b 2-4ac2a ………………………………………… 4分=-2±122…………………………………………5分=-1± 3. ………………………………………………6分 即x 1=-1+3,x 2=-1- 3. ……………………………………………7分 解法二: x 2+2x -2=0,OCB CEDA(x +1)2=3. ………………………………………………4分x +1=± 3. ………………………………………………6分即x 1=-1+3,x 2=-1- 3. ……………………………………………7分 说明:☆x 1=,x 2=,写错一个扣1分.☆ 写出正确答案(即写出x 1=,x 2=,)且至少有一步过程,不扣分. ☆ 只有正确答案,没有过程,只扣1分. ☆ 没有写正确答案的,按步给分.☆ 如果12没有化简(即x 1=-2+122,x 2=-2-122),只扣1分.20.(本题满分7分)(1)解: P ( 恰好是黄球) ……………………………………………1分=23. …………………………………………………………………3分 (2)解: P (两球恰好都是黄球)=29 . ………………………………………7分说明:☆ 第(2)若答案不正确,但分母写对,则只扣2分.☆ 两小题的答案正确,但格式不对,如“事件”没写或写不对,只扣1分.21.(本题满分8分)(1)解法一:(4+2)与(4-2)不是互为倒数. …………………………………1分∵(4+2)(4-2) ……………………………………………………2分 =14. ………………………………………………………3分 而14≠1, ∴(4+2)与(4-2)不是互为倒数.解法二:(4+2)与(4-2)不是互为倒数. …………………………………1分 14+2……………………………………………………2分=4-214………………………………………………………3分 ≠4- 2.∴(4+2)与 (4-2)不是互为倒数.说明:☆ 若没有写“(4+2)与(4-2)不是互为倒数”但最后有写“(4+2)与(4-2)不是互为倒数”,则分数可不扣,若有写“(4+2)与(4-2)不是互为倒数”但最后没有“(4+2)与(4-2)不是互为倒数”,不扣分. ☆ 若写成“(4+2)不是(4-2)的倒数”亦可.(2)解:∵实数(x +y )是(x -y )的倒数,∴(x +y )(x -y )=1. ……………4分 ∴x -y =1. ………………………5分 ∴y =x -1. ………………………6分 画出坐标系,正确画出图象 …………8分说明:若图象画成直线、或自变量的取值不对,可得1分.22.(本题满分8分) (1)解:2a +a (a -1)2……………………………………………………3分说明: 若没有写全对,则写出2a 得1分,写出a (a -1)2得2分.(2)解法一:不会发生. ……………………………………………………4分设参加会议的专家有x 人.若参加会议的人共握手10次,由题意 ……………………………5分2x +x (x -1)2=10. ……………………………………………………6分∴x 2+3x -20=0.∴x 1=-3-892,x 2=-3+892. …………………………………7分∵x 1、x 2都不是正整数, …………………………………8分 ∴ 所有参加会议的人共握手10次的情况不会发生.解法二:不会发生. ……………………………………………………4分 由题意我们知道,参加会议的专家的人数越多,则所有参加会议的人握手 的次数就越多.当参加会议的专家有3人时,所有参加会议的人共握手9次; …6分 当参加会议的专家有4人时,所有参加会议的人共握手14次; …8分 故所有参加会议的人共握手10次的情况不会发生.说明:☆ 若没有写“不会发生”但最后有下结论,则分数可不扣,若有写“不会发生”但最后没有下结论,不扣分.☆ 若没有写“若参加会议的人共握手10次”但列对方程,则此分不扣,列对方程可得2分;☆ 没有写“x 1、x 2都不是正整数,不合题意”而是写“经检验,不合题意” 亦可.23.(本题满分9分)(1)解:∵AD ∥BC ,∠ABO =120°,∴∠BAD =60°.…………………………………………………………1分 ∵AO 是∠BAD 的平分线, ∴∠BAO =30°.∴∠AOB =30°.………………2分∵BC =2,∴BO =1.………………3分MOEDCBA∴︵BM =30π180=π6. ……………4分(2)证明:由题意得,四边形ABCD 是等腰梯形, ∴ 四边形ABCD 是轴对称图形.∵ 点O 、E 分别是底BC 、AD 的中点,连结OE ,∴OE 是等腰梯形ABCD 的对称轴.………………………………………5分 ∴OE ⊥AD .…………………………………………………………6分在Rt △AOE 中,∵AE =3,OA =2,∴OE =1. …………………………………………………………7分即OE 是⊙O 的半径. ……………………………………………………8分 ∴ 直线AD 与⊙O 相切. …………………………………………………9分 24.(本题满分10分)(1)解:∵b =2,且2是方程的根, ∴ 原方程可化为(a 2+1)22-2(a +2)2+1+22=0. ……………………………………1分 即 4a 2-4a +1=0. …………………………………………2分 ∴a =12. ………………………………………………………4分(2)解:△=4(a +b )2-4(a 2+1)(1+b 2) ……………………………………5分 =8ab -4a 2b 2-4=-4(ab -1)2. ………………………………………………6分 ∵ 方程有实数根,∴-4(ab -1)2≥0. 即 4(ab -1)2≤0.∴4(ab -1)2=0. ……………………………………………………7分∴ab -1=0.∴b =1a. ……………………………………………………………8分∵1>0,∴ 在每个象限,b 随a 的增大而减小. ……………………………………9分 ∴ 当-3<a <-1时,-1<b <-13. ……………………………………………………………10分25.(本题满分10分) (1)解:∵k =2,m =3,∴ 点E (3,23),点F (23,3). …………………………………………2分设直线EF 的解析式为y =ax +b , 则得,⎩⎪⎨⎪⎧3a +b =23,23a +b =3.……………………………………………………………3分 解得,⎩⎪⎨⎪⎧a =-1,b =113. ∴直线EF 的解析式为y =-x +113…………4分(2)解法一:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m , ∴ 四边形OAMB 正方形.点E (m ,km ),F (k m,m ). ……………5分 ∴OA =OB ,AE =BF .连结OE ,∴R t △OBF ≌R t △OAE . ………………6分 ∴∠EOA =∠BOF °.∴∠FOE =45°.连结EF 、OM 交于点C . 又 ∵∠MOA =45°, ∴∠MOE °.同理得,∠FOM °. ∵OF =OE ,∴OC ⊥FE ,且点C 线段EF 的中点.∴R t △FOC ≌R t △EOC . ………………………………………………7分Rt △COE ≌R t △AOE . ………………………………………………8分∴S △AOE =14S 五边形BOAEF . …………………………………………………9分∴12·m ·k m =12. ∴k =1. …………………………………………………………10分 解法二:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m , ∴ 四边形OAMB 正方形.点E (m ,k m ),F (k m,m ). ………………………………………………5分 ∴OA =OB ,AE =BF .连结OE ,∴R t △OBF ≌R t △OAE . ………………………………………………6分∴∠EOA =∠BOF °.OF =OE .将△OBF 绕点O 顺时针旋转90°,记点F 的对应点是P . ……………7分 则∠EOP =45°. ∵∠EOF =45°,∴△EOF ≌△EOP . …………………………………………………8分 ∴S △EOP =12S BOAEF . ……………………………………………………9分即S △EOP =1. 12·m (k m +km)=1 ∴k =1. …………………………………………………………10分 解法三:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m , ∴ 四边形OAMB 正方形.点E (m ,km ),F (k m,m ). ………………………………………5分 ∴ME =MF =m -k m.连结EF ,则△MFE 是等腰直角三角形. 连结OM 交EF 于点C .则OM ⊥EF . ∵∠BOM =45°,∠BOF ° ∴∠FOC °.∴R t △FOB ≌R t △FOC . …………………………………………6分∴OC =OB =m .∵点E (m ,km ),F (k m,m ).∴ 直线EF 的解析式是y =-x +m +k m. ∵ 直线OM 的解析式是y =x ,∴ 点C (m 2+k 2m ,m 2+k2m). ……………………………………7分过点C 作⊥x 轴,垂足为N .则(m 2+k 2m )2+(m 2+k 2m)2=m 2.解得,k =(2-1) m 2. ……………………………………8分 由题意得,m 2-12(m -k m )2=2. ……………………………………9分即 m 2-12[ m -(2-1) m ] 2=2.解得,(2-1) m 2=1.∴k =1. ……………………………………10分 26.(本题满分12分) (1)证明:∵︵CD =︵BD ,∴CD =BD . ………………………1分 又∵∠CDB =60°,∴△CDB 是等边三角形. …………………2分 ∴∠CDB =∠DBC . …………………3分 ∴︵CD =︵BC .∴∠DAC =∠CAB .∴AC 是∠DAB 的平分线. ………………………………………………4分 (2)解法一:连结DB .ODB A在线段CE 上取点F ,使EF =AE ,连结DF . ……………………………6分 ∵DE ⊥AC ,∴DF =DA ,∠DFE =∠DAE . ……………………………………7分 ∵︵CD =︵BD , ∴CD =BD . ∴∠DAC =∠DCB . ∴∠DFE =∠DCB .∵ 四边形ABCD 是圆内接四边形,∴∠DAB +∠DCB =180°.………………8分 又∵∠DFC +∠DFE =180°,∴∠DFC =∠DAB .………………………9分 ∵∠DCA =∠ABD ,∴△CDF ≌△BDA . ……………………………………………………10分 ∴CF =AB . …………………………………………………………11分 ∵AC =7, AB =5,∴AE =1. …………………………………………………………12分 解法二:在︵CD 上取一点F ,使得︵DF =︵DA ,…………………………………5分 连结CF ,延长CF ,过D 作DG ⊥CF ,垂足为G . ……………6分 ∵︵DF =︵DA , ∴∠GCD =∠DCE . ∵DC =DC ,∴R t △CGD ≌R t △CED . ……………7分 ∴CG =CE .∴DG =DE . ∵︵DF =︵DA , ∴DF =DA .∴R t △DGF ≌R t △DEA . ………………………………………8分 ∴FG =AE . ………………………………………9分 ∵︵CD =︵BD ,︵DF =︵DA , ∴︵CF =︵AB .∴CF =AB . ………………………………………10分 ∵CG =CE ,∴CF +FG =AC -AE ………………………………………11分 即 AB +AE =AC -AE ∵AC =7, AB =5,∴AE =1. …………………………………………………………12分。
2013年厦门市同安区初中毕业班数学第一轮质量检测参考答案

同安区2013届初中毕业班学业水平质量抽测数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)二、填空题(本大题共10小题,每题4分,共40分) 8. 130. 9. 512+a 10.7103⨯ . 11. x ≥1.12. 40. 13. 乙 .14. ⎩⎨⎧==23y x 15. 4 . 16. x<—2 或0<x<1; 17. 4 ; 334+三、解答题(本大题共9小题,共89分) 18.(本题满分18分) (1)解:013)21(95⨯+---=5—3+2×1 ····················································································· 4分 =2+2 ······························································································ 5分 =4. ································································································ 6分(2)解:正确作出以O 为圆心,任意长为半径且与角两边相交的弧线 ······ 8分正确作出交点 ················································································· 10分 作出角平分线 ··············································································· 11分 下结论 ·························································································· 12分(3)证明:∵AC 平分∠BAD ,∴ ∠B AC =∠DAC . ……14分 又∵AB =AD ,AC =AC , ……16分∴△ABC ≌ △ADC .……18分19.(本题满分7分)解不等式组:213(1)34(2)x x x -<--⎧⎨<+--⎩解:由(1)得2x<4x<2……………….2分由(2)得—2x < 4x>—2……………….4分∴不等式组的解集为:—2<x<2……………….7分20.(本题满分8分)(1)解:第一小题满分3 分(树状图略) (2)解:规则1:P (小莉赢)=32P (小红赢)=31…………5分 规则2:P (小莉赢)=21P (小红赢)=21…………7分∵21>31∴小红想要对自己有利,她应选择规则2. …………8分21.(本题满分8分)解:由题意知:∠CAB =60°,△ABC 是直角三角形,在Rt △ABC 中,tan60°=,…………3分即=,…………5分∴BC =32…………6分∴BD =32﹣16…………7分答:荷塘宽BD 为(32﹣16)米.…(8分) 22.(本题满分8分) (1)解:填x666- 或2666++x …………2分(2)解:由题意得,x666-=2666++x …………5分解得 x =10…………6分经检验x =10是原方程的解,且符合题意 ······································· 7分 答:第一次每人分配10棵树 ························································ 8分23.(本题满分9分) (1)证明1:∵OB = OC ∴∠O BC =∠OC B ,…………1分 ∵∠O BC +∠OC B+∠CO B=180°, ∠BOC =2∠CBE∴2∠O BC +2∠CBE =180°…………2分∴∠O BC +∠CBE =90° ∴O B ⊥BE …………3分 ∵点B 在⊙O 上, ∴ BE 是⊙O 的切线. …………4分证明2:连接AC∵ AB 为⊙O 的直径,∴ ∠BCA =90°. …………1分 ∴ ∠BAC +∠CBA =90° ∵∠BOC =2∠CBE ∠BOC =2∠BAC∴∠BAC=∠CBE …………2分 ∴∠CBE +∠CBA =90° ∴O B ⊥BE …………3分 ∵点B 在⊙O 上,∴ BE 是⊙O 的切线. …………4分(2)解:连结OD . ∵∠COB =120∠BOC =2∠CBE∴∠CBE=60°…………5分 ∵BE ⊥CD∴∠CEB =90°∴∠BCE=30°…………6分 ∴∠BOD=60°…………7分 ∴∠COD=60° ∵OC =OD∴△OCD 是等边三角形…………8分∴OD =CD =6 ∴︵BD =ππ2180660=⨯ …………9分24.(本题满分10分)解:(1)(,)(4,3)m n = (,)=(2,4i j[][][],42,342,1a b ∴=--=-…………2分∴a +b =2+(-1)=1 即小明的位置数为1. …………3分 (2) [],a b =[m -i ,n -j ]∴a +b =m -i +n -j =()m n i j +-+…………4分 又 a +b =8∴()m n i j +-+=8 即m n +=i j ++8…………5分 16,18i j ≤≤≤≤,且i 、j 都是整数∴m +n 的最小值为10. …………7分解法一∴m n =2(10)(5)25m m m -=--+…………9分即m n 的最大值为25. …………10分 解法二:当1,9m n ==时,m n =9 当2,8m n ==时,m n =16当3,7m n ==时,m n =21 当4,6m n ==时,m n =24 当5,5m n ==时,m n =25 当6,4m n ==时,m n =24 故m n 的最大值为25.25.(本题满分10分)(1)解:当x =1时,DM =1,BN =2∵AB =6,AD =4∴AM = 3,AN = 4…………1分 ∵90A ∠=∴MN=522=+ANAM……2分(2)存在…………3分过C 作CE ⊥AB ,垂足为E , ∵DA ⊥AB , ∴DA ‖CE , ∵DC ‖AE∴四边形AECD 是平行四边形, ∴CE =AD =4,AE =DC =2 在Rt △CEB 中 ∵tan B =1∴CE = BE =4………………………4分当运动x 秒时,DM =x ,NB =2x ,AN =6—2x ,AM =4—x ,EN =∣4—2x ∣,(0≦x ≦3) ∴22222222241632)24(1653252)26()4(,4xx x CNxx x x MNx CM +-=-+=+-=-+-=+=222222(1)903216445232526()2 ................................6C M N C NC MM Nx x x x x x x x C M N ∠=∴=+∴-+=++-+==∴= 当时,解得或舍去当时,是直角三角形 分222222(2)903216445232511. .......................8M C N M NC MC Nx x x x x x x C M N ∠=∴=+∴-+++=-+=∴= 当时,解得当时,是直角三角形分222222220(3)90321644523256100(6)4104090..............................10M N C C MN MC Nx x x x x x x M N C ∠=∴=+∴-+=+-+--+=--⨯=-∴∠≠ 若当时,方程无实数根,分26.(本题满分11分)(1)解:解(1)当直线L 与BC 相交时,设交点D (a,2),则 D O C S a = ,4O D C O A B C O A B D S S S a =-=- 正方形四边形 ∵142O D C O A B DS a S a ==- 四边形∴43a = 即D (43,2)…………3分当直线L 与BC 相交时,设交点D ′,依据正方形 对称性易知D ′(2 ,43).…………4分(2) ∵ m >0, 1k m =+∴k >1…………5分 ∵y kx = ∴1y k x=> 即y x >故点E 在BC 上,设为(b ,2), …………6分 ∴2k b =⋅ , E O C S b = .∵O E CO A B ES mS= 四边形 ,∴42211O E Cm Sb m km ====++ ,…………7分∴12m =即E 与D 重合.此时直线L 的解析式为32y x =.…………8分设P (c ,d ),则32d c =4(0)3c <<,)21(322322ccc dc S S W POAPAB -=-=--=-=∆∆ ………………………10分∵403c << ∴232c -<-221(1)33c -<-即31-<W ……………………………………………11分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 2.已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°.3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体. 4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是 A .1. B .15. C .16. D .0.5.如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B =A .150°.B .75°.C .60°.D .15°. 6.方程2x -1=3x的解是A .3.B .2.C .1.D .0.7.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4). 二、填空题(本大题有10小题,每小题4分,共40分)8.-6的相反数是 .9.计算:m 2·m 3= .10.式子x -3在实数范围内有意义,则实数x 的取值范围是 .11.如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = .12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80 人数233241图3E D C BAC O 图2BA俯视图左视图主视图图1则这些运动员成绩的中位数是 米. 13.x 2-4x +4= ( )2.14.已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 15.如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.16.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保 甲工人的安全,则导火线的长要大于 米. 17.如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) . 三、解答题(本大题有9小题,共89分)18.(本题满分21分)(1)计算:5a +2b +(3a —2b );(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上 画出△ABC ,并画出与△ABC 关于原点O 对称的图形;(3)如图7,已知∠ACD =70°,∠ACB =60°,∠ABC =50°. 求证:AB ∥CD .19.(本题满分21分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:郊县 人数/万 人均耕地面积/公顷 A 20 0.15 B50.20D C BA图7图4F E O DCB AC 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:2x 2+y 2x +y - x 2+2y 2x +y ,其中x =2+1, y =22—2;(3)如图8,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E .若BC =BE . 求证:△ADE 是等腰三角形.20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为“向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.EDO图8CBA21.(本题满分6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间 x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.23.(本题满分6分)如图11,在正方形ABCD 中,点G 是边 BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH .求证:∠ABH =∠CDE .图9EDCB AH GFEDCB 图11A24.(本题满分6分)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.25.(本题满分6分)如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心, r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.图12OA BCD EM26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0, x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2013年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 1 2 3 4 5 6 7 选项ABCCBAD二、填空题(本大题共10小题,每题4分,共40分)8. 6 9. m 5 10.x ≥3 11. 6 12. 1.65 13. x —2 14. m >1 15. 3 16. 1.3 17.(1,3) 三、解答题(本大题共9小题,共89分) 18.(本题满分21分)(1)解: 5a +2b +(3a —2b )=5a+2b+3a—2b……………………………3分=8a. ……………………………7分(2)解:正确画出△ABC……………………………10分正确画出△DEF ……………………………14分(3)证明1:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°. …………16分∵∠ABC=50°,∴∠BCD+∠ABC=180°. …………18分∴AB∥CD. …………21分证明2:∵∠ABC=50°,∠ACB=60°,∴∠CAB=180°—50°—60°=70°. ………………16分∵∠ACD=70°,∴∠CAB=∠ACD. ………………18分∴AB∥CD. ………………21分19.(本题满分21分)(1)解:20×0.15+5×0.20+10×0.1820+5+10……………………………5分≈0.17(公顷/人). ……………………………6分∴这个市郊县的人均耕地面积约为0.17公顷. ……………………7分(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y……………………………9分=x-y. ……………………………11分当x=2+1,y=22—2时,原式=2+1-(22—2)……………………………12分=3—2. ……………………………14分(3)证明:∵BC=BE,∴∠E=∠BCE. ……………………………15分∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°. ……………17分∵∠BCE +∠DCB =180°,∴∠A =∠BCE . ………………18分 ∴∠A =∠E . ………………19分∴ AD =DE . ………………20分 ∴△ADE 是等腰三角形. ………………21分20.(本题满分6分)解: 不成立 ……………………………1分 ∵ P(A)=812=23, ……………………………3分又∵P(B) =412=13, ……………………………5分而12+13=56≠23.∴ 等式不成立. ……………………………6分 21.(本题满分6分)证明1:∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴ AD BC =AE EC =12. ……………………………2分即:BC =2AD . ………………3分 ∴54=12×365( AD +2AD )∴AD =5. ………………4分 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ……………………………5分 ∴∠AED =90°.∴ AC ⊥BD . ……………………………6分证明2: ∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴DE BE =AEEC . ……………………………2分即3BE =48. ∴BE =6. ……………………………3分过点D 作DF ∥AC 交BC 的延长线于点F .ADE由于AD ∥BC ,∴四边形ACFD 是平行四边形. ∴DF =AC =12,AD =CF . ∴BF =BC +AD .∴54=12×365×BF .∴BF =15. ……………………………4分 在△DBF 中,∵DB =9,DF =12,BF =15,∴DB 2+DF 2=BF 2. ……………………………5分 ∴∠BDF =90°.∴DF ⊥BD .∴AC ⊥BD . ……………………………6分 22.(本题满分6分)解1: 当0≤x ≤3时,y =5x . ……………………………1分 当y >5时,5x >5, ……………………………2分 解得 x >1.∴1<x ≤3. ……………………………3分当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y >5时,-53x +20>5, ……………………………5分解得 x <9.∴ 3<x <9. ……………………………6分 ∴容器内的水量大于5升时,1<x <9 .解2: 当0≤x ≤3时,y =5x . ……………………………1分 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ……………………………2分 ∴ 1<x ≤3. ……………………………3分当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小,∴当y >5时,有x <9. ……………………………5分 ∴3<x <9. ……………………………6分∴容器内的水量大于5升时,1<x <9 .23.(本题满分6分)证明1:∵四边形ABCD 是正方形,∴∠F AD ==90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF . …………………1分∵AG =DE +HG ,AG =AH +HG , ∴ DE =AH . ……………………………2分 又AD =AB ,∴ △ADE ≌△ABH . ……………………………3分 ∴ ∠AHB =∠AED =90°.∵∠ADC ==90°, ……………………………4分 ∴ ∠BAH +∠ABH =∠ADF +∠CDE . ……………………………5分 ∴ ∠ABH =∠CDE . ……………………………6分 24.(本题满分6分)解: ∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ……………………………1分 ∴q =-p +m +n . ……………………………2分又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m . 即p -m =p -m pm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ……………………………3分B G H FED CA∵ nm =1,∴ p =n ,q =m . ……………………………4分∵1>0,∴在每一个象限内,反比例函数y =1x 的函数值y 随自变量x 的增大而减小. ∴当m ≥2时,0<n ≤12. ……………………………5分 ∵S =12( p +q ) p =12p 2+12pq =12n 2+12又∵12>0,对称轴n =0, ∴当0<n ≤12时,S 随自变量n 的增大而增大. 12<S ≤58. ……………………………6分25.(本题满分6分)证明一:∵︵DE 的长是3π3,∴2πr 360·60=3π3.∴ r =3. ……………………1分 作BN ⊥OA ,垂足为N .∵四边形OABC 是菱形,∴AB ∥CO .∵∠O =60°,∴∠BAN =60°,∴∠AB N =30°. 设NA =x ,则AB =2x ,∴ BN =3x . ……………………………2分∵M 是OA 的中点,且AB =OA ,∴ AM =x . ……………………………3分在Rt △BNM 中,(3x )2+(2x )2=(7)2,∴ x =1,∴BN =3. ……………………………4分 ∵ BC ∥AO ,∴ 点O 到直线BC 的距离d =3. ……………………………5分 ∴ d =r .∴ 直线BC 与⊙O 相切. ……………………………6分O N E D C M B A证明二:∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3. ……………………1分 延长BC ,作ON ⊥BC ,垂足为N .∵ 四边形OABC 是菱形∴ BC ∥AO ,∴ ON ⊥OA .∵∠AOC =60°,∴∠NOC =30°. 设NC =x ,则OC =2x , ∴ON =3x ……………………………2分连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x . ……………………………3分 ∴四边形MONC 是平行四边形.∵ ON ⊥BC ,∴四边形MONC 是矩形. ……………………………4分∴CM ⊥BC . ∴ CM =ON =3x .在Rt △BCM 中,(3x )2+(2x )2=(7)2,解得x =1.∴ON =CM =3. ……………………………5分∴ 直线BC 与⊙O 相切. ……………………………6分26.(本题满分11分)(1)解: 不是 ……………………………1分 解方程x 2+x -12=0得,x 1=-4,x 2=3. ……………………………2分 x 1+x 2=4+3=2×3.5. ……………………………3分∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.…………………………4分(2)解:存在 …………………………6分 ∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n . …………………………8分当 b =-6,c =-27时,有 -27=36m +n .∵x 2=0是“偶系二次方程”,∴n =0,m =- 34. …………………………9分 即有c =- 34b 2. 又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =- 34×32=-274. AB MCDE O∴可设c =- 34b 2. …………………………10分 对任意一个整数b ,当c =- 34b 2时, ∵△=b 2-4c=4b 2.∴ x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”. …………………………11分。