2013年中考数学试题(含答案)

合集下载

2013年安徽省中考数学试题及参考答案(word解析版)

2013年安徽省中考数学试题及参考答案(word解析版)

2013年安徽省中考数学试题及参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( ) A .12-B .12C .2D .﹣22.用科学记数法表示537万正确的是( ) A .5.37×104 B .5.37×105 C .5.37×106 D .5.37×107 3.如图所示的几何体为圆台,其主(正)视图正确的是( )A .B .C .D . 4.下列运算正确的是( )A .2x+3y=5xyB .5m 2•m 3=5m 5C .(a ﹣b )2=a 2﹣b 2D .m 2•m 3=m 6 5.已知不等式组3010x x -⎧⎨+⎩>≥,其解集在数轴上表示正确的是( )A .B .C .D .6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( )A .60°B .65°C .75°D .80°7.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )2=438D .438(1+2x )2=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A.16B.13C.12D.239.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变10.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形二、填空题(本大题共4小题,每小题5分,满分20分)11x的取值范围是.12.分解因式:x2y﹣y=.13.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=.14.已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点(E,F是该矩形边界上的点),折叠后点A落在点A′处,给出以下判断:①当四边形A′CDF为正方形时,;②当EF=时,四边形A′CDF为正方形;③当EF=BA′CD为等腰梯形;④当四边形BA′CD为等腰梯形时,其中正确的是(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2sin30°+(﹣1)2﹣|2|.16.(8分)已知二次函数图象的顶点坐标为(1,﹣1),且经过原点(0,0),求该函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.18.(8分)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)20.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本题满分12分)21.(12分)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.七、(本题满分12分)22.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x(!)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少? 八(本题满分14分) 23.(14分)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可); (2)如图2,在“准等腰梯形”ABCD 中∠B=∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC , 求证:A B B E D CE C=;(3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB=EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( ) A .12-B .12C .2D .﹣2【知识考点】倒数.【思路分析】根据乘积是1的两个数叫做互为倒数解答. 【解答过程】解:∵(﹣2)×(12-)=1,∴﹣2的倒数是12-.故选A .【总结归纳】本题考查了倒数的定义,是基础题,熟记概念是解题的关键. 2.用科学记数法表示537万正确的是( ) A .5.37×104 B .5.37×105 C .5.37×106 D .5.37×107 【知识考点】科学记数法—表示较大的数.。

2013云南省德宏州中考数学试题及答案(Word解析版)

2013云南省德宏州中考数学试题及答案(Word解析版)

云南省德宏州2013年中考数学试卷一、选择题(每小题3分,满分24分)1.(3分)(2013•德宏州)﹣2的绝对值是()B.﹣2 C.D.2A.﹣考点:绝对值分析:根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则﹣2的绝对值就是表示﹣2的点与原点的距离解答:解:|﹣2|=2,故选:D.点评:此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•德宏州)如图,下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念,即可求解.解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,只有A符合;B,C,D不是中心对称图形.故选;A.点评:本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.(3分)(2013•德宏州)﹣4a2b的次数是()A.3B.2C.4D.﹣4考点:单项式分析:根据单项式次数的定义进行解答即可.解答:解:∵单项式﹣4a2b中所有字母指数的和=2+1=3,∴此单项式的次数为3.故选A.点评:本题考查的是单项式次数的定义,即一个单项式中所有字母的指数的和叫做单项式的次数.4.(3分)(2013•德宏州)如果a<0,则下列式子错误的是()A.5+a>3+a B.5﹣a>3﹣a C.5a>3a D.考点:不等式的性质分析:根据不等式的基本性质对各选项进行逐一分析即可.解答:解:A、∵5>3,∴5+a>3+a,故本选项正确;B、∵5>3,∴5﹣a>3﹣a,故本选项正确;C、∵5>3,a<0,∴5a<3a,故本选项错误;D、∵5>3,∴<,∵a<0,∴>,故本选项正确.故选C.点评:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.5.(3分)(2013•德宏州)如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°考点:垂线分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解答:解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.点评:本题考查了垂线的定义,对顶角相等的性质,是基础题.6.(3分)(2013•德宏州)某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.5 23 23.5 24 24.5销售量/双35 40 30 17 8通过分析上述数据,对鞋店业主的进货最有意义的是()A.平均数B.众数C.中位数D.方差考点:统计量的选择;众数分析:众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.解答:解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.点评:考查了众数、平均数、中位数和标准差意义,比较简单.7.(3分)(2013•德宏州)在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()A.5B.C.D.6考点:等边三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠C=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.解答:解:连结CD,如图,∵∠C=90°,D为AB的中点,∴CD=DA=DB,而CD=CB,∴CD=CB=DB,∴△CDB为等边三角形,∴∠B=60°,∴∠C=30°,∴BC=AB=×10=5,∴AC=BC=5.故选C.点评:本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.8.(3分)(2013•德宏州)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2C.2.5 D.3考点:勾股定理;直角三角形斜边上的中线分析:由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.解答:解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由①②可得ab=3,故选D.点评:本题考查了勾股定理和三角形的周长以及完全平方公式的运用.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•德宏州)4的算术平方根是2.考点:算术平方根分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.(3分)(2013•德宏州)分解因式:2﹣2a2=2(1+a)(1﹣a).考点:提公因式法与公式法的综合运用分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2﹣2a2=2(1﹣a2)=2(1+a)(1﹣a).故答案为:2(1+a)(1﹣a).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•德宏州)函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).12.(3分)(2013•德宏州)请将2、、这三个数用“>”连结起来>>2.考点:实数大小比较专题:存在型.分析:先估算出的值,再比较出其大小即可.解答:解:∵≈2.236,=2.5,∴>>2.故答案为:>>2.点评:本题考查的是实数的大小比较,熟记≈2.236是解答此题的关键.13.(3分)(2013•德宏州)以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).考点:展开图折叠成几何体分析:由平面图形的折叠及三棱锥的展开图解题.解答:解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).点评:本题考查了展开图折叠成几何体的知识,属于基础题型.14.(3分)(2013•德宏州)已知正方体的棱长为3,以它的下底面的外接圆为底、上底面对角线的交点为顶点构造一个圆锥体,那么这个圆锥体的体积是9.42(π=3.14).考点:圆锥的计算分析:边长为3的正方形的对角线长为2,则其外接圆的半径为,然后根据圆锥的体积公式计算.解答:解:圆锥的体积=π•()2×3=9.42.故答案为9.42.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.三、解答题(本大题共9个小题,满分58分)15.(5分)(2013•德宏州)(1)计算:(2)计算:.考点:分式的加减法;实数的运算;零指数幂专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,合并即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:(1)原式=1+﹣1=;(2)原式=﹣==1.点评:此题考查了分式的加减法,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母.16.(5分)(2013•德宏州)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.考点:平行四边形的性质;平行线的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.解答:证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∴在△ADE与△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.点评:本题综合考查了平行四边形的性质、平行线的判定以及全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.17.(6分)(2013•德宏州)某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?考点:二元一次方程组的应用分析:设每头大牛1天需要饲料xkg,每头小牛1天需要饲料ykg,根据条件可以得出方程15x+5y=325,25x+10y=550,由这两个方程构成方程组求出其解即可.解答:解:设每头大牛1天需要饲料xkg,每头小牛1天需要饲料ykg,由题意,得,解得:,答:每头大牛1天需要饲料20kg,每头小牛1天需要饲料5kg.点评:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法的运用,解答时找到等量关系建立方程是关键.18.(7分)(2013•德宏州)某地州一个县市2012年考生中考数学成绩统计情况见如图表.考试成绩等第表:等第A:优秀B:良好C:及格D:不及格成绩划分≥135 ≥105且<135 ≥90且<105 <90根据以上图表所提供的信息,回答下列问题:(1)求出该县市考生优秀等第的百分比;(2)求出该县市达到良好及以上等第的考生人数;(3)如果这个地州2012年考生人数约为14000人,用该县市考生的数学成绩做样本,估算出这个地州不及格等第的考生人数.考点:条形统计图;用样本估计总体;统计表;扇形统计图专题:图表型.分析:(1)根据各等第所占的百分比之和为1列式进行计算即可得解;(2)先根据C等第的人数与所占的百分比求出该县市的考生人数,再乘以A、B两个等第的百分比的和,计算即可得解;(3)用总人数乘以不及格等第所占的百分比,计算即可得解.解答:解:(1)1﹣10%﹣11%﹣76%=1﹣97%=3%,所以,该县市考生优秀等第的百分比为3%;(2)该县市的考生人数为:209÷11%=1900,达到良好及以上等第的考生人数为:1900×(3%+10%)=247;(3)这个地州不及格等第的考生人数约为:14000×76%=10640.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2013•德宏州)小明从家到学校上学,沿途需经过三个路口,每个路口都设有红、绿两种颜色的信号灯,在信号灯正常情况下:(1)请用树状图列举小明遇到交通信号灯的所有情况;(2)小明遇到两次绿色信号的概率有多大?(3)小明红绿色两种信号都遇到的概率有多大?考点:列表法与树状图法专题:图表型.分析:(1)分红灯、绿灯两种等可能情况画出树状图即可;(2)根据树状图得到总情况数和两次绿灯的情况数,然后利用概率公式列式计算即可得解;(3)根据红、绿色两种信号都遇到的情况数,利用概率公式列式计算即可得解.解答:解:(1)根据题意画出树状图如下:一共有8种情况;(2)两次绿色信号的情况数是3种,所以,P(两次绿色信号)=;(3)红绿色两种信号的情况有6种,所以,P(红绿色两种信号)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2013•德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?考点:相似三角形的应用分析:(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可.解答:解:根据物体成像原理知:△LMN∽△LBA,∴.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴,解得:LD=7,∴拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴,解得:LC=70,∴相机的焦距应调整为70mm.点评:本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比.21.(6分)(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?考点:反比例函数的图象;反比例函数图象上点的坐标特征.分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.解答:解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2,x2<x1.点评:本题考查了反比例函数的图象,反比例函数图象上点的坐标特征.注意:解答(2)题时,一定要分类讨论,以防错解.22.(7分)(2013•德宏州)如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.考点:一元二次方程的应用;勾股定理的应用分析:(1)作BE⊥AD于E,就可以得出BE=CD,在Rt△ABE中由勾股定理就可以求出AE,由BC=DE 就可以表示出AD而得出结论;(2)由(1)的结论根据梯形的面积公式求出x的值,建立不等式求出x的取值范围就可以得出结论.解答:解:(1)作BE⊥AD于E,∴∠AEB=∠DEB=90°.∵CD⊥AD,∴∠ADC=90°.∵BC∥AD,∴∠EBC=90°,∴四边形BCDE是矩形,∴BE=CD,BC=DE.∵AB:CD=5:4,AB的长为5x米,∴CD=4x米,∴BE=4x,在Rt△ABE中,由勾股定理,得AE=3x.∵BC=20﹣5x﹣4x=20﹣9x,∴DE=20﹣9x,∴AD=20﹣9x+3x=20﹣6x(2)由题意,得,由①,得x1=,x2=1,由②,得x≥,∴x=,AB=5×=.点评:本题考查了勾股定理的运用,梯形的面积公式的运用,梯形的周长公式的运用,一元二次方程的解法的运用,一元一次不等式的运用,解答时根据条件建立方程及不等式是关键.23.(9分)(2013•德宏州)如图,已知直线y=x与抛物线交于A、B两点.(1)求交点A、B的坐标;(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.考点:二次函数综合题分析:(1)根据题意可以列出关于x、y的方程组,通过解方程组可以求得点A、B的坐标;(2)根据函数图象可以直接回答问题;(3)需要分类讨论:以AB为腰和以AB为底的等腰三角形.解答:解:(1)如图,∵直线y=x与抛物线交于A、B两点,∴,解得,或,∴A(0,0),B(2,2);(2)由(1)知,A(0,0),B(2,2).∵一次函数y=x的函数值为y1,二次函数的函数值为y2.∴当y1>y2时,根据图象可知x的取值范围是:0<x<2;(3)该抛物线上存在4个点,使得每个点与AB构成的三角形为等腰三角形.理由如下:∵A(0,0),B(2,2),∴B=2.根据题意,可设P(x,x2).①当PA=PB时,点P是线段AB的中垂线与抛物线的交点.易求线段AB的中垂线的解析式为y=﹣x+2,则,解得,,,∴P1(﹣﹣1,3+),P2(﹣1,3﹣);②当PA=AB时,根据抛物线的对称性知,点P与点B关于y轴对称,即P3(﹣2,2);③当AB=PB时,点P4的位置如图所示.综上所述,符号条件的点P有4个,其中P1(﹣﹣1,3+),P2(﹣1,3﹣),P3(﹣2,2).点评:本题考查了二次函数综合题.其中涉及到的知识点有待定系数法求一次函数解析式,二次函数图象上点的坐标特征,坐标与图形的性质以及等腰三角形的性质.解题时,利用了“分类讨论”和“数形结合”的数学思想.。

2013年杭州市中考数学试题及答案(解析版)

2013年杭州市中考数学试题及答案(解析版)

2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。

2013年湖南省益阳市中考数学试题(含答案)

2013年湖南省益阳市中考数学试题(含答案)

益阳市2013年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP )突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是A .111002.1⨯B .10102.10⨯C .101002.1⨯D .11102.1⨯2.下列运算正确的是A .623=÷a aB .422)(ab ab =C .22))((b a b a b a -=-+D .222)(b a b a +=+3.分式方程xx 325=-的解是 A .x =3B .x =3-C .x =34D .x =34-4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 5.一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为 A . 2个 B . 3个 C . 5个D . 10个6.如图2,在平行四边形ABCD 中,下列结论中错误..的是 A .∠1=∠2 B .∠BAD =∠BCD C .AB =CD D . AC ⊥BD1 2ABC图2主视图左视图俯视图图1 姓名 准考证号x (时)y (℃) 18 2O 图5A BC7.抛物线1)3(22+-=x y 的顶点坐标是A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1) 8.已知一次函数2-=x y ,当函数值0>y 时,自变量x 的取值范围在数轴上表示正确 的是ABCD二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.因式分解:24xy x -= . 10.化简:111x x x ---= . 11.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是 .12. 如图3,若AB 是⊙O 的直径,10=AB cm ,︒=∠30CAB ,则BC = cm .13.下表中的数字是按一定规律填写的,表中a 的值应是 .三、解答题(本大题共2小题,每小题6分,共12分)14.已知:3=a ,2-=b ,21=c . 求代数式:24a b c +-的值.15. 如图4,在ABC Δ中,AC AB =,CD BD =,AB CE ⊥于E .求证:CBE ABD ΔΔ∽.四、解答题(本大题共3小题,每小题8分,共24分)16.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线xky =的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?图3 AB DC E图4 0 217.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图6).(1)表中a = ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:0.80=AB 米,︒=∠5.38PAB ,︒=∠5.26PBA .请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:62.05.38sin ≈︒,78.05.38cos ≈︒,80.05.38tan ≈︒,45.05.26sin ≈︒,89.05.26cos ≈︒,50.05.26tan ≈︒)五、解答题(本大题共2小题,每小题10分,共20分)19.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石. (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.图7图620.如图8,在ABC Δ中,︒=∠36A ,AC AB =,ABC ∠的平分线BE 交AC 于E .(1)求证:BC AE =; (2)如图8(2),过点E 作EF ∥BC 交AB 于F ,将AEF Δ绕点A 逆时针旋转角α)1440(︒<<︒α得到F E A ''Δ,连结E C ',F B ',求证:CE BF ''=;(3)在(2)的旋转过程中是否存在E C '∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.六、解答题(本题满分12分)21.阅读材料:如图9,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=,同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y ++,. 由勾股定理得2222121AB x x y y =-+-,所以A 、B 两点间的距离公式为AB . 注:上述公式对A 、B 在平面直角坐标系中其它位置也成立.解答下列问题:如图10,直线l :22+=x y 与抛物线22x y =交于A 、B 两点,P 为AB 的中点,过P 作x 轴的垂线交抛物线于点C . (1)求A 、B 两点的坐标及C 点的坐标;(2)连结AC BC 、,求证ABC ∆为直角三角形; (3)将直线l 平移到C 点时得到直线l ',求两直线l 与l '的距离.1y 图10图8BC 图8(1) A E 36°EB CF图8(备用图)A 36°图8(2)EBCF E 'F '36° A次数第17题解图益阳市2013年普通初中毕业学业考试数学参考答案及评分标准一、选择题(本大题共8小题,每小题4分,共32分).二、填空题(本大题共5小题,每小题4分,共20分).9.)2)(2(-+y y x ;10.1;11.32;12.5;13.21.三、解答题(本大题共2小题,每小题6分,共12分).14.解:当3=a ,2-=b ,21=c 时, c b a 42-+=2142)3(2⨯--+=223-+ ······················································································· 5分 =3 ··································································································· 6分15.证明:在ABC Δ中,AC AB =,CD BD =,∴BC AD ⊥, ································································································ 2分 ∵AB CE ⊥,∴︒=∠=∠90CEB ADB , ··············································································· 4分 又B B ∠=∠,∴CBE ABD ΔΔ∽. ······················································································ 6分四、解答题(本大题共3小题,每小题8分,共24分)16. 解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时. ·························· 2分(2)∵点B (12,18)在双曲线xky =上, ∴1218k =, ∴216=k . ································································································ 5分 (3)当x =16时,5.1316216==y , 所以当x =16时,大棚内的温度约为13.5℃. 8分17. 解:(1)a =4. 2分(2)如图. 5分 (3)∵小组成员共10人,参加了10次活动的成员有3人,∴103=P ,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是103. ··· 8分18.解:设x PD =米,∵AB PD ⊥,∴︒=∠=∠90BDP ADP . 在Rt △P AD 中,ADx PAD =∠tan , ∴5tan38.50.804x x AD x =≈=︒. ········································································· 3分 在Rt △PBD 中,DBx PBD =∠tan , ∴2tan 26.50.50x xDB x =≈=︒. ······································································ 5分 又AB =80.0, ∴0.80245=+x x . ∴6.24≈x ,即6.24≈PD . ∴2.492≈=x DB .答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. ···················· 8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:⎩⎨⎧=+=+11010812y x y x , ······························································· 2分解之得⎩⎨⎧==75y x .∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆; ···· 5分(2)设载重量为8吨的卡车增加了z 辆,依题意得:165)67(10)5(8>-+++z z , ·············································· 7分解之得:25<z ∵0≥z 且为整数, ∴=z 0,1,2 ; ∴=-z 66,5,4. ······················································································ 8分 ∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆; ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆; ③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. ··················· 10分20.解:(1)证明:∵AC AB =,︒=∠36A ,∴︒=∠=∠72C ABC , ···································································· 1分 又BE 平分ABC ∠,∴︒=∠=∠36CBE ABE ,∴︒=∠-∠-︒=∠72180CBE C BEC ∴A ABE ∠=∠,C BEC ∠=∠, ∴BE AE =,BC BE =, ∴BC AE =. ··················································································· 3分(2)∵AB AC =且EF ∥BC ,∴AF AE =;由旋转的性质可知:AB F AC E '∠='∠,F A E A '=', ∴E CA 'Δ≌F BA 'Δ, ∴F B E C '='. ··························································································· 6分 (3)存在E C '∥AB ,由(1)可知BC AE =,所以,在ΔE 点经过的路径(圆弧)与过点C 且与AB ①当点E 的像E '与点M ∴︒=∠=∠72ABC BAM ,又∠BAC ∴︒=∠=36CAM α.······· 8分 ②当点E 的像E '与点N 重合时,由l AB ∥得,︒=∠=∠72BAM AMN ∵AN AM =, ∴︒=∠=∠72AMN ANM ,∴︒=︒⨯-︒=∠36722180MAN ,∴︒=∠+∠=∠=72MAN CAM CAN α. 所以,当旋转角为︒36或︒72时,E C '∥AB . ······································ 10分六、解答题(本题满分12分)21.解:(1)由⎩⎨⎧=+=2222x y x y ,解得⎪⎩⎪⎨⎧-=-=5325111y x ,⎪⎩⎪⎨⎧+=+=5325122y x . 则A ,B 两点的坐标分别为:)53,251(--A ,)53,251(++B , ·········· 2分 ∵P 是A ,B 的中点,由中点坐标公式得P 点坐标为)3,21(,又x PC ⊥轴交抛物线于C 点,将21=x 代入22x y =中得21=y ,∴C 点坐标为11(,)22. ····················································································· 4分(2)由两点间距离公式得:第20题解图)')E '5)]53()53[()251251(22=+--++--=AB ,25213=-=PC ,∴PB PA PC ==,·································································································· 6分∴PCA PAC ∠=∠,PCB PBC ∠=∠, ∴︒=∠+∠90PCB PCA ,即︒=∠90ACB ∴ ABC Δ为直角三角形. ······················································································ 8分(3)过点C 作AB CG ⊥于G ,过点A 作PC AH ⊥于H则H 点的坐标为)5321(-,, ···································· ∴ AH PC CG AP S PAC⨯=⨯=2121Δ, ∴2521251=--==AH CG . 又直线l 与l '之间的距离等于点C 到l 的距离CG , ∴直线l 与l '之间的距离为25. ········································································· 12分图10。

2013年青岛中考数学试题及答案解析(word版)

2013年青岛中考数学试题及答案解析(word版)

2013年山东青岛市初级中学学业水平考试数学试题一、选择题1、-6的相反数是( )A 、—6B 、6C 、61-D 、61答案:B解析:-6的相反数为6,简单题。

2、下列四个图形中,是中心对称图形的是( )A B C D 答案:D解析:A 、B 、C 都是轴对称图形,只有D 为中心对称图形。

3、如图所示的几何体的俯视图是( )A B C D 答案:B解析:该几何体上面是圆锥,下面为圆柱,圆锥的俯视图是一个圆和圆心,圆锥顶点投影为一个点(圆心)。

4、“十二五”以来,我国积极推进国家创新体系建设,国家统计局《2012年国民经济和社会发展统计公报》指出,截止2012年底,国内有效专利达8750000件,将8750000件用科学计数法表示为( )件A 、410875⨯B 、5105.87⨯C 、61075.8⨯D 、710875.0⨯答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 8750000=61075.8⨯5、一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有( )个第3题A 、45B 、48C 、50D 、55 答案:A解析:摸到白球的概率为P =10110010=,设口袋里共有n 个球,则 5110n =,得n =50,所以,红球数为:50-5=45,选A 。

6、已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是( )A B C D 答案:A解析:因为xy =36,即36(0)y x x=>,是一个反比例函数,故选A 。

2013成都中考数学试题word版(含参考答案解析及评分标准)

2013成都中考数学试题word版(含参考答案解析及评分标准)

成都市二O 一三年中考阶段教育学校统一招生考试(含成都市初三毕业会考)(解析版)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 2的相反数是A. 2B. 2-C. 12D. 12-2. 如图所示的几何体的俯视图可能是3. 要使分式51x -有意义,则x 的取值范围是A. 1x ≠B. 1x >C. 1x <D. 1x ≠-4. 如图,在ABC ∆中,B C ∠=∠,5AB =,则AC 的长为A. 2B. 3C. 4 D . 55. 下列运算正确的是A. 1(3)13⨯-= B . 583-=- C. 326-= D. 0(2013)0-=6. 参加成都今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为A . 51.310⨯ B. 41310⨯ C. 50.1310⨯D. 60.1310⨯7. 如图,将矩形ABCD 沿对角线BD 折叠,使点C 与'C 重合.若2AB =,则'C D 的长度为A. 1 B . 2 C. 3 D. 48. 在平面直角坐标系中,下列函数的图像经过原点的是A.3y x =-+B. 5y x = C . 2y x = D. 227y x x =-+-9. 一元二次方程220x x +-=的根的情况是A . 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根10. 如图,点,,A B C 在⊙O 上,50A ∠= ,则BOC ∠的度数为A. 40B. 50C. 80 D . 100第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 不等式213x ->的解集为 2x > .12. 今年4月20日雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是 10 元.13. 如图,30B ∠= ,若//AB CD ,CB 平分ACD ∠,则ACD ∠= 60 度. 14. 如图,某山坡的坡面200AB =米,坡角30BAC ∠= ,则该山坡的高BC 的长为 100 米.三、解答题(本大题共6个小题,共54分。

2013年黑龙江省哈尔滨市中考数学试题及答案(解析版)

2013年黑龙江省哈尔滨市中考数学试题及答案(解析版)

哈尔滨市2013年初中升学考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2013·哈尔滨)13-的倒数是( ).(A)3 (B)一3 (C)13-(D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013·哈尔滨)下列计算正确的是( )..(A)a3+a2=a5(B)a3·a2=a6(C)(a2)3=a6(D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(2013·哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(2013·哈尔滨)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(2013·哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:二次函数图象与几何变换.分析:先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.解答:解:抛物线y=(x+1)2的顶点坐标为(-1,0),∵向下平移2个单位,∴纵坐标变为-2,∵向右平移1个单位,∴横坐标变为-1+1=0,∴平移后的抛物线顶点坐标为(0,-2),∴所得到的抛物线是y=x2-2.故选D.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.6.(2013·哈尔滨)反比例函数12k y x-=的图象经过点(-2,3),则k 的值为( ). (A)6 (B)-6 (C) 72 (D) 72- 考点:反比例函数的图象上的点的坐标特征.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12k y x -=的图象经过点(-2,3),表明在解析式12k y x-=,当x =-2时,y =3,所以1-2k =xy =3×(-2)=-6.,解得k=72故选C点评:本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.7.(2013·哈尔滨)如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E , 且AE=3,则AB 的长为( ).(A)4 (B)3 (C) 52(D)2 考点:平行四边形的性质及等腰三角形判定与性质.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:∵四边形ABCD 是平行四边形,∴AB=DC ,AD ∥BC ,∴∠DEC=∠BCE ,∵CE 平分∠DCB ,∴∠DCE=∠BCE ,∴∠DEC=∠DCE ,∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE ,∴AD=2DE ,∴AE=DE=3,∴DC=AB=DE=3,故选B .点评:本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC .8.(2013·哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ). (A) 116 (B) 18 (C) 14 (D) 12考点:求概率,列表法与树状图法。

2013杭州中考数学试题(含答案)

2013杭州中考数学试题(含答案)
∵AB=16,且A(6,0),
∴B(-10,0),而A,B关于对称轴对称
∴对称轴直线
答案:
【4】.A解析:a+b=3,a-b=7,解得a=5,b=-2, .
5.根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是
A. 2010~2012年杭州市每年GDP增长率相同
B. 2012年杭州市的GDP比2008年翻一番
C. 2010年杭州市的GDP未达到5500亿元
答案:
【16】. 2,[3,7],8
解析:分别找出射线QN上距离每一条均为 cm得点,
对于AB,距离其为 cm射线上的点为 ,N
对于AC, 到 之间的点距其均为 ,且切点为AC上,
对于BC,距其为 cm射线上的点为 ,M.
三、全面答一答(本题有7个小题,共66分)
解答应写出文字说部分也可以。
答案:
由 得 ,
得 ,
,①
方程: 的根为:
, ,
满足式①, 不满足舍去,
方程的根为 .
19.(本小题满分8分)
如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF。
求证:△GAB是等腰三角形。
答案:
证明:ABCD为梯形,AB∥CD
∴有AD=BC,
又DE=CF

∴ ,由AB∥CD
答案:
【9】.B
解析: 由勾股定理知 ,
斜边上的高的等于 .
10.给出下列命题及函数 , 和 的图象
①如果 ,那么 ;
②如果 ,那么 ;
③如果 ,那么 ;
④如果 时,那么 。

A.正确的命题是①④B.错误的命题是②③④
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2014 年中考数学试题 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2的值等于 ( )

A、2 B、-2 C、2 D、2 2、函数31xy中,自变量x的取值范围是 ( )

A、1x B、1x C、1x D、1x 3、方程0312xx的解为 ( )

A、2x B、2x C、3x D、3x 4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A、4,15 B、3,15 C、4,16 D、3,16 5、下列说法中正确的是 ( )

A、两直线被第三条直线所截得的同位角相等 B、两直线被第三条直线所截得的同旁内角互补 C、两平行线被第三条直线所截得的同位角的平分线互相垂直 D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直 20. 已知圆柱的底面半径为 3cm,母线长为 5cm,则圆柱的侧面积是 ( )

A、30cm2 B、30πcm2 C、15cm2 D、15πcm2 7、如图,A、B、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A、35° B、140° C、70° D、70°或 140° 8、如图,梯形 ABCD 中,AD∥BC,对角线 AC、BD 相交于 O,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( )

A、21 B、41 C、81 D、161

1、如图,平行四边形 ABCD 中,AB:BC=3:2,∠DAB=60°,E 在 AB 上,且 AE:EB=1:2,F 是BC的

中点,过 D 分别作 DP⊥AF 于 P,DQ⊥CE 于 Q,则 DP∶DQ 等于 ( )

A、3:4 B、3:52 C、13:62 D、32:13 10、已知点 A(0,0),B(0,4),C(3,t+4),D(3,t). 记 N(t)为□ABCD 内部(不含边界)

第7题图 第8题图 第9题图 2

整 点的个数,其中整点是指横坐标和纵坐标都是整数的点,则 N(t)所有可能的值为 ( ) A、 6,7 B、7,8 C、6,7,8 D、6,8,9 二、填空题(本大题共 8小题,每小题 2分,共 16分) 11、分解因式:2x2-4x= 。 12、去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子 女公平接受义务教育,这个数据用科学记数法可表示为 元。

13、已知双曲线 xky1经过点(-1,2)那么k的值等于 。 14、六边形的外角和等于 °。 15、如图,菱形 ABCD 中,对角线 AC 交 BD 于 O,AB=8, E 是 CD 的中点,则 OE 的长等于 。

16、如图,△ABC 中,AB=AC,DE 垂直平分 AB,BE⊥AC,AF⊥BC,则∠EFC= °。 17、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 。 18、已知点 D 与点 A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则 CD 长的最小值 为 。 三、解答题 19、(本题满分 8 分)计算: (1)02)1.0()2(9 (2)2212xxx

20、(本题满分 8 分) (1)解方程:0232xx; (2)解不等式组:1212132xxxx

第15题图 第16题图 第17题图 3

(2)(本题满分 6 分)如图,在 Rt△ABC 中,∠C=90°,AB=10,sin∠A= 2 ,求 BC 的长和 tan∠B 的值。

22、(本题满分

8 分)小明与甲、乙两人一起玩“手心手背”的游戏. 23、 (本题满分

6

分)某校为了解“课程选

请根据图中提供的信息,解答下面的问题: (1)此次共调查了 名学生,扇形统计图中“艺术鉴赏”部分的圆心角是 度。 (2)请把这个条形统计图补充完整。 (3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目。

C B A 4 24、本题满分 10 分)如图,四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,在①AB//CD;②AO=CO;③AD=BC 中任意选取两个作为条件,“四边形 ABCD 是平行四边形”为结论构造命题。 (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果„,那么„.”的形式)。

25、(本题满分 8 分)已知甲、乙两种原料中均含有 A 元素,其含量及每吨原料的购买单价如下表所示: A 元素含量 单价(万元/吨)

甲原料 5% 2.5 乙原料 8% 6 已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若 某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?

B A D

C O 5 26、(本题满分 10 分)如图,直线4x与x轴交于点 E,一开口向上的抛物线过原点交线段 OE 于点 A,交直线4x于点 B,过 B 且平行于x轴的直线与抛物线交于点 C,直线 OC 交直线 AB 于 D,且 AD : BD=1:3。 (1)求点 A 的坐标; (2)若△OBC 是等腰三角形,求此抛物线的函数关系式。

27、(本题满分10分)如图1,菱形 ABCD 中,∠A=600。点P从A出发,以 2cm/s 的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t (s)。△APQ的面积S(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出。 (1)求点Q运动的速度; (2)求图2中线段FG的函数关系式; (3)问:是否存在这样的t,使 PQ 将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由。

4x

D C

Q E

F 239

S(cm2) 6 7

28.(12分)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明. (1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等; (2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等; (3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等. 8 2013无锡市中考数学试卷参考答案 一、选择题 1~10 ABCAD BBDDC 二、填空题 11、2x(x-2) 12.8.2×109 13.-3 14.360 15.4 16.45 17.72

18.72 三、解答题 19. 解:(1)原式=3﹣4+1=0; (2)原式=x2+2x+1﹣x2+4=2x+5.

20. 解:(1)x2+3x﹣2=0,

∵b2﹣4ac=32﹣4×1×(﹣2)=17,

∴x=,

x1=,x2=﹣;

(2) ∵解不等式①得:x≥4, 解不等式②得:x>5, ∴不等式组的解集为:x>5. 21. 解:在Rt△ABC中,∠C=90°,AB=10,sinA===,

∴BC=4, 根据勾股定理得:AC==2,

则tanB===.

22.: 解:画树状图得: 9

∵共有4种等可能的结果,在一个回合中,如果小明出“手心”,则他获胜的有1种情况, ∴他获胜的概率是:.

23. 解:根据题意得: 调查的总学生数是:50÷25%=200(名),

“艺术鉴赏”部分的圆心角是×360°=144°; 故答案为:200,144;

(2)数学思维的人数是:200﹣80﹣30﹣50=40(名), 补图如下:

(3)根据题意得:800×=120(名), 答:其中有120名学生选修“科技制作”项目.

24. (1)以①②作为条件构成的命题是真命题, 证明:∵AB∥CD, ∴△AOB∽△COD,

∴=, ∵AO=OC, ∴OB=OD, ∴四边形ABCD是平行四边形.

(2)根据①③作为条件构成的命题是假命题,即如果有一组对边平行,而另一组对边相等的四边形时平行四边形,如等腰梯形符合,但不是平行四边形; 根据②③作为条件构成的命题是假命题,即如果一个四边形ABCD的对角线交于O,且OA=OC,

相关文档
最新文档