ARM、 MIPS 、X86三大芯片架构对比

合集下载

电脑CPU架构解析常见的处理器有哪些优势和劣势

电脑CPU架构解析常见的处理器有哪些优势和劣势

电脑CPU架构解析常见的处理器有哪些优势和劣势电脑CPU架构,作为计算机硬件的核心组成部分,直接影响着计算机的性能和稳定性。

不同的处理器架构在设计思想、指令集、运算速度等方面存在着差异。

本文将解析常见的处理器架构,并探讨它们各自的优势和劣势。

一、x86架构x86架构是目前最为广泛应用的处理器架构,它由英特尔公司于20世纪80年代推出,目前代表产品为英特尔的酷睿系列处理器。

x86架构具有以下优势和劣势:优势:1.应用广泛:x86架构广泛应用于个人电脑和服务器领域,具有良好的兼容性,可以运行绝大多数的软件和操作系统。

2.生态完善:基于x86架构的处理器拥有庞大的生态系统,有大量的研发和生产厂商,从而带来更多的硬件和软件选择。

3.性能强劲:x86架构在同等工艺制程下,可以提供较高的性能,具备较高的单核和多核处理能力,适用于多线程和计算密集型任务。

劣势:1.功耗较高:由于x86架构的复杂性和发展历史的积累,导致其功耗比其他架构要高一些。

这也限制了其在移动设备等低功耗领域的应用。

2.价格较高:鉴于x86架构的成熟度和市场份额,其产品价格一般较高,不利于低成本应用领域的推广。

3.指令冗余:x86架构的指令集较为冗余,指令执行效率不如精简指令集架构(RISC)。

二、ARM架构ARM架构是一种精简指令集计算机(RISC)架构,广泛应用于移动设备领域,代表产品为高通、苹果等公司的处理器。

ARM架构具有以下优势和劣势:优势:1.低功耗:ARM架构以其简洁而高效的设计,具备较低的功耗,适用于移动设备等对续航能力要求较高的领域。

2.强大的图形处理能力:基于ARM架构的处理器通常搭载了较为先进的图形核心,具备出色的图形处理能力,适用于游戏和媒体应用。

3.灵活性高:ARM架构可根据需求进行定制和扩展,非常适合于定制芯片和嵌入式系统领域。

劣势:1.兼容性较弱:由于ARM架构相对于x86架构有所不同,存在着较弱的兼容性。

某些PC软件和操作系统可能无法直接在ARM架构上运行。

ARM与Mips架构对比

ARM与Mips架构对比
4.地址空间
MIPS起始地址是0xbfc00000,会有4Mbyte的大小限制,但一般MIPS芯片都会采 取一些方法解决这个问题。
ARM没有这种问题。
MIPS24K起始地址改到了0xbf000000,现在有16Mbyte的空间了。6.性能 具体性能比较,因为差异性太大,所以很难分出谁好谁坏。从个人经验来讲MIPS4k和ARM9基本上是同一个级别的,但ARM9性能似乎要比MIPS4K好。
CPU架构对比(MIPS和ARM)一、概述:
RISC(精简指令集处理器)家族的两大佼佼者MIPS和ARM,相对应的是CISC(复 杂指令集处理器),典型的是X86家族的系列
二、应用领域:
1.在1GHz以上的应用,ARM架构的产品相比之下不还不是很这恰恰是ARM的 主攻市场。
1.流水线结构
MIPS是最简单的体系结构之一,所以使大学喜欢选择MIPS体系结构来介绍计 算体系结构课程。
MIPS最初的设计思想就是使用简单的RISC硬体
2.指令结构instruction
MIPS是开放式的架构,用户可以在开发的内核中加入自己的指令,
3.寄存器register
MIPS内核中有32个寄存器(Register),而ARM只有16个,这种结构设计上 的先天优势,决定了在同等性能表现下,MIPS的芯片面积和功耗会更小。ARM有一组特殊用途寄存器cp0-cp15,可以使用MCR,MRC等指令控制;相对应 的,MIPS也有cp00-30,使用mfc0,mtc0指令控制。
8.未来发展
ARM的下一代走向多内核结构,而MIPS公司的下一代核心则转向硬件多线程功能(multithreading)
MIPS的multithreading很类似Intel的HyperThreading技术。从现在的发展来看, 多内核占上风。

X86、ARM、MIPS微处理器架构浅析

X86、ARM、MIPS微处理器架构浅析

X86、ARM、MIPS微处理器架构浅析作者:刘帅来源:《智富时代》2015年第12期【摘要】上世纪80~90年代PC的快速发展促进了微处理器的快速发展,其中最为成功的是X86架构微处理器。

而21世纪是移动终端爆发发展的时代,现今最为流行的是智能终端(智能手机、平版电脑),这些都使得ARM架构微处理器发展的如日中天,本文对这些微处理器架构的特点作了简要的分析。

【关键词】X86;ARM;MIPS;RISC;CISC一、微处理器架构发展简述从处理器指令集来划分微处理器主要分为两个体系: RISC(Reduced Instruction Set Computer,精简指令集计算机)与CISC(Complex Instruction Set Computer,复杂指令集计算机)。

RISC主旨是简化指令系统,优化处理器设计,从而它有以下特点:指令编码、长度统一,可快速解析;缓存通用化,所有缓存可用于所有内容,简化了编译器的设计;指令寻址模式简单,复杂寻址模式以计算指令序列实现;硬件支持数据类型少。

CISC拥有庞大的指令系统,其指令功能复杂,寻址方式多,指令都可以直接访问存储器;绝大多数指令需多个机器周期完成;内部采用微程序控制;有少量专用寄存器。

在CISC 指令集的各种指令中,大约有20%的指令会被反复使用,占整个程序代码的80%。

而余下的80%的指令却不经常使用。

但实际中RISC和CISC发展到现在也不断的相互学习,现在的RISC指令集也达到数百条,运行周期也不是完全固定。

但RISC设计的根本原则还是针对流水线化的处理器优化。

目前MIPS、ARM和X86架构是世界三大主流处理器架构。

(一)X86架构Intel在1978年推出8086中央处理器,这是X86架构首度出现,三年后8086被IBM PC 选用,之后x86架构便成为了个人电脑的标准平台,成为了历来最成功的CPU架构。

8086是16位处理器,1985年随着80386的发布,32位处理器才在PC中广泛推广,2003年AMD在X86的架构上进行了64位扩充,并命名为AMD64。

电脑中央处理器的架构与性能比较

电脑中央处理器的架构与性能比较

电脑中央处理器的架构与性能比较随着计算机技术的飞速发展,电脑中央处理器(CPU)作为计算机的核心组件之一,扮演着重要的角色。

不同架构的CPU具有不同的性能优势和特点。

本文将探讨几种常见的CPU架构,并对它们的性能进行比较。

一、x86架构x86架构是当前主流桌面和笔记本电脑CPU的主要架构之一。

这种架构由英特尔和AMD等公司研发,被广泛应用于个人电脑的处理器上。

x86架构的CPU采用复杂指令集(CISC)设计,可以执行复杂而功能强大的指令。

这种设计特点使得x86架构的CPU在应对复杂计算和多任务处理时表现出色。

同时,由于x86架构的广泛应用,针对这种架构开发的软件和应用生态系统也非常丰富,使得x86架构的CPU在应用兼容性和软件支持方面具有明显的优势。

然而,由于x86架构历史悠久,设计上存在一些问题,比如指令冗余和复杂性,导致功耗和性能方面的一些限制。

此外,x86架构在移动设备和嵌入式系统等领域的应用相对较少,主要集中在个人电脑领域。

二、ARM架构ARM架构是一种精简指令集(RISC)架构,最初是为移动设备和嵌入式系统设计的。

如今,ARM架构的CPU在智能手机、平板电脑、物联网设备等领域得到广泛应用。

ARM架构的CPU采用精简指令集设计,指令集较为简单,执行效率高,功耗低。

这使得ARM架构的CPU在移动设备上具有出色的性能和电池续航能力。

同时,由于ARM架构设计上的优势,ARM芯片在单核和多核处理器的设计上也更具灵活性。

然而,由于ARM架构的历史相对较短,软件生态系统相对不够成熟。

尽管ARM架构的CPU在处理器核心数量上具有一定的优势,但在单核性能上可能不及x86架构的CPU。

此外,由于ARM架构的广泛应用领域,对特定应用的优化程度可能不同,也导致了某些特定领域的性能不足。

三、RISC-V架构RISC-V架构是一种开放指令集(RISC)架构,近年来逐渐崭露头角。

由于其开放性和免费许可证,RISC-V架构的CPU正在吸引越来越多的关注和应用。

解读x86、ARM和MIPS三种主流芯片架构

解读x86、ARM和MIPS三种主流芯片架构

解读x86、ARM和MIPS三种主流芯片架构派进展风格导致其商业进程远远滞后于ARM,当ARM与高通、苹果、NVIDIA等芯片设计公司合作大举进攻移动终端的时候,MIPS还停歇在高清盒子、打印机等小众市场产品中;五是MIPS自身系统的软件平台也较为落后,应用软件与ARM体系相比要少无数。

x86 CISC是一种为了便于编程和提高记忆体拜访效率的芯片设计体系,包括两大主要特点:一是用法微代码,命令集可以挺直在微代码记忆体里执行,新设计的处理器,只需增强较少的电晶体就可以执行同样的命令集,也可以很快地编写新的命令集程式;二是拥有浩大的命令集,x86拥有包括双运算元格式、寄存器到寄存器、寄存器到记忆体以及记忆体到寄存器的多种命令类型,为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器命令功能外,还通过存于只读存储器(ROM)中的微程序来实现极强的功能,微处理器在分析完每一条命令之后执行一系列初级命令运算来完成所需的功能。

x86命令体系的优势体现在能够有效缩短新命令的微代码设计时光,允许实现CISC体系机器的向上兼容,新的系统可以用法一个包含早期系统的命令集合。

另外微程式命令的格式与高阶语言相匹配,因而编译器并不一定要重新编写。

相较ARM RISC命令体系,其缺点主要包括四个方面。

第一,通用寄存器规模小,x86命令集惟独8个通用寄存器,CPU大多数时光是在拜访存储器中的数据,影响囫囵系统的执行速度。

而RISC 系统往往具有十分多的通用寄存器,并采纳了重叠寄存器窗口和寄存器堆等技术,使寄存器资源得到充分的利用。

其次,影响性能表现,解码器的作用是把长度不定的x86命令转换为长度固定的类似于RISC的命令,并交给RISC内核。

解码分为硬件解码和微解码,对于容易的x86命令只要硬件解码即可,速度较快,而碰到复杂的x86命令则需要举行微解码,并把它分成若干条容易命令,速度较慢且很复杂。

第三,x86命令集寻址范围小,约束用户需要。

x86与ARM比较

x86与ARM比较

X86与ARM两大CPU性能、价格、体积、发展趋势的比较
1.性能方面比较
性能方面,总体上暂时可以说ARM无法与X86相提并论。

X86主要应用于桌面型计算机中,为ARM主要应用于嵌入式设备,如手机、PDA等小型设备中,由此也可以体现出两者性能区别大小。

相对来说X86在处理浮点数,多媒体指令集方面相对比较强。

ARM相对于X86来讲,有几点不足:支持软件少,不支持64为应用,无缓存一致性。

性能还需进一步提高。

总结:两者可有所长,应用领域有所不同,总体性能X86远强于ARM。

2.功耗比较
ARM可以做的很低,甚至1瓦都不到,而X86可以达到100-200瓦。

ARM采用精简指令集,X86采用复杂指令集,前者每条功能简单,单个指令耗电低。

而后者每条指令复杂,单个指令耗电高。

ARM采用RISC指令集并且使用较少晶体管组成精简的内核,芯片体积小,寻址方式灵活简单,执行效率高,功耗很低。

总结:ARM面向嵌入式,低功耗,X86面向PC,两者定位有所不同。

ARM功耗远小于X86。

3.体积与价格比较
ARM比X86体积小,而且低成本,故ARM比X86价格相对要低。

4.发展趋势的比较
ARM逐渐从智能手机走向平板电脑和笔记本电脑,将要推出64
位处理器,而X86也逐渐走向移动平台市场,并向低功耗发展。

ARM处理器与X86处理器的区别

ARM处理器与X86处理器的区别

ARM处理器与X86处理器的区别CPU的指令集从主流的体系结构上分为精简指令集(RISC)和复杂指令集(CISC)。

嵌入式系统中的主流处理器——ARM处理器,所使用的就是精简指令集。

而桌面领域的处理器大部分使用的是复杂指令集,比如Intel的X86系列处理器。

我们把ARM处理器所使用的指令集称为ARM指令集,把X86处理器所使用的指令集称为X86指令集,ARM 处理器与X86处理器采用不同类型的指令集,造成了处理器在性能、成本、功耗等方面的诸多差异。

ARM指令集和X86指令集的比较:(1) 功耗:这是ARM主板最大的优点之一,一般的VIA的X86主板,功耗都在40W左右或者以上,而ARM主板的功耗极低,EICB系列主板功耗整体也只有1W左右。

(2) 发热:ARM主板不会发热,主板温度一般是常温,因此可以一直常年累月开机在线工作,不会出现任何问题。

而X86主板CPU必须配风扇而且不能长期工作,否则主板产生的温度会让主板整体性能寿命降低。

风扇的工作寿命也会影响主板的寿命。

(3) 开机时间:ARM主板的开机速度非常快,一般只有几秒就可以了,而X86需要开机一段时间,Windows系统才会起来。

(4) 性能:目前来看,ARM主板的性能已经越来越接近X86主板,甚至在某些方面超过了它。

从视频多媒体、数据通信等几个方面,基本和X86类似。

(5) 工作时间和环境:ARM主板不受时间限制,可以一直开机工作,无须人员去维护,而且在调电情况下,只要来电,那么就会自动启动,无须人员去开机或者关机,而X86主板却要人员维护,而且不能长期工作,否则会让主板寿命大大降低。

环境:ARM主板一般都是工业极,不受环境影响,最低温度可以在-20摄氏度左右,最高温度可以在70摄氏度左右,而X86一般都不行。

(6) 数据安全性:ARM主板都采用高度集成方式,数据一般都放在Flash内部,都是二进制格式,外部无法直接拷贝内部数据。

而且最大的优点是:目前ARM主板的系统都是WinCE系统或者Linux系统,不会受病毒感染,客户无须担心病毒感染而导致数据泄漏,尤其是一些对于数据安全性要求很高的场所。

细说ARM、X86、X64、MIPS架构的系统及市场

细说ARM、X86、X64、MIPS架构的系统及市场

细说ARM、X86、X64、MIPS架构的系统及市场ARM、X86、X64、MIPS他们是一种架构,是精简指令集合与复杂指令集合的区别。

你可以理解为处理问题的不同方式。

他们运用的不同的指令集合、寻址方式、传递方式、后台设计的处理电压、时钟等方式上有所区别。

因此,在现象上表现为哇!我的电脑好快!,唉哟喂!这电脑电池很不经用啊!。

由于针对不同的任务而设计,因此,他们的处理效率、执行方式都不同,当然也针对不同的客户。

你明白定位理论就一定明白他们为什么会存在。

你发现生活在碎片化?因此,设备的功能也专业化,手持设备存在的必要是在特定的时间解决特定的问题。

因此,你懂了。

好吧,我承认我讲的一点都不专业,但你一定明白他们谁是谁了。

还不明白?那我也没舍了下面说系统基于架构的开放的指令,巨硬编写了windows系列程序集合,我们地球人叫他为Windows 系统(程序,如果你愿加这俩字),原理就是执行CPU的一条条指令,换句话就是windows 帮我们整理成一个个界面,界面好看、简单是关键。

然后呢,我们就鼠标一点,完成任务。

对不对?好像很简单是不是?看段代码吧。

varsum,i:Integer;beginsum := 0 ;for i :=0 to 100 dobeginsum := sum+i;end;ShowMessage(IntToStr(sum));end;代码你0.2秒就看懂了,计算结果你当然知道啦。

(别计较代码优化,我承认我好好好好几年没动手写代码了)程序你明白了,那系统怎么工作的尼?首先,程序要调用类库,然后,编译器将代码转化为windows可以识别的指令,windows 再调用cpu的指令计算,最后,windows再将结果显示出来给你看,给你看。

假如有一天,你想设计一套自己的计算机语言,就是圣诞大叔的英文吧Santa,你就需要定义语法、语句,编写引导库,还有,你得编写一个编译器,告诉windows系统,你这些语句是什么意思,让他如何转换给cpu执行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度
慢。
Second的相关语),是一种采取精简指令集(RISC)的处理器架构,1981年
出现,由MIPS科技公司开发并授权,广泛被使用在许多电子产品、网络设
备、个人娱乐装置与商业装置上。最早的MIPS架构是32位,最新的版本已
经变成64位。
MIPS的基本特点是:
(1)包含大量的寄存器、指令数和字符。
(2)可视的管道延时时隙。
这些特性使MIPS架构能够提供最高的每平方毫米性能和当今SoC设计
中最低的能耗。
3. X86
X86架构是芯片巨头Intel设计制造的一种微处理器体系结构的统称。如
果这样说你不理解,那幺当我说出8086,80286等这样的词汇时,相信你肯
定马上就理解了,正是基于此,X86架构这个名称被广为人知。如今,我们
所用的PC绝大部分都是X86架构。可见X86架构普及程度,这也和Intel的
霸主地位密切相关。x86采用CISC(ComplexInstrucTIonSetComputer,复
杂指令集计算机)架构。与采用RISC不同的是,在CISC处理器中,程序的
各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行
ARM、MIPS、X86三大芯片架构对比
1. ARM
ARM是高级精简指令集的简称(AdvancedRISCMachine),它是一个32
位的精简指令集架构,但也配备16位指令集,一般来讲比等价32位代码节
省达35%,却能保留32位系统的所有优势。
ARM处理器的主要特点是:
(1)体积小、低功耗、低成本、高性能ARM被广泛应用mb(16位)/ARM(32位)双指令集,能很好
的兼容8位/16位器件;
(2)大量使用寄存器,指令执行速度更快;
(3)大多数数据操作都在寄存器中完成;
(4)寻址方式灵活简单,执行效率高;
(5)指令长度固定。
(6)Load_store结构:在RISC中,所有的计算都要求在寄存器中完成。
而寄存器和内存的通信则由单独的指令来完成。而在CSIC中,CPU是可以
直接对内存进行操作的。流水线处理方式。
2. MIPS
MIPS架构(英语:MIPSarchitecture,为Microprocessorwithout
interlockedpipedstagesarchitecture的缩写,亦为MillionsofInstrucTIonsPer
相关文档
最新文档