移动通信数字调制解调技术要点

合集下载

移动通信调制技术介绍

移动通信调制技术介绍
卫星通信:使用调制技术实现卫星与地面站之间的 无线数据传输。
无线传感器网络(WSN):使用调制技术实现传 感器节点之间的无线数据传输。
卫星通信中的应用
01
01
卫星通信系统:利用卫星作为 中继站进行通信
02
02
卫星调制技术:将信号调制到 卫星通信频率上
03
03
卫星通信的优点:覆盖范围广, 传输速度快,抗干扰能力强
04
04
卫星通信的应用领域:军事、 航空、航海、应急通信等
4
更高效的调制技术
更高阶的调制技术: 如64QAM、 256QAM等,可 以提高频谱效率
更先进的多天线技 术:如MIMO、 波束赋形等,可以 提高传输速率和覆 盖范围
更智能的调制技术: 如自适应调制、动 态功率控制等,可 以提高系统灵活性 和性能
01
提高信号传输效 率
2
幅度调制技术
幅度调制技术是一
1
种通过改变信号的
幅度来传递信息的
技术。
常见的幅度调制技
2
术包括:调幅
(AM)、调频
(FM)和调相
(PM)。
调幅技术通过改变
3
信号的幅度来传递
信息,具有较高的
抗干扰能力。
调频技术通过改变
4
信号的频率来传递
信息,具有较高的
传输速率和较低的
误码率。
更绿色的调制技术: 如低功耗、低辐射 等,可以降低能耗 和保护环境
更灵活的调制技术
自适应调制技术:根据信道条件自动调整调制方式, 提高传输效率
多载波调制技术:将多个载波组合在一起,提高传 输速率和频谱利用率
智能天线技术:利用多天线阵列,实现空间分集和 波束赋形,提高传输可靠性和覆盖范围

移动通信中的调制解调(2023版)

移动通信中的调制解调(2023版)

移动通信中的调制解调移动通信中的调制解调1.引言1.1 背景1.2 目的2.调制的概述2.1 调制的定义2.2 调制的目的2.3 调制的基本原理3.调制的分类3.1 模拟调制3.1.1 AM调制3.1.2 FM调制3.2 数字调制3.2.1 ASK调制3.2.2 FSK调制3.2.4 QAM调制4.调制器种类4.1 调幅器4.2 调频器4.3 调相器4.4 调性器5.解调的概述5.1 解调的定义5.2 解调的目的5.3 解调的基本原理6.解调的分类6.1 模拟解调6.1.1 按幅度解调 6.1.2 按频率解调 6.1.3 按相位解调 6.2 数字解调6.2.2 FSK解调6.2.3 PSK解调6.2.4 QAM解调7.解调器种类7.1 幅度解调器7.2 频率解调器7.3 相位解调器7.4 多解调器8.调制解调在移动通信中的应用8.1 调制解调在2G移动通信中的应用 8.2 调制解调在3G移动通信中的应用 8.3 调制解调在4G移动通信中的应用8.4 调制解调在5G移动通信中的应用9.未来发展趋势9.1 调制解调技术的进一步创新9.2 调制解调在物联网中的应用9.3 调制解调在中的应用附件:无法律名词及注释:1.调制:将信号按照一定规律调整成为适合传输的波形。

2.解调:从接收到的波形中还原出原始信号。

3.AM调制:调制信号的幅度随着原始信号的变化而变化。

4.FM调制:调制信号的频率随着原始信号的变化而变化。

5.ASK调制:调制信号的振幅随着原始信号的变化而变化。

6.FSK调制:调制信号的频率随着原始信号的变化而变化。

7.PSK调制:调制信号的相位随着原始信号的变化而变化。

8.QAM调制:将多个调制信号组合成一个符号,符号中的振幅和相位都可变化。

本文档涉及附件:无。

移动通信中的调制解调

移动通信中的调制解调

移动通信中的调制解调引言移动通信是一种无线通信技术,可以实现移动设备之间的语音、数据和图像传输。

在移动通信中,调制解调起着重要的作用。

调制解调是将数字信号转换为模拟信号,或将模拟信号转换为数字信号的过程。

调制的目的调制是为了适应信道传输的要求和提高信号的抗干扰能力。

由于信道通常是模拟的,而数字信号是离散的,在信道传输时需要将数字信号转换为模拟信号。

调制的目的是将数字信号转换为模拟信号,以便在信道输。

调制的分类调制可以分为模拟调制和数字调制两种类型。

模拟调制是将模拟信号调制为模拟载波进行传输,常见的模拟调制方式有调幅(AM)、调频(FM)和调相(PM)。

数字调制是将数字信号调制为数字载波进行传输,常见的数字调制方式有二进制振幅移键(ASK)、二进制频移键(FSK)和二进制相移键(PSK)。

解调的目的解调是将调制过的信号恢复为原始的数字信号。

在信道传输中,信号会受到噪声和干扰的影响,解调的目的是将接收到的调制信号恢复为原始的数字信号,以便进行后续的处理和分析。

解调的分类解调可以分为模拟解调和数字解调两种类型。

模拟解调是将模拟调制信号恢复为模拟载波,常见的模拟解调方式有包络检波、相干解调和同步解调。

数字解调是将数字调制信号恢复为数字信号,常见的数字解调方式有ASK解调、FSK解调和PSK解调。

调制解调技术在移动通信中的应用调制解调技术在移动通信中扮演着重要的角色。

在移动通信中,调制解调技术被广泛应用于无线传输系统中,如GSM、CDMA和LTE 等。

调制解调技术可以通过提高信号的抗干扰能力和提高传输效率,实现可靠和高效的无线通信。

移动通信中的调制解调是实现无线通信的关键技术之一。

调制是将数字信号转换为模拟信号的过程,解调是将调制信号恢复为原始的数字信号的过程。

调制解调技术在移动通信中有着广泛的应用,能够提高通信系统的效率和可靠性。

不断的技术创新和发展将进一步推动移动通信技术的进步和应用。

调制解调

调制解调

2.2 数字频率调制
2.2.1 移频键控(FSK)调制 设输入到调制器的比特流为{an}, an=±1,
n=-∞~+∞。 FSK的输出信号形式(第n个比特区间)为
cos(1t 1 ) an 1 s (t ) cos(2t 2 ) an 1
(2 - 23)
即当输入为传号“ +1 ”时,输出频率为 f 1 的正弦波; 当输入为空号“-1”时,输出频率为f2的正弦波。
在大信噪比情况下, 即Uc>>V(t), 有
(2 - 14)
V (t ) (t ) c t (t ) sin (t ) (t ) Uc (2 - 15) y (t ) c t (t ) Uc
鉴频器的输出为
d(t ) d (t ) 1 dy(t ) uout (t ) c dt dt U c dt 1 dy(t ) k f um (t ) U c dt
调制技术
第二代移动通信是数字移动通信,其中的关键技
术之一是数字调制技术。对数字调制技术的主要要求
是:已调信号的频谱窄和带外衰减快(即所占频带窄,
或者说频谱利用率高);易于采用相干或非相干解调; 抗噪声和抗干扰的能力强;以及适宜在衰落信道中传 输。 数字信号调制的基本类型分为振幅键控 (ASK) 、 频移键控 (FSK)和相移键控 (PSK)。此外,还有许多由 基本调制类型改进或综合而获得的新型调制技术。
差为σ2n的高斯随机过程。
发“+1”时: y1(t) = a cos(ω1t+φ1)+nc1(t) cos(ω1t+φ1)
-ns1(t) sin(ω1t+φ1) 发“-1”时:

第3章数字调制解调技术

第3章数字调制解调技术
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
3.2 数字频率调制
3.2.1 二进制数字频移键控(2FSK) 设输入到调制器的信号比特流为{an},an=“1”或
“0” n=-∞~+∞。当输入为传号“1”时,输出频率为f1 的正弦波;当输入为空号“0”时,输出频率为f2的正弦波。 FSK信号分为相位连续的FSK信号和相位跳变的FSK信号。 FSK信号的波形及功率谱如图3-3所示。
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
移动通信中的数字调制技术应具有以下特点: (1)要有窄的功率谱和高的频谱利用率。移动通信是 一种多波道系统,调制信号功率谱带外辐射对邻道产生干 扰,使性能下降。为了保证数字信息传输质量,信号功率 与干扰功率之比应大于20dB,考虑到移动台运动时的衰落 深度可达20~40dB,所以要求已调信号在邻道的总辐射干 扰低于20~40dB。 (2)误码性能好。移动通信环境以衰落、噪声、干扰 为特点,包括多径瑞利衰落、频率选择性衰落、多普勒频 移和障碍物阻挡的联合影响。因此,必须根据抗衰落和干 扰能力来优选调制方案。误码性能的好坏实际上反映了信 号的功率利用率的高低。
MSK调制器的原理框图如图3-6所示。
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术
图3-6 MSK调制器的原理框图
电子信息工程系通信技术教研室
第3章 移动通信中的调制解调技术 4.频谱特点 MSK信号的功率谱如图3-7所示,图中还给出了QPSK
信号的功率谱。从图中可以看出,与QPSK相比,MSK信号 的功率谱具有较宽的主瓣,其第一个零点出现在(f-fc)=0.75 处,而QPSK信号的第一个零点出现在(f-fc)=0.5处。当(ffc)→∞时,MSK的功率谱以[(f-fc)Tb]-4 QPSK的衰减速率[(f-fc)Tb]-2快得多。MSK信号可以采用 鉴频器解调,也可以采用相干解调。

移动通信中的数字调制技术

移动通信中的数字调制技术
移动通信数字调制技术介绍

2020/2/29
1/4
• 培训的目的
1.了解数字调制原理和特点 2.了解移动通信系统中的各种调制技术
2020/2/29
2/4
• 调制的概念
将待传送的基带信号加到高频载波上进行传输的过程,即按照 调制信号(基带信号)的变化规律去改变载波的某些参数的过程。
其简单模型可以表示为:
2020/2/29
9/4
• 码元速率
码元:数字信号中每一个符号的通称。即可以用二进制表示,也可以用其 它进制的数表示。 码元传输速率,又称为码元速率或传码率。码元速率又称为波特率,指每 秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列, 则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常 用符号"Baud"表示,简写为"B"
31/4
2020/2/29
32/4
传输数字信号时也有三种基本的调制方式:幅移键控(ASK)、 频移键控(FSK)和相移键控(PSK)。 它们分别对应于用载波(正弦波)的幅度、频率和相位来传递数 字基带信号,可以看成是模拟线性调制和角度调制的特殊情况。 理论上,数字调制与模拟调制在本质上没有什么不同,它们都是 属正弦波调制。但是,数字调制是调制信号为数字型的正弦波调 制,而模拟调制则是调制信号为连续型的正弦波调制。 在数字通信的三种调制方式(ASK、FSK、PSK)中,就频带利用率 和抗噪声性能(或功率利用率)两个方面来看,一般而言,都是 PSK系统最佳。所以PSK在中、高速数据传输中得到了广泛的应用。
2020/
1.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子
2020/2/29

移动通信第2讲调制

移动通信第2讲调制
h=0.5是移频键控为保证良好误码性能所允许的最小调制指数 h=0.5时,波形相关系数为0,信号是正交的
MSK也是一类特殊形式的OQPSK,用半正弦脉冲取代 OQPSK的基带矩形脉冲

信号表达式: S (t ) cos ct ak t xk 2Tb
2PSK
Eb 4N0
Eb 2N0

2FSK
BER
-6 -7 -8 -9 -10 -11
2PSK
-12 0
1
1 P 3 5 6erfc9 10 2b 4 7 8 Eb/N0 (dB) 2
Eb 11 12 13 N0
14
移动通信中常用的调制技术
2.数字调制方法的分类
3. 基本调制方法原理及性能简要分析
2ASK、2FSK、2PSK和2DPSK调制原理波形如下图所示。
基带信号 1 0 1 1 0 0 1
2ASK
2FSK
2PSK
2DPSK
性能简要分析
欧式空间距离法 将二进制的已调信号矢量表达为二维欧式空间的距离,显 然距离越大,抗干扰性就越强。 2ASK 当基带信号为“0”时,不发送载波,记A0=0V; 当基带信号为“1”时,发送归一化载波,记A1=1V; 则可用下列图型表示
高斯滤波器满足以上要求
输入数据 预调制滤波器 FM 调制器 调制指数为0.5
不归零(NRZ)
图 2 - 11 GMSK信号的产生原理
1. 高斯低通滤波器
冲击响应为:
g(t) 1.0
h(t ) exp( a t )
2 2 2
BT = bb 0.7 0.4 0.3

2 Bb 1n 2

数字调制解调技术

数字调制解调技术

抗多径干扰能力主要取决于调制解调 算法的设计和实现,以及信号处理技 术的运用。常用的抗多径干扰技术包 括RAKE接收、信道估计与均衡、多 天线技术等。这些技术的应用可以有 效抑制多径干扰的影响,提高数字信 号的传输质量和稳定性。
05
数字调制解调技术的未 来发展
高频谱效率的调制解调技术
总结词
随着通信技术的发展,对频谱效率的要求越来越高,高频谱效率的调制解调技术成为研 究热点。
02
通过将多个载波信号进行调制 ,多载波调制能够提高信号传 输的效率和可靠性。
03
多载波调制具有频谱利用率高 、抗多径干扰能力强等优点, 因此在无线通信、宽带接入等 领域得到广泛应用。
03
数字解调技术
相干解调
相干解调是一种基于相位的解调方法,它利用发送信号的相位信息来恢复原始信 号。在相干解调中,接收到的信号与本地振荡器产生的信号进行相位比较,以恢 复原始信号的相位信息。
抗多径干扰能力
抗多径干扰能力
总结词
详细描述
抗多径干扰能力是指数字调制解调技 术在存在多径干扰的情况下仍能保持 正常工作的能力。多径干扰是无线通 信中常见的问题,良好的抗多径干扰 能力能够提高通信质量。
抗多径干扰能力是评估数字调制解调 技术性能的重要指标,尤其在无线通 信中,它直接影响到通信的质量和稳 定性。
思路。
多模态调制解调技术
总结词
随着通信环境的多样化,多模态调制解 调技术成为研究的热点,以满足不同通 信环境下的需求。
VS
详细描述
多模态调制解调技术是指能够处理多种通 信模式的调制解调技术。目前已经出现了 一些多模态调制解调技术,如OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)和SC-FDE (Single Carrier Frequency Domain Equalization,单载波频域均衡)等。这 些技术通过融合不同的通信模式,提高了 通信系统的灵活性和适应性,为未来通信 技术的发展提供了新的方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.5 调幅与调频
单边带调幅系统只传送一个边带(上边带 或下边带),所以只占用普通调幅系统一 半的带宽。 单边带调制技术对移动通信还是非常有用 的。 随着数字信号处理、大规模集成电路和新 的单边带调制解调技术的进步,单边带在 移动通信中的应用还是很有前途的。
6.1 数字调制技术概述
6.1.1 6.1.2 6.1.3 要求 6.1.4 6.1.5 概述 数字调制的性能指标 蜂窝移动通信系统对数字调制技术的
数字调制技术分类 调幅与调频
6.1.1 概述
第二代数字移动通信系统都使用数字调制 技术。 超大规模集成电路(VLSI)和数字信号处 理(DSP)技术的发展使数字调制比模拟 调制的传输系统更有效。
第6章 移动通信数字调制解调 技术
本章提示
调制在通信系统中占有十分重要的地位。 只有经过调制才能将基带信号转换成适合 于信道传输的已调信号,而且它对系统的 传输有效性和可靠性都有很大的影响。
本章提示
数字调制与模拟调制本质上并无什么不 同,它们同属正弦载波调制。但是数字调 制的调制信号为数字型正弦调制,模拟调 制的调制信号为连续性正弦调制。模拟信 号传输的质量标准是信噪比(S/N),数字 信号传输的质量标准是误码率(Pe)。
1.线性调制方式 线性调制方式主要有各种进制的PSK和 QAM等。 线性调制方式又可分为频谱高效和功率高 效两种。
2.恒定包络调制方式
恒定包络调制方式主要有MSK、TFM(平 滑调频)、GMSK等。 其主要特点是这种已调信号具有包络幅度 不变的特性,其发射功率放大器可以在非 线性状态而不引起严重的频谱扩散。
6.1.2 数字调制的性能指标
由香农(Shannon)定理: 骣 S÷ C=B lb ç 1+ ÷ ( 6-3 ) ç ç 桫 N÷ 式中,C为信道容量;B为RF带宽;S/N为 信噪比;lb = loga,a = 2。
6.1.2 数字调制的性能指标
因此,最大可能的BMAX为 C S BMAX = = lb(1 + ) (6-4) B N 对于GSM,B = 200kHz,SNR = 10dB, 则有:

本章提示
由于带宽资源受限,目前所有调制技术 的主要设计思路就是最小化传输带宽。相 反,扩频技术使用的传输带宽比要求的最 小信号带宽大几个数量级。在多用户系统 中,事实证明在多址干扰(MAI)环境,扩 频系统能获得很高的频谱利用率。
第6章 移动通信数字调制解调技术
6.1 数字调制技术概述 6.2 线性数字调制技术 6.3 恒包络调制 *6.4 “线性”和“恒包络”相结合的调制技 术
C = = lb(1 + 10) = 3.46(kbit/s)/Hz B
骣 S÷ C = B lb ç 1+ ÷ = 200 lb(1 + 10) = 691.886kbit/s ç ÷ ç 桫 N hBMAX
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
(1)数字调制的目的在于使传输的数字信 号与信道特性相匹配 (2)移动通信要求采用恒定包络数字调制 技术 (3)应尽量避免幅-相转换(AM/PM)效 应 (4)要求调制方式具有最小的功率谱占用 率
Eb P = (6-1) N0
6.1.2 数字调制的性能指标
带宽有效性B是反映调制技术在一定的频 带内数字有效性的能力,可表述成在给定 带宽条件下每赫兹的数据通过率: R B = ((bit/s) / Hz) (6-2) B
式中,R为数据速率(bit/s),B为调制射 频RF信号占用带宽。
6.1.1 概述
新的多用途可编程数字信号处理器使得数 字调制器和解调器完全用软件来实现成为 可能。 嵌入式软件实现方法可以在不重新设计和 替换调制解调器的情况下改变和提高性能。
6.1.2 数字调制的性能指标
数字调制的性能指标通常通过功率有效性 p(Power Efficiency)和带宽有效性B (Spectral Efficiency)来反映。 功率有效性p是反映调制技术在低功率电 平情况下保证系统误码性能的能力,可表 述成每比特的信号能量与噪声功率谱密度 之比:
6.1.5 调幅与调频
早期VHF频段的移动通信电台大都采用调 幅方式,调幅是使高频载波信号的振幅随 调制信号的瞬时变化而变化,其所占带宽 为BAM=2fm,其中,fm为音频的上限频率。 由于信道快衰落会使模拟调幅产生附加调 幅而造成失真,目前已很少采用。
6.1.5 调幅与调频
调频是使高频载波信号的瞬时频率随调制 信号的变化而变化,其所占带宽为B FM= 2(FM+1)fm,其中FM为调制指数。 调频制在抗干扰和抗衰落性能方面优于调 幅制,对非线性信道有较好的适应性,世 界上几乎所有的模拟蜂窝系统都使用频率 调制。
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
具体地讲,数字调制技术应满足如下特性 要求。 ① 为了在衰落条件下获得所要求的误码率 (BER),需要好的载噪比(C/N)和载干 比 (C/I)性能。 ② 所用的调制技术必须在规定频带约束内 提供高的传输速率,以(bit/s)/Hz为单位。
本章提示
第一代蜂窝移动通信系统采用模拟调频 (FM)传输模拟语音,其信令系统采用 2FSK数字调制。第二代数字蜂窝移动通信 系统传送的语音都是经过语音编码和信道 编码后的数字信号。GSM系统采用GMSK 调制;IS-54系统和PDC系统采用/4 DQPSK调制;IS-95 CDMA系统的下行信 道采用QPSK调制,其上行信道采用 OQPSK调制。第三代蜂窝移动通信系统将 采用MQAM、QPSK或8PSK调制。
6.1.3 蜂窝移动通信系统对数字调制技术 的要求
③ 应使用高效率的功率放大器,而带外辐 射又必须降低到所需要求(−60dB~ −70dB)。 ④ 恒定包络。 ⑤ 低的载波与同道干扰(CCI)的功率比。 ⑥ 必须满足快速的比特再同步要求。 ⑦ 成本低,易于实现。
6.1.4 数字调制技术分类
相关文档
最新文档