模型预测控制发展史
预测控制之模型算法控制

• 1982年,Meral等在MPHC基础上进一步提出模型算法控制 (MAC,Model Algorithm Control)
• 1987年,Clarke等提出广义预测控制(GPC,Generalized Predictive Control)
模型描述
• 对于一个线性定常系统,其所有动静态特性可以完全由其单位脉冲响应函数表达。若该系 统还是稳定的(此处指系统的极点具有负实部的情形,不包括临界稳定), 其单位脉冲响应函 数满足:
• 若对于离散时间控制系统,则相应的脉冲响应序列趋于零。根据控制原理,基于单位脉冲 响应函数的系统输出响应等于单位脉冲响应函数与系统输入的卷积,即有
• 内模控制是直接针对控制系统存在建模误差和外部干扰的情况下研究系 统的闭环稳定、提高相应性能指标的控制方法,可显著提高控制系统对 建模误差和外部干扰的鲁棒性。
• 传统控制系统
• 内模控制系统结构框图
非参数模型之单位脉冲响应函数
• 在MAC中对被控对象可采用单位脉冲响应函数(在离散情形也称为单位脉冲 响应序列)作为其数学模型描述。
模型算法控制(MAC)
• MAC系统(预测控制)的主要四个部分:内部模型、模型校正 与输出预测、参考轨迹\轨迹优化、控制优化目标\滚动优化
一、内模原理
• 所谓内模原理,是针对传统控制理论对被控对象模型及建模误差处理的 不足而提出的一种新的处理方法。
• 当建模所存在的误差控制在较小范围时,传统的控制系统设计方法具有 较好的克服建模误差和抗干扰的能力。建模误差超过一定程度时,所设 计的控制系统的反馈本身的抗干扰能力及系统的稳定性裕量则不能很好 地将系统稳定,并保持所期望的系统性能指标。
模型预测控制全面讲解

1
H
T 2
Q
第三节 模型算法控制(MAC)
参考轨迹模型 yr
yd
yr(k+i)
优化算法 u 对象
minJ
y
模型 ym
yP 预测 yP(k+i)
ym(k+i)
e
模型算法控制原理示意图
第四节 动态矩阵控制(DMC)
动态矩阵控制(Dynamic Matrix Control): 基于阶跃响应模型的预测控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量
最优控制率为
U2(k)
H
T 2
QH
2
R
1
H
T 2
Q
Yr
(k)
H1U1(k )
βe(k )
Q diagq1 q2 qP R diagr1 r2 rM
现时刻k的最优控制作用
U2 (k) DT Yr (k) H1U1(k) βe(k)
模型预测控制(全面讲解).

h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) j y(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量
1
0 12
t/T
t/T
y u
4.6 6 5 2
3 1.6
0 12
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y 7.6 8.5
6.5
4.6 6 3.8
5
3 2.3 3 2.5 1.5 0.8 0 1 2 34 5 6 u
2 1 u(0) u(1)
y(1) h1u(0) y(2) h2u(0) h1u(1) y(3) h3u(0) h2u(1) y(4) h4u(0) h3u(1) y(5) h5u(0) h4u(1)
mpc控制算法

mpc控制算法本文对MPC控制算法进行了深入地研究,它是一种解决复杂系统控制问题的有效工具,具有高精度的控制性能、充分的实时性以及很强的容错性。
本文首先着重介绍了MPC控制算法的发展历史、基本概念和工作原理,并对其使用的模型进行讨论,包括模型的构建、模型估计方法、参数估计方法等。
接着,本文介绍了MPC控制算法的典型应用,特别是把MPC控制用于机器人控制领域。
最后,本文总结了MPC控制算法的优缺点,并针对MPC控制算法的改进方向作了研究。
【Introduction】MPC控制算法,即模型预测控制算法,是一种用于解决复杂系统控制问题的有效工具。
它最初源于运动学习理论,解决机器人移动自动控制中的问题。
随着计算机技术的发展,MPC的应用越来越广泛,成为了今天自动控制领域中的一项重要技术。
MPC控制算法具有准确性高、控制性能好、实时性强、容错性强等优点,具有广泛的应用前景。
【MPC控制算法的发展史】MPC控制算法的发展要追溯到20世纪50年代,当时工程师们开始把机器人移动技术应用到工业生产中。
他们发现,如果采用常规的周期控制技术,机器人的控制效果并不理想。
为了改善系统的控制效果,工程师们开发出了一种新的控制算法模型预测控制算法,根据不同的任务要求,不断改进和完善。
MPC控制算法的概念最初来源于运动学习理论,由J.L.Schwartz于1958年提出,这种算法现在已经广泛应用于机器人控制领域。
【MPC控制算法的基本概念】MPC控制算法是一种解决复杂控制问题的有效算法,把采用模型预测来控制系统,通常指将系统的状态参数融入算法进行控制。
它采用预测控制技术,在当前的状态和未来的状态之间建立一个模型,即建立模型将当前的控制器行为与未来的控制器行为联系起来,从而将当前的控制状态转移到未来的控制状态。
MPC控制算法需要建立系统的模型,并由此来估计模型的参数,以便更好地控制系统的运行。
【模型估计】MPC控制算法需要通过模型估计来建立模型,用于控制系统。
第三篇(第7,8,9章)模型预测控制及其MATLAB实现

0 u(k) y0 (k 1) (7-7)
u(k 1)
y0
(k
2)
yˆ (k
n)
an
an1
anm1
u(k
m
1)
y0
(k
n)
记
Yˆ [ yˆ(k 1), yˆ(k 2), , yˆ(k n)]T
将式(3-4)写成矩阵形式
( j 1,2, , n)
(7-5)
yˆ(k 1) a1
yˆ (k
2)
a2
a1
yˆ (k
n)
an
an1
u(k) y0 (k 1)
u(k 1)
y0
4
目前提出的模型预测控制算法主要有基于非参数 模型的模型算法控制(MAC)和动态 矩阵控制( DMC),以及基于参数模型的广义预测控制(GPC )和广义预测极点配置控制 (GPP)等。其中,模 型算法控制采用对象的脉冲响应模型,动态矩阵控 制采用对象的阶跃响应模型,这两种模型都具有易 于获得的优点;广义预测控制和广义预测极点配置 控制是预测控制思想与自适应控制的结合,采用 CARIMA模型(受控自回归积分滑动平均模型), 具有参数数目少并能够在线估计的优点,并且广义 预测极点配置控制进一步采用极点配置技术,提高 了预测控制系统的闭环稳定性和鲁输入,预测系统
未来输出值。GPC采用CARIMA模型作为预测模型
,模型CARIMA是"Contrlled Auto-Regressive Integrated
预测控制-课件

学习交流PPT
16
滤波、预测与控制
❖ 预测:
▪ 已知信号的过去测量值: y(k), y(k-1), ……,y(k-n) ▪ 求解未来时刻期望值:y(k+1|k) , y(k+2|k) , ……
y(k)
预估器
y(k+d|k)
▪ 预估器:y(k+1|k)= b1y(k)+b2y(k-1)+……+any(k-n)
反馈
学习交流PPT
19
预测控制
❖ 预测控制:
▪ 不仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k1), ……,y(k-n)
▪ 也利用未来预测值: y(k+1|k), y(k+2|k), ……,
▪ 优点:利用预测的变化趋势,超前调节
学习交流PPT
20
预测控制的基本原理
预测控制的三要素
❖ 预测控制算法的核心内容:
▪ 建立内部模型、确定参考轨迹、设计控制算法、在线优化
❖ 预测控制算法的三要素为:
▪ 预测模型 ▪ 滚动优化 ▪ 反馈校正
学习交流PPT
13
预测控制的三要素
❖ 预测模型:对未来一段时间内的输出进行预测; ❖ 滚动优化:滚动进行有限时域在线优化; ❖ 反馈校正:通过预测误差反馈,修正预测模型,提
t/T 1─k时刻的预测输出 2─k+1时刻实际输出 3─预测误差 4─k+1时刻校正后的预测输出
学习交流PPT
34
反馈校正
y(k) e (k)
y (k+j| k)
y(k-j)
ym(k )
ym (k+j| k-1)
u (k+j )
第五讲--MPC

模型预测控制的发展背景(1)
现代控制理论及应用的发展与特点
– 要求 » 精确的模型 » 最优的性能指标 » 系统的设计方法
– 应用 » 航天、航空 » 军事等领域
2020/4/7
第五讲 模型预测控制
3
浙江大学控制科学与工程学系
----Coperight by HuiWang----
模型预测控制的发展背景(2)
非最小化描述的离散卷积和模型,有利于 提高系统的鲁棒性
滚动的优化策略,较好的动态控制效果
不增加理论困难,可推广到有约束条件、 大纯滞后、非最小相位及非线性等过程
是一种计算机优化控制算法
2020/4/7
第五讲 模型预测控制
5
浙江大学控制科学与工程学系
预测控制的特点(2)
----Coperight by HuiWang----
第五讲 模型预测控制
14
浙江大学控制科学与工程学系
----Coperight by HuiWang----
5-2 动态矩阵控制(DMC)
基于被控对象的单位阶跃响应 – 适用于渐近稳定的线性对象 即,设一个系统的离散采样数据{a1,
a2 ,…,aN}(如P18的示意图),则有
限个采样周期后, 满足
aN a()
多变量预测控制系统的稳定性、鲁棒性 – 线性系统、自适应预测—理论性较强 非线性预测控制系统 – 内部模型用神经网络(ANN)描述 针对预测控制的特点开展研究 – 国内外先进控制软件包开发所采用
2020/4/7
第五讲 模型预测控制
7
浙江大学控制科学与工程学系
----Coperight by HuiWang----
2020/4/7
模型预测控制全面讲解..pdf

hT={h1,h2,…,hN} 可完全描述系统的动态特性
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图第节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型预测控制发展史
模型预测控制(Model Predictive Control,MPC)是一种先进的控制方法,它结合了过程建模、优化和反馈控制等技术,以实现对复杂系统的有效控制。
MPC 的发展可以追溯到20 世纪70 年代,经过几十年的发展,已经成为工业控制领域中应用广泛的控制策略之一。
MPC 的发展可以分为以下几个阶段:
1. 早期阶段:20 世纪70 年代,MPC 的概念首次提出,主要应用于化工、石油等过程工业领域。
这一阶段的MPC 算法主要基于线性模型和动态规划方法,具有计算量大、实时性差等缺点。
2. 发展阶段:20 世纪80 年代至90 年代,MPC 算法得到了快速发展,出现了许多改进的算法,如线性二次型调节器(LQR)、广义预测控制(GPC)等。
这些算法在一定程度上提高了MPC 的实时性和精度。
3. 成熟阶段:21 世纪初至今,MPC 算法逐渐成熟,应用范围不断扩大。
这一阶段的MPC 算法更加注重实际应用中的问题,如约束处理、模型不确定性等。
同时,随着计算机技术的发展,MPC 的实时性和精度得到了进一步提高。
目前,MPC 已经成为工业控制领域中应用广泛的控制策略之一,在化工、石油、电力、航空航天等领域得到了广泛应用。
同时,MPC 也在不断发展和创新,如与人工智能技术的结合、多变量MPC 等,为工业控制领域的发展带来了新的机遇和挑战。