模型预测控制全面讲解

合集下载

模型预测控制(MPC)

模型预测控制(MPC)

模型预测控制(MPC)预测控制预测控制或称为模型预测控制(MPC)是仅有的成功应用于工业控制中的先进控制方法之一。

各类预测控制算法都有一些共同的特点,归结起来有三个基本特征:(1)预测模型,(2)有限时域滚动优化,(3)反馈校正。

这三步一般由计算机程序在线连续执行。

预测控制是一种基于预测过程模型的控制算法,根据过程的历史信息判断将来的输入和输出。

它强调模型的函数而非模型的结构,因此,状态方程、传递函数甚至阶跃响应或脉冲响应都可作为预测模型。

预测模型能体现系统将来的行为,因此,设计者可以实验不同的控制律用计算机仿真观察系统输出结果。

预测控制是一种最优控制的算法,根据补偿函数或性能函数计算出将来的控制动作。

预测控制的优化过程不是一次离线完成的,是在有限的移动时间间隔内反复在线进行的。

移动的时间间隔称为有限时域,这是与传统的最优控制最大的区别,传统的最优控制是用一个性能函数来判断全局最优化。

对于动态特性变化和存在不确定因素的复杂系统无需在全局范围内判断最优化性能,因此这种滚动优化方法很适用于这样的复杂系统。

预测控制也是一种反馈控制的算法。

如果模型和过程匹配错误,或者是由于系统的不确定因素引起的控制性能问题,预测控制可以补偿误差或根据在线辨识校正模型参数。

虽然预测控制系统能控制各种复杂过程,但由于其本质原因,设计这样一个控制系统非常复杂,要有丰富的经验,这也是预测控制不能预期那样广泛得到应用的主要原因。

预测控制适用于先进过程控制(APC)和监督控制场合,其控制输出作用主要是跟踪设定值的变化。

但预测控制并不能很好地处理调节控制难题。

模型预测控制是一种基于模型的闭环优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程控制中得到广泛的应用。

模型预测控制具有控制效果好、鲁棒性强等优点,可有效地克服过程的不确定性、非线性和关联性,并能方便处理过程被控变量和操纵变量中的各种约束。

预测控制算法种类较多,表现形式多种多样,但都可以用以下三条基本原理加以概括:①模型预测:预测控制的本质是在对过程的未来行为进行预测的基础上,对控制量加以优化,而预测是通过模型来完成的。

控制工程中的模型预测控制技术及应用

控制工程中的模型预测控制技术及应用

控制工程中的模型预测控制技术及应用控制工程是一个重要的领域,它涉及到我们日常生活中的许多产品、设备和系统。

在控制工程中,模型预测控制技术是一种非常重要的工具,它可以用来预测系统的未来行为,并根据预测结果来控制系统的行为,以达到我们想要的目标。

一、什么是模型预测控制技术模型预测控制技术是一种基于数学模型的控制方法,它将系统建模为一个数学模型,并根据模型预测未来的系统行为。

根据预测结果,该技术可以生成一组控制器输出,以实现所需的控制目标。

这种技术广泛应用于各种类型的系统,例如化工过程、电力系统、交通工具和机器人等。

模型预测控制技术有许多不同的实现方式,例如广义预测控制、序列预测控制和约束优化预测控制等。

这些实现方式都基于不同的数学模型和控制算法,但它们都具有相同的核心思想:根据模型预测未来的系统行为,并根据预测结果来决定控制器的输出。

二、模型预测控制技术的应用模型预测控制技术在很多领域都得到了广泛的应用,以下是其中几个应用案例:1. 化工过程控制模型预测控制技术在化工过程中得到了广泛应用。

它可以用来控制反应器中的化学反应,并确保反应物以正确的比例混合。

这种技术还可以用于控制传送带上的材料,以确保材料以正确的速度和比例传送。

2. 电力系统控制模型预测控制技术在电力系统中也得到了广泛应用。

它可以用来调节发电机的输出,以确保电网的稳定运行。

这种技术还可以用于控制供电网络中的电流和电压,以确保电力系统的正常运行。

3. 交通工具控制模型预测控制技术在交通工具中也得到了广泛应用。

例如,可以将该技术用于汽车的自动驾驶系统中,以实现更加精确的路线跟踪和避免与其他车辆的碰撞。

4. 机器人控制模型预测控制技术还可以用于机器人的控制。

例如,可以将该技术用于机器人的运动控制中,以确保机器人沿着正确的路径移动,并避免与其他对象的碰撞。

三、模型预测控制技术的优缺点虽然模型预测控制技术有很多优点,但它也存在一些缺点。

以下是其中的一些:优点:1. 预测未来行为:模型预测控制技术可以预测系统未来的行为,从而能够做出更好的控制决策。

模型预测控制

模型预测控制
极小化性能指标,即令
,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。

分布式控制系统中的模型预测控制技术研究

分布式控制系统中的模型预测控制技术研究

分布式控制系统中的模型预测控制技术研究随着现代工业技术的不断发展,分布式控制系统在工业生产中扮演着越来越重要的角色。

尤其在大型工业设备或生产线中,采用分布式控制系统能够实现设备间的协同控制以及数据共享,提高生产效率和质量。

而模型预测控制技术(MPC)则是分布式控制系统中最为重要的控制策略之一。

在本文中,将对MPC技术进行详细介绍和研究。

一、什么是模型预测控制技术模型预测控制技术是一种基于动态模型的控制策略,通过对控制系统的建模和预测,获取未来时刻的状态变量信息,并根据控制目标和约束条件来制定合适的控制策略。

相比传统的PID控制方法,MPC技术能够在更为复杂的控制环境下保持优越的控制性能,如对非线性和时变系统的控制具有很好的适应性。

在分布式控制系统中,MPC技术能够协调多个节点之间的控制并实现全局控制。

通过建立多节点之间的动态模型,并利用模型预测来协调各节点之间的控制策略,从而实现对整个系统的精确控制和优化。

二、MPC技术在分布式控制系统中的应用在分布式控制系统中,MPC技术可以应用于各个领域。

如在制造业中,通过模型预测控制技术对生产线进行协调控制,可以提高生产效率、减少资源浪费和降低产品缺陷率。

在能源领域中,通过对电力系统进行建模和模型预测,来实现对复杂电网的稳定控制和动态调度。

在交通运输领域中,模型预测控制技术可以应用于车辆控制、交通信号灯控制和智能交通系统等方面。

在分布式控制系统中,MPC技术主要分为两种形式:集中控制和分散控制。

在集中控制中,所有节点的控制信息都由中央节点来处理和计算,然后再将控制指令下发到各个节点。

而在分散控制中,各个节点独立地计算控制信息和控制指令,并相互协作达成全局控制。

两种方式各有优缺点,具体采用哪种形式需要根据具体分布式控制系统的实际情况来决定。

三、MPC技术的优劣势MPC技术的优势在于可以对复杂的动态系统进行精确的建模和控制,并能够保证控制效果的最优化。

另外,该技术还能适应非线性和时变系统的控制,并具有较好的鲁棒性。

模型预测控制实例-概念解析以及定义

模型预测控制实例-概念解析以及定义

模型预测控制实例-概述说明以及解释1.引言1.1 概述概述:模型预测控制(MPC)是一种先进的控制方法,它利用系统动态模型进行预测,并根据预测结果来实现对系统的控制。

MPC在控制系统领域内具有广泛的应用,其能够应用于多种复杂的工业控制问题,并取得了显著的成果。

本文将对MPC的基本原理、工业应用以及其优势和局限性进行深入探讨,旨在为读者提供全面的理解和认识MPC的重要性。

概述部分的内容1.2 文章结构文章结构部分的内容可以按照如下方式编写:文章结构部分应该简要介绍整篇文章的结构和各个部分的内容安排,包括引言、正文和结论部分。

同时,可以说明每一部分内容的重要性,并为读者展示整篇文章的逻辑和连贯性。

此外,也可以简要说明每一部分内容的主题和目的,以便读者在阅读全文时能够有所预期。

在文章结构部分,可以提及每个部分的主要内容和目标,以及整篇文章的导向和主题。

这部分内容应该尽量简洁明了,避免过多的细节,但要呈现出整篇文章的框架和逻辑安排。

1.3 目的本文的主要目的是通过对模型预测控制的介绍和分析,让读者对这一控制方法有更深入的理解。

我们将对模型预测控制的原理、应用和优势进行详细阐述,帮助读者了解模型预测控制在工业生产中的重要性和实际应用情况。

同时,我们也将探讨模型预测控制的局限性和可能的改进方向,以期为相关领域的研究和应用提供一定的启发和参考。

通过本文的阅读,读者可以对模型预测控制有更全面的认识,并对其在工程实践中的应用具有更深刻的认识和理解。

2.正文2.1 模型预测控制简介模型预测控制(Model Predictive Control, MPC)是一种应用于动态系统的先进控制策略。

它通过建立系统的数学模型,预测未来一段时间内的系统行为,并根据这些预测结果来实施控制动作,以实现对系统的最优控制。

MPC将系统的动态模型与性能指标相结合,能够在有限的控制时域内计算出最优的控制策略,因此被广泛应用于工业控制领域。

MPC的核心思想是通过对系统的动态模型进行预测,计算未来一段时间内系统状态的变化情况,然后根据这些预测结果来制定出最优的控制策略。

模型预测控制讲解

模型预测控制讲解
? 系统的线性性
– 则保证了可用线性系统的迭加性等
2019/6/9
第五讲 模型预测控制
16
计算机控制系统理论与应用
5-2 DMC的预测模型(1)
----Coperight by SEC----
t/T 12
计算机控制系统理论与应用
5-1 反馈校正(1)
----Coperight by SEC----
? 每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
----Coperight by SEC----
2019/6/9
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
模型预测控制的发展背景(1)
? 现代控制理论及应用的发展与特点
– 要求 ? 精确的模型 ? 最优的性能指标 ? 系统的设计方法
– 应用 ? 航天、航空 ? 军事等领域
4
计算机控制系统理论与应用
预测控制的特点(1)
----Coperight by SEC----
? 建模方便,不需要深入了解过程内部机理 ? 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 ? 滚动的优化策略,较好的动态控制效果 ? 不增加理论困难,可推广到有约束条件、
大纯滞后、非最小相位及非线性等过程 ? 是一种计算机优化控制算法
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)

模型预测控制全面讲解..pdf

模型预测控制全面讲解..pdf
有限脉冲响应(Finite Impulse Response,FIR)
hT={h1,h2,…,hN} 可完全描述系统的动态特性
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图第节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化

模型预测控制

模型预测控制

专题1作业
(1)简要介绍一下模型预测控制的原理、模型预测控制与基础PID控制回路的闭环实现框图;动态矩阵控制采用什么内部模型?
●模型预测控制原理:模型预测控制不仅利用当前和过去的偏差值,而且还利用预测模型
来预测过程未来的偏差值。

通过滚动优化来确定当前的最优控制策略,使未来一段时间内被控变量与期望值偏差最小。

系统输出的反馈校正用于补偿模型预测误差和其他扰动。

●闭环实现框图:
图1模型预测控制框图
图2基础PID控制框图
●动态矩阵控制内部模型:主要采用基于被控对象单位阶跃响应非参数模型。

(2)软测量包括哪几种类型?变结构控制原理是什么?什么是完整性控制方法?
●软测量:根据软测量模型的建模机制可分为以下几类:
⏹机理建模(白箱建模)
⏹数据驱动建模(黑箱建模)
⏹混合建模
⏹非线性动态软测量建模
●变结构控制原理:在动态控制中,根据系统当时状态,以跃变方式有目的地不断变换,
迫使系统按预定的“滑动模态”的状态轨迹运动。

变结构是通过切换函数实现的。

当系统的状态向量所决定的切换函数值,随着它的运动达到某特定值时,系统中一种结构(运动微分方程)转变成另一种结构。

其系统结构图如下所示。

图3变结构控制系统框图
●完整性控制方法:完整性控制是容错控制的研究热点,所谓完整性是指当系统中某些部
件失效后,系统仍能够稳定工作的特性。

基于该特性的控制方法即为完整性控制方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
H
T 2
Q
第三节 模型算法控制(MAC)
参考轨迹模型 yr
yd
yr(k+i)
优化算法 u 对象
minJ
y
模型 ym
yP 预测 yP(k+i)
ym(k+i)
e
模型算法控制原理示意图
第四节 动态矩阵控制(DMC)
动态矩阵控制(Dynamic Matrix Control): 基于阶跃响应模型的预测控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量
最优控制率为
U2(k)
H
T 2
QH
2
R
1
H
T 2
Q
Yr
(k)
H1U1(k )
βe(k )
Q diagq1 q2 qP R diagr1 r2 rM
现时刻k的最优控制作用
U2 (k) DT Yr (k) H1U1(k) βe(k)
DT 1
0
0 1M
H
T 2
QH
2
R
过去 yd
未来
y(k)
yr(k)
yP(k)
u(t)
k k+1
k+P
t/T
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
根据设定值和当前过程输出测量值确定参考轨迹 最广泛使用的参考轨迹为一阶指数变化形式
yr (k j) j y(k) (1 j ) yd j 1, 2, , P
Ts
e T
局部优化
不是采用一个不变的全局最优目标,而是采用滚动式的 有限时域优化策略。在每一采样时刻,根据该时刻的优 化性能指标,求解该时刻起有限时段的最优控制率
在线滚动
计算得到的控制作用序列也只有当前值是实际执行的, 在下一个采样时刻又重新求取最优控制率
第二节 预测控制的基本原理 二. 滚动优化(在线优化)
1
0 12
t/T
t/T
y u
4.6 6 5 2
3 1.6
0 12
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y 7.6 8.5
6.5
4.6 6 3.8
5
3 2.3 3 2.5 1.5 0.8 0 1 2 34 5 6 u
2 1 u(0) u(1)
y(1) h1u(0) y(2) h2u(0) h1u(1) y(3) h3u(0) h2u(1) y(4) h4u(0) h3u(1) y(5) h5u(0) h4u(1)
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图
第三节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
u(k N 1) h1
u(k N 2)
h2
u(k N M )
u(k N M 1)
u(k M 2) u(k M 3) u(k P N ) hN
第三节 模型算法控制(MAC) 一. 预测模型
Ym (k) H1U1(k) H2U2 (k)
)
Yr
(k
)T
QYP
(k
)
Yr
(k
)
U
T 2
(k
)
RU
2
(k
)
代入YP(k)
J H1U1(k) H2U2 (k) βe(k) Yr (k)T QH1U1(k) H2U2 (k) βe(k) Yr (k)
U
T 2
(k
)
RU
2
(k
)
求解最优控制率 J 0
U2 (k)
第三节 模型算法控制(MAC) 四. 最优控制
h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) j y(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
第四章
模型预测控制
内容要点
1 预测控制的发展 2 预测控制的基本原理 3 模型算法控制(MAC) 4 动态矩阵控制(DMC) 5 状态反馈预测控制(SFPC) 6 多变量协调预测控制
第一节 预测控制的发展
现代控制理论的发展与特点 特点 状态空间分析法 最优性能指标设计 应用 航天、航空等军事领域 要求 精确的数学模型
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一. 预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
u(k i) u(k M 1) i M , M 1, , P 1
M 称为控制时域,M < P
第三节 模型算法控制(MAC) 一. 预测模型
未来输出值的P步预测值
N
ym (k j) hiu(k j i) j 1, 2, , M 1 i 1
jM 1
N
ym (k j) hiu(k M 1) hiu(k j i)
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,RihN
0
H1
hN 1
hN
0
hN
h1
h2
h2
h3
H2
hM
hP1 P( N 1)
hM 1
hP
h1
hM 1
hM
hP1
U1(k) u(k N 1)
u(k N 2)
u(k
1)
T 1( N 1)
U2 (k) u(k)
u(k 1)
u(k
M
1)
T 1M
0 hPM 2
1978年,Richalet 、Mehra提出了基于脉冲响应的模型预 测启发控制(Model Predictive Heuristic Control , MPHC),后转化为模型算法控制(Model Algorithmic Control,MAC)
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)
YP (k) Ym (k) βe(k)
e(k) y(k) ym(k)
β β1 β2 βP T
YP (k) yP (k 1)
yP (k 2)
yP
(k
P)
T 1P
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
预测控制并不是要求输出迅速跟踪设定值,而 是使输出按一定轨迹缓慢地跟踪设定值
第二节 预测控制的基本原理 一. 预测模型(内部模型)
基于模型的预测示意图
过去
未来
3
y
4
1
u
2
k 时刻
1—控制策略Ⅰ 2—控制策略Ⅱ
3—对应于控制策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
第二节 预测控制的基本原理 二. 滚动优化(在线优化)
最优控制
通过使某一性能指标最优化来确定其未来的控制作用的
1973年,DMC应用于美国壳牌石油公司的生产 装臵上
1979年,Cutler等在美国化工学会年会上首次 介绍了DMC算法
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
渐近稳定线性被控对象的单位阶跃响应曲线
N
t/T
y(k) hiu(k i)
i 1
y(t) 0 g()u(t )d
t/T
第三节 模型算法控制(MAC) 一. 预测模型
采用脉冲响应模型对未来时刻输出进行预测
N
ym (k j) hiu(k j i) i 1
相关文档
最新文档