a大学物理作业5-磁感应强度 毕萨定律答案答案-1

合集下载

II1_电磁学+详细解答

II1_电磁学+详细解答

磁感应强度、毕-萨定律1. 有一个圆形回路1及一个正方形回路2,圆的直径和正方形的边长相等。

二者中通有大小相等的电流,它们在各自中心产生的磁感应强度的大小之比21/B B 为 (A )0.90 (B )1.00 (C )1.11 (D )1.22 C 012I B Rμ=,()0204cos 45cos1354IB RI R μπμπ=⋅︒-︒=12 1.11B B ==2. 如图,边长为a 的正方形的四个角上固定有四个电量均为q 的点电荷。

此正方形以角速度ω绕过AC 轴旋转时,在中心O 点产生的磁感应强度大小为1B ;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度大小为2B ,则1B 与2B 间的关系为 (A )1B =2B (B )1B =22B(C )1B =212B (D )1B =412BC 一个电荷绕轴转动相对于电流为:12I q ωπ=所以00122I IB b b μμ==001422I I B b b μμ==1212B B =4.在xy 平面内有两根互相绝缘、分别通有电流I 3和I 的长直导线,设两导线互相垂直(如图),则在xy 平面内磁感应强度为零的点的轨迹方程为 。

解:经分析,在xy 平面内磁感应强度为零的点的轨迹应该在I 、III 象限, 无限长载流直导线所产生的磁感应强度公式为:02IB aμπ= 所以有0022Ix yμμππ=, x y 33=5.均匀带电直线AB ,电荷线密度为λ,绕垂直于直线的轴O 以角速度ω匀速转动(线的形状不变,O 点在AB 延长线上),求: (1)O 点的磁感应强度B , (2)磁矩m p ,(3)若a >>b ,求B 及m p。

解:(1)对dr r r +~一段,电荷dr dq λ=,旋转形成圆电流,则dr dq dI πλωπω22==, 它在O 点的磁感应强度 rdr r dI dB πλωμμ4200==aba r dr dB Bb a a +===⎰⎰+ln 4400πλωμπλωμ(2)dr r dI r dp m 2221λωπ== 6/])[(21332a b a dr r dp p ba am m -+===⎰⎰+λωλω (3)若b a >>,则 aba b a ≈+ln, a q a b B πωμλπωμ4400==过渡到点电荷的情况,B 的方向在λ>0时为垂直圈面向后,同理在a>>b 时)31()(33aba b a +≈+,则 23623a q a b a p m ωλω=⋅= 也与点电荷运动后的磁矩相同。

06.磁感应强度 毕奥-萨伐尔定律答案

06.磁感应强度 毕奥-萨伐尔定律答案

《大学物理》练习题 No.6 磁感应强度 毕奥-萨伐尔定律班级 ___________ 学号 ___________ 姓名 ______________成绩 ________说明:字母为黑体者表示矢量一、选择题1. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:[ C ] (A) 0,021==B B ; (B) lIu B B π02122,0==;(C) 0,22201==B lIu B π; (D) lIu B lIu B ππ020122,22==。

2. 载流圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1、O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21a :a 为: [ D ] (A) 1:1 (B)1:2π (C)4:2π (D) 8:2π3. 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于: [ C ](A)RI πμ20. (B)RI 40μ.(C))11(20πμ-RI . (D))11(40πμ+RI .4. 通有电流I 的无限长直导线有如图三中情况,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为:[ D ] (A )B P >B Q >B O (B) B Q >B P >B O(C) B Q >B O >B P (D) B O >B Q >B PI二、填空题1.平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 面积 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 电流 方向时,大拇指的方向代表 n 平面线圈的法向 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I . 如果两个半圆共面,如图.a 所示,圆心O 点的磁感强度 B 0的大小为 )11(4120R R I+μ,方向为 向外.3. 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = 0 .三、计算题宽为a 的无限长铜片,沿长度方向均匀流有电流I ,如图,P 点与铜片共面且距铜片右边为b ,求P 处磁场。

BS定律磁场中的高斯定理答案

BS定律磁场中的高斯定理答案

1 / 3《大学物理》练习题 No.5 磁感应强度 毕奥-萨伐尔定律班级 ___________ 学号 ___________ 姓名 ______________成绩 ________说明:字母为黑体者表示矢量一、选择题1. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:[ C ] (A) 0,021==B B ; (B) lIu B B π02122,0==;(C) 0,22201==B lIu B π; (D) l I u B l I u B ππ020122,22==。

2. 载流圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1、O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21a :a 为: [ D ] (A) 1:1 (B)1:2π (C) 4:2π3. 如图所示,无限长直导线在P处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:[ C ](A) Iμ0. (B) RI 40μ.(C) (D))11(40πμ+R I . 4. 通有电流I 的无限长直导线有如图三中情况,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为:[ D ] (A )B P >B Q >B O (B) B Q >B P >B O(C) B Q >B O >B P (D) B O >B Q >B PI2 / 35. 在磁感应强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α,则通过半球面S 的磁通量为(选如图法线方向为正向) [ D ] (A)B r 2π;(B) B r 22π;(C) απsin 2B r - ; (D) απcos 2B r -。

3毕萨定律(大学物理 - 磁场部分)

3毕萨定律(大学物理 - 磁场部分)

By 0
B B B
2 x 2 y
Idl
R
I
o
Bx B dBx
dB sin
R Id l ' sin r 2R 0 IR 2R 0 I R dl B dl 3 0 2 4r 0 4r r
dB dB y r dB x x x dBx ' P dBy ' dB'
2
l
2
dB P
a
B dB

2 1
0 I sin d 4a
Idl r l o
x
0 I cos1 cos 2 4a
1
0 I B cos1 cos 2 4a
讨论
1.无限长载流直导线的磁场:
I
a
P
1 0;
2
0 I B 2a
第三节 毕奥--萨伐尔 定律
一.毕萨定律 研究一段电流元产生磁感应强度的规 律。 由实验发现一段长为 dl 通有电流为 I 的 电流元产生的磁感应强度:
Idl sin dB 2 r
Idl

r
P
Idl sin dB k 2 r 7 -1 k 10 Tm A
真空中的磁导率
0 4 107 T m A-1
0 IR 2R B dl 3 0 4r
0 IR 2R 3 4r 2 0 IR 3 2r 2 0 IR
2x R
2
Idl
R
I
o
dB dB y r dB x x x P
2 3/2

B
2x R
2
0 IR
2 2 3/2

《大学物理》磁学习题及答案

《大学物理》磁学习题及答案

AI I一、选择题1.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B (C) -πr 2B sin α (D) -πr 2B cos α 2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度(A)(B) (C) (D) 以上均不对3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。

若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外 (C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图)。

若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用、和表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然,但≠ 06.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。

大学物理练习题 磁感应强度 毕奥—萨伐尔定律

大学物理练习题  磁感应强度  毕奥—萨伐尔定律
2 2 μ 0I πl
2 2 μ 0I 。 πl
B2 = 0
l
I
l
b
B2
I
I
B1
2 2 μ 0I 2 2 μ 0I , B2 = 。 πl πl
c
d
(A) B = 3 3μ 0 NI (2πa ) 。 ( C) B = 0 。
5. 一匝数为 N 的正三角形线圈边长为 a,通有电流为 I,则中心处的磁感应强度为 (B) B = 3μ 0 NI (2πa ) 。 (D) B = 9 μ 0 NI (2πa ) 。
v
v
2
b
c
y
-a
· z
O
a ·
x
9. 如图所示,xy 平面内有两相距为 L 的无限长直载流导线, 电流的大小相等,方向相同且平行于 x 轴,距坐标原点均为 v a, z 轴上有一点 P 距两电流均为 2a, 则 P 点的磁感应强度 B (A) 大小为 3μ 0 I (4πa ) ,方向沿 z 轴正向。 (B) 大小为 μ 0 I (4πa ) ,方向沿 z 轴正向。 (C) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴正向。 (D) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴负向。 二、填空题 1. 电流元 Idl 在磁场中某处沿直角坐标系的 x 轴方向放置时不 受力,把电流元转到 y 轴正方向时受到的力沿 z 轴反方向,该处 磁感应强度指向 方向。 2. 一长直载流导线,沿空间直角坐标 Oy 轴放置,电流沿 y 轴正 磁感应强度的大小为 ,方向为 。
B B B B B
4. 边长 l 为的正方形线圈,分别用图示的两种方式通以电流 I(其中 ab,cd 与正方形共面), 在这两种情况下,线圈在其中产生的磁感应强度大小分别为: (A) B1 = 0 , B2 = 0 。 a (B) B1 = 0 , B 2 = ( C) B 1 = (D) B 1 =

长安大学大物作业5稳恒磁场一参考答案

长安大学大物作业5稳恒磁场一参考答案

长安大学大物作业5稳恒磁场一参考答案稳恒磁场一参考答案一、 1 d2。

d3。

b4。

d5。

D解:1.我们知道,如图,一段载流导线i在p点产生的磁感应强度大小B2i1i?0i4?a(cos?1?cos?2)21i如右图,各段导线的电流强度可计算出,实际上,只要通过简单地计算,就可看出选项为d分段计算结果如下:(设正三角形边长为l)?①导线1在o的磁感应强度方向b1,大小为A.1.p23i?o13i3ib1??0i4?a(cos?1?cos?2)??0i4?33l(cos0?COS2)?3.0i4?l、方向是垂直的,纸张朝内?②导线2在o的磁感应强度方向b2,大小为b2??0i4?a(cos?1?cos?2)??0i4?36l(cos56×cos?)?(2?3)3? 0i4?l、垂直纸面向内?③导线3在o的磁感应强度方向b3,分为三段之和0左:B左?4.236i3(cosl16?cos56?)方向是垂直的,纸张表面是向外的0右:b右?4?136136i3(cosl16??cos56?),方向垂直纸面向内0:B?4.i3(cosl16??cos56?)方向是垂直的,纸张朝内相加可得b3?00irr?R2.r22。

正如我们在例子中提到的,我们可以得到B??0ir?r2?r3.循环电流会在任何一点产生磁感应强度,那么回路B的任何一点?0,但它遵循L的循环积分为0,因为根据安培环路定理,穿过l的电流强度为0.4.选项a错误,B在磁感应线密集的地方较大;B选项是错误的。

安培环路定理只能找到无限长直电流周围磁场,因为只有那样才可以找到一个环路l,使得l和磁感应线重合,解决怎么搞的?Bdl??0I中的点乘符号。

当满足电流的有限长度时?Bdl??0I,但它的磁场ll分布并不很规则,处理不掉点乘符号,无法计算出b=?的这种结果;选项c前半部分正确,后半部分错误,根据毕-萨定律,电流元在其延长线上一点的磁感应强度为0.5.磁通量可看作通过一个面磁感应线条数的多少,那么画图就可看出通过半球面的磁通量它应该等于通过圆盘开口处的磁通量2、1.3.14?10? 3t2。

毕奥—萨伐尔定律习题及答案

毕奥—萨伐尔定律习题及答案

毕奥—萨伐尔定律一. 选择题1. 关于试验线圈,以下说法正确的是(A) 试验线圈是电流极小的线圈.(B) 试验线圈是线圈所围面积极小的线圈.(C) 试验线圈是电流足够小,以至于它不影响产生原磁场的电流分布,从而不影响原磁场;同时线圈所围面积足够小,以至于它所处的位置真正代表一点的线圈.(D) 试验线圈是电流极小,线圈所围面积极小的线圈.2. 关于平面线圈的磁矩,以下说法错误的是 (A) 平面线圈的磁矩是一标量,其大小为P m =IS ;(B) 平面线圈的磁矩P m =Is n . 其中I 为线圈的电流, S 为线圈的所围面积, n .为线圈平面的法向单位矢量,它与电流I 成右手螺旋;(C) 平面线圈的磁矩P m 是一个矢量, 其大小为P m =IS , 其方向与电流I 成右手螺旋; (D) 单匝平面线圈的磁矩为P m =Is n ,N 匝面积相同且紧缠在一起的平面线圈的磁矩为P m =NIS n ;3. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 得空间某处磁感应强度大小的定义式为B=M max /p m ,其中p m 为试验线圈的磁矩, M max 为试验线圈在该处所受的最大磁力矩.故可以说(A) 空间某处磁感应强度的大小只与试验线圈在该处所受最大磁力矩M max 成正比. M max 越大,该处磁感应强度B 越大.(B) 空间某处磁感应强度的大小只与试验线圈的磁矩p m 成反比. p m 越大,该处磁感应强度B 越小.(C) 空间某处磁感应强度的大小既与试验线圈在该处所受的最大磁力矩M max 成正比,又与试验线圈的磁矩p m 成反比.(D) 空间某处磁感应强度时磁场本身所固有的,不以试验线圈的磁矩p m 和试验线圈在该处所受最大磁力矩M max 为转移.4. 两无限长载流导线,如图9.1放置,则坐标原点的磁感应强度的大小和方向分别为: (A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角.(B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角. (D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角.5. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 空间某处磁感应强度的方向为(A) 试验线圈磁矩P m 的方向.(B) 试验线圈在该处所受最大磁力矩M max 时,磁力矩M 的方向.(A) 试验线圈在该处所受最大磁力矩M max 时,试验线圈磁矩P m 的方向. (D) 试验线圈在该处所受磁力矩为零时,试验线圈磁矩P m 的方向.(E) 试验线圈在该处所受磁力矩为零且处于稳定平衡时,试验线圈磁矩P m 的方向.二.填空题1. 对于位于坐标原点,方向沿x 轴正向的电流元Idl ,它图9.2图9.1在x 轴上a 点, y 轴上b 点, z 轴上c 点(a ,b ,c 距原点O 均为r )产生磁感应强度的大小分别为B a , B b , B c2. 宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图9.2所示,中心轴线上方一点P 的磁感应强度的方向沿 (填x ,或y ,或z )轴 (填正,或负)方向.3. 氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .三.计算题1. 如图9.3,真空中稳恒电流2I 从正无穷远沿z 轴流入直导线,再沿z 轴负向沿另一直导线流向无穷远,中间流过两个半径分别为R 1 、R 2,且相互垂直的同心半圆形导线,两半圆导线间由沿直径的直导线连接.两支路电流均为I .求圆心O 的磁感应强度B 的大小和方向.2. 如图9.4, 将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的园形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.毕奥—萨伐尔定律一.选择题 C A D B E 二.填空题1 0, μ0I d l /(4πr 2), μ0I d l /(4πr 2).2 x , 正.3 ev /(2πr ),μ0ev /(4πr 2), evr /2.三.计算题1. 流进、流出的两直线电流的延长线过O 点,在O 点产生的磁场为 B 1=B 2=0 大、小半圆电流在O 点产生的磁场为B 3=μ0I /4R 1 B 4=μ0I /4R 2故O 点磁场为 B =( B 32+ B 32)1/2=(μ0I /4)( 1/R 22+1/R 12)1/2与x 轴的夹角为 ϕ=π/2+arctan(R 1/R 2),2. 在距圆心r (R 1≤r ≤R 2)处取细圆环,宽d r 匝数为 d N =n d r =N d r /(R 2-R 1)d B =μ0I d N /(2r )=N μ0I d r /[2(R 2-R 1)r ]()[]{}⎰-=211202R R r R R NIdr B μ= μ0NI ln(R 2/R 1)/[2(R 2-R 1)]图9.4毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题1. 电流元I d l 位于直角坐标系原点,电流沿z 轴正方向,空间点P ( x , y , z )磁感应强度d B 沿x 轴的分量是:(A) 0.(B) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 )3/2 .(C) -(μ0 / 4π)I x d l / ( x 2 + y 2 +z 2 )3/2 . (D) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 ) .2. 无限长载流导线,弯成如图10.1所示的形状,其中ABCD 段在xOy 平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于Oz 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] . (B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .3. 长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图10.2),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 .4. 在磁感应强度为B 的匀强磁场中, 有一如图10.3所示的三棱柱, 取表面的法线均向外,设过面AA 'CO , 面B 'BOC ,面AA 'B 'B 的磁通量为Φm1,Φ m 2,Φ m 3,则(A) Φ m1=0, Φ m2=Ebc , Φ m3=-Ebc . (B) Φ m1=-Eac , Φ m2=0, Φ m3=Eac .(C) Φ m1=-Eac , Φ m2=-Ec 22b a +, Φ m3=-Ebc . (D) Φ m1=Eac , Φ m2=Ec 22b a +, Φ m3=Ebc . 5. 如图10.4所示,xy 平面内有两相距为L 的无限长直载流导线,电流的大小相等,方向相同且平行于x 轴,距坐标原点均为a ,Z 轴上有一点P 距两电流均为2a ,则P 点的磁感应强度B(A) 大小为3μ0I /(4πa ),方向沿z 轴正向. (B) 大小为μ0I /(4πa ),方向沿z 轴正向. (C) 大小为3μ0I /(4πa ),方向沿y 轴正向. (D) 大小为3μ0I /(4πa ),方向沿y 轴负向.二.填空题图10.1图10.2图10.4图10.31. 一带正电荷q 的粒子以速率v 从x 负方向飞过来向x 正方向飞去,当它经过坐标原点时, 在x 轴上的x 0点处的磁感应强度矢量表达式为B = ,在y 轴上的y 0处的磁感应强度矢量表达式为 .2. 如图10.5真空中稳恒电流I 流过两个半径分别为R 1 、R 2的共面同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入流出,则圆心O 点磁感应强度B 0 的大小为 ,方向为 ;3. 在真空中,电流由长直导线1沿半径方向经a 点流入一电阻均匀分布的圆环,再由 b 点沿切向流出,经长直导线2 返回电源(如图10.6),已知直导线上的电流强度为I ,90︒,则圆心O 点处的磁感应强度的大小B =.三.计算题1. 一半径R = 1.0cm 的无限长1/4I = 10.0A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感应强度.2. 如图10.7,无限长直导线载有电流I , 旁边有一与之共面的长方形平面,长为a ,宽为b ,近边距电流I 为c ,求过此面的磁通量.毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题 B C A B D 二.填空题1. 0,[μ0qv /(4πy 02)]k2. (μ0I /4)( 1/R 2-1/R 1),垂直纸面向外,3. μ0I /(4πR ) 三.计算题1、解:电流截面如图,电流垂直纸面向内,取窄无限长电流元d I =j d l =jR d θ j =I /(2πR/4)=2I /(πR )d I =2I d θ/π d B =μ0d I /(2πR )=μ0I d θ/(π2R ) d B x =d B cos(θ+π/2)=-μ0I sin θd θ/(π2R )d B y =d B sin(θ+π/2)=μ0I cos θd θ/(π2R )()[]⎰-=πππθθμ20sin R d I B x =-μ0I /(π2R ) ()[]⎰=πππθθμ2cos R d I B y=-μ0I /(π2R )B =( B x 2+B y 2)1/2=2μ0I /(π2R )与x 轴夹角 =α225°图10.7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理(2-2)课后作业5答案
磁感应强度 毕-萨定律
一、选择题
1、【A 】
2、【D 】
3、【E 】
4、【D 】
5、【B 】
6、【A 】
7、【D 】
8、【C 】
二、简答题
1、答:因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受力的
方向是不确定的. 2、答:(1) 否,由)4/(d d 30r r l I B π⨯=ϖϖϖμ,l I ϖd 的磁场在它的延长线上的各点磁感强度均为零. (2) a ⊙,b ⊙,c ⊗,d ⊗.
3、答:公式)2/(0R I B π=μ只对忽略导线粗细的理想线电流适用,当a →0, 导线的尺寸不
能忽略. 此电流就不能称为线电流,此公式不适用.
三、计算题
1、解 由题意知,均匀密绕平面线圈等效于通以电流
NI 的载流圆盘,设单位长度线圈匝数为n
r
R N n -= 建立如图坐标,取一半径为x 宽度为d x 的
圆环,其等效电流为:
x r
R NI x j I d d d -== )(2d 2d d 000r R x x
NI x I
B -==μμ
b a
c
d l I ϖd
r
R r R NI r R x x NI B B R r NI ln )(2)(2d d 0000-=-==⎰⎰μμ所以 方向垂直纸面向外.
2、 解:(a )因为长直导线对空间任一点产生的磁感应强度为:
()210cos cos 4θθπμ-=a
I B 对于导线1:01=θ,22πθ=,因此a I B πμ401=
对于导线2:πθθ==21,因此02=B
a
I B B B πμ4021p =
+= 方向垂直纸面向外. (b )因为长直导线对空间任一点产生的磁感应强度为:
()210cos cos 4θθπμ-=a
I B 对于导线1:01=θ,22π
θ=,因此r I a I B πμπμ44001==
,方向垂直纸面向内. 对于导线2:21πθ=,πθ=2,因此r
I a I B πμπμ44002==,方向垂直纸面向内. 半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即
r
I r I B 4221003μμ==,方向垂直纸面向内. 所以,r
I r I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++= (c )P 点到三角形每条边的距离都是
a d 6
3= o 301=θ,o 1502=θ 每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是
()a
I d I B πμπμ23150cos 30cos 400000=-= 故P 点总的磁感应强度大小为 a
I B B πμ29300==方向垂直纸面向内。

相关文档
最新文档