2019年中考数学真题分类训练——专题4:不等式及其应用
2019年中考数学《不等式与不等式组》专题复习试卷(含答案)

2018-2019 学年初三数学专题复习 不等式与不等式组一、单选题1.如图为某餐厅的价目表, 今日每份餐点价格均为价目表价格的九折. 若恂恂今日在此餐厅点了橙汁鸡丁饭后 想再点第二份餐点,且两份餐点的总花费不超过 200 元,则她的第二份餐点最多有几种选择?( )A. 5 2.不等式组 A. 3.不等式 9>-3x 的解集是 A. x>3B. 7C. 9D. 11的解集在数轴上表示正确的是( ) B. ( ) B. x<32C.D.C. x>-32D. x<-3 ⑥x+2>y+3 中,是不等式的有( )个. D. 44.在数学表达式① -3<0 ② 4x+3y>0 ③ x=3 ④ x +xy+y ⑤ A. 1 5.不等式组 A. -1 6.关于 x 的不等式组 A. a>1 B. 2 的所有整数和是( B. 0 ) C. 1 C. 3D. 2的解集为 x>1,则 a 的取值范围是( ) B. a<1 ) C. a+t≥ a ) D. 无法确定 C. a≥1 D. a≤17.若 t>0,那么 a+ t 与 的大小关系是( A. +t> B. a+t> a8.如图,是关于 x 的不等式 2x-a≤-1 的解集,则 a 的取值是(A. 0B. -3C. -2D. -19.不等式 2x+1<8 的最大整数解是( ) A. 4 B. 3 C. 2 D. 1 10.下面说法正确的是( ) A. x=3 是不等式 2x>3 的一个解 C. x=3 是不等式 2x>3 的唯一解 11.不等式组 B. x=3 是不等式 2x>3 的解集 D. x=3 不是不等式 2x>3 的解的解集在数轴上表示正确的是( )A.B.C.D. 12.若“a 是非负数”,则它的数学表达式正确的是 ( A. a>0 B. |a|>0 13.已知 a>b,则下列不等式中,正确的是( ) A. -3a>-3b B. - <C. 3-a>3-b D. a-3>b-3 ) C. a<0 D. a≥014.某品牌电脑的成本为 2400 元,标价为 4200 元,如果商店要以利润率不低于 5%的售价打折销售,最低可打 ( )折出售. A. 6 折 A. a―3<b—3 B. 7 折 ) C. ac2>bc2 D. a2>b2 分,最低的得 3 分,至少有 3 人 B. 3―a<3—b C. 7.5 折 D. 8 折15.如果 a>b,那么下列结论一定正确的是(16.一次测验共出 5 道题,做对一题得一分,已知 26 人的平均分不少于 得 4 分,则得 5 分的有________ 人二、填空题17.请你写出一个满足不等式 2x-1<6 的正整数 x 的值:________. 18.若商品原价为 5 元,如果降价 x%后,仍不低于 4 元,那么 x 的取值为________ 19.若不等式(a﹣3)x>1 的解集为 x< , 则 a 的取值范围是 ________20.若 a,b 均为整数,a+b=﹣2,且 a≥2b,则 有最大值________ 21.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿. 如果分给每位儿童 5 盒牛奶, 那么剩下 18 盒牛奶; 如果分给每位儿童 6 盒牛奶, 那么最后一位儿童分不到 6 盒, 但至少能有 3 盒. 则 这个儿童福利院的儿童最少有________个,最多有________ 个.三、解答题22.解不等式组 请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________; (Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为________.23.解不等式组,并将它的解集在数轴上表示出来.四、计算题24.解不等式组 .25.解不等式组;并写出解集中的整数解.26.解不等式:﹣1>6x.27.解不等式:2(x+1)-3(x+2)<0;28. 解不等式 .五、综合题29. 我们用[a]表示不大于 a 的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于 a 的最小整数, 例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题: (1)[﹣4.5]=________,<3.5>=________. (2)若[x]=2,则 x 的取值范围是________;若<y>=﹣1,则 y 的取值范围是________. (3)已知 x,y 满足方程组 ,求 x,y 的取值范围.30.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:________; (2)解不等式②,得:________; (3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:________.答案解析部分一、单选题 1.【答案】C 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】B 6.【答案】D 7.【答案】A 8.【答案】D 9.【答案】B 10.【答案】A 11.【答案】C 12.【答案】D 13.【答案】D 14.【答案】A 15.【答案】B 16.【答案】22 二、填空题 17.【答案】1,2,3 18.【答案】x≤20 19.【答案】a<3 20.【答案】1 21.【答案】19;21 三、解答题 22.【答案】x<2;x≥﹣1;﹣1≤x<2 23.【答案】解:不等式 不等式 ∴不等式组的解是 的解是 , , 的解是 ,四、计算题 24.【答案】解:解不等式 4(x+1)≤7x+10,得:x≥﹣2, 解不等式 x﹣5< ,得:x< ,则不等式组的解集为:25.【答案】解:解不等式组 解不等式①得:x≤2, 解不等式②得:x> ∴不等式组的解集为: ∴整数解为:1,2. , <x≤2;;26.【答案】解:去分母,得:3x+20﹣2>12x, 移项、合并,得:﹣9x>﹣18, 系数化为 1,得:x<2 27.【答案】解:2(x+1)-3(x+2)<028.【答案】解:去分母得,x+1≥6(x﹣1)﹣8, 去括号得,x+1≥6x﹣6﹣8, 移项得,x﹣6x≥﹣6﹣8﹣1, 合并同类项得,﹣5x≥﹣15. 系数化为 1,得 x≤3. 五、综合题 29.【答案】(1)﹣5;4 (2)2≤x<3;﹣2≤y<﹣1 (3)解:解方程组得: ,∴x,y 的取值范围分别为﹣1≤x<0,2≤y<3. 30.【答案】(1)x<3 (2)x≥﹣4 (3) (4)﹣4≤x<3。
2019年中考数学真题分类训练——专题四:不等式及其应用

2019年中考数学真题分类训练——专题四:不等式及其应用一、选择题1.(2019无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A.10 B.9 C.8 D.7【答案】B2.(2019宁波)不等式x的解为A.x<1 B.x<﹣1C.x>1 D.x>﹣1【答案】A3.(2019重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为A.13 B.14 C.15 D.16【答案】C4.(2019舟山)已知四个实数a,b,c,d,若a>b,c>d,则A.a+c>b+d B.a–c>b–dC.ac>bd D.【答案】A5.(2019绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B 种玩具的数量.则小明的购买方案有A.5种B.4种C.3种D.2种【答案】C6.(2019重庆A卷)若关于x的一元一次不等式组的解集是xa,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为A.0 B.1 C.4 D.6【答案】B7.(2019呼和浩特)若不等式-1≤2-x的解集中x的每一个值,都能使关于x 的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是A.m>- B.m<- C.m<- D.m>-【答案】C8.(2019常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<14【答案】B9.(2019德州)不等式组的所有非负整数解的和是A.B.C.D.【答案】A10.(2019聊城)若不等式组无解,则的取值范围为A.B.C.D.【答案】A11.(2019南充)关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为A.-5<a<-3 B.-5≤a<-3 C.-5<a≤-3 D.-5≤a≤-3【答案】C12.(2019云南)若关于x的不等式组的解集是x>a,则a的取值范围是A.a<2 B.a≤2 C.a>2 D.a≥2【答案】D13.(2019宿迁)不等式的非负整数解有A.1个B.2个C.3个D.4个【答案】D14.(2019山西)不等式组的解集是A.x>4 B.x>-1 C.-1<x<4 D.x<-1【答案】A15.(2019威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是A.B.C.D.【答案】D16.(2019滨州)已知点关于原点对称的点在第四象限,则的取值范围在数轴上表示正确的是A.B.C.D.【答案】C17.(2019宁波)不等式的解为A.B.C.D.【答案】A18.(2019桂林)如果a>b,c<0,那么下列不等式成立的是A.a+c>b B.a+c>b-cC.ac-1>bc-1 D.a(c-1)<b(c-1)【答案】D19.(2019广安)若,下列不等式不一定成立的是A.B.C.D.【答案】D20.(2019河北)语句“x的与x的和不超过5”可以表示为A. +x≤5 B. +x≥5 C.≤5 D. +x=5【答案】A二、填空题21.(2019荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n-0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x-1)=6,则实数x的取值范围是__________.【答案】13≤x<1522.(2019温州)不等式组的解为__________.【答案】1<x≤923.(2019甘肃)不等式组的最小整数解是__________.【答案】024.(2019宜宾)若关于x的不等式组有且只有两个整数解,则m的取值范围是__________.【答案】-2≤m<125.(2019绍兴)不等式3x﹣2≥4的解为__________.【答案】x≥226.(2019鄂州)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是__________.【答案】m≤-2(2019株洲)若a为有理数,且2-a的值大于1,则a的取值范围为__________.27.【答案】a<1且a为有理数28.(2019金华)不等式3x﹣6≤9的解是__________.【答案】x≤529.(2019天津)解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得__________;(2)解不等式②,得__________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为__________.【答案】(1)x≥-2.(2)x≤1.(3)(4)-2≤x≤1.三、解不等式30.(2019淄博)解不等式.解:将不等式,两边同乘以2得,x-5+2>2x-6,解得x<3.31.(2019北京)解不等式组:.解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.32.(2019黄冈)解不等式组.解:,解①得:x>-1,解②得:x≤2,则不等式组的解集是:-1<x≤2.33.(2019江西)解不等式组:并在数轴上表示它的解集.解:,解①得:x>-2,解②得:x≤-1,。
2019年中考数学专题:不等式与不等式组及答案

2019年中考数学专题:不等式与不等式组、选择题4.小明家离学校1600米,一天早晨由于有事耽误,结果吃完饭时只差15分钟就上课了 •忙中出错,出门时又忘了带书包,结果回到家又取书包共用去 3分钟,只 好乘公共汽车•公共汽车的速度是 36千米/时,汽车行驶了 1分30秒时又发生堵车,他等了半分钟后,车还没走,于是下车又开始步行•问:小明6.不等式组的解集在数轴上表示为(7.不等式2x-1< 4x+的自然数解的个数是(9. 东营市出租车的收费标准是:起步价8元(即行驶距离不超过 3 km 都需付8元车费),超过3 km 以后,每增加1 km,加收1.5元(不足1 km 按1 km 计).某人从甲地到乙地经过的路程是x km,出租车费用为15.5元,那么x的最大值是()10. ______ 叫做一元一次不等式组; __________ 叫做一元一次不等式组的解集. 11. 若关于x 的不等式3m+x > 5的解集是x > 2,贝U m 的值是 ___________ 12. 用不等式表示 “与1的和为正数”: _________ 。
13. 东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分•某校足球队共比赛 11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则1.若x v- 5,则下列不等式成立的是( )2 2A. x >- 5xB.5x2C. v- 5x2.不等式4 - 3x > 2-6的非负整数解有()A. 1个B.个C.个2D. xc- 5xD. 个x=3,则a 的取值范围是(A. O v a v 2B. a v 2C. T ca 2D. a <2步行速度至少 是()时,才不至于迟到.A. 60米/分B. 70米/分 5.关于x 的一元二次方程 x 2+4x+k=0有实数解,则C. 80米/分D. 90米/分k 的取值范围是(A. k >4B. k <4C. k > 4D. k=4A. B. -1012 3C.-1 0D.A. 0B.1 8.—元二次方程 疋—达亠进-右总有实数根,则C. 2 m 应满足的条件是:无数A. m > 1B. m=1C. m v 1D. m <1A. 11乙填空题B. 8C. 7D. 53.如果关于x 的不等式x >2a - 1的最小整数解为 *该校足球队获胜的场次最少是 _________ 场.14. 某次数学测验中共有16道题目,评分办法:答对一道得5分,答错或不答一道扣1分,某学生有一道题未答,那么这个同学至少要答对 __________ 道题,成绩才能在60分以上.16•若商品原价为5元,如果降价X%后,仍不低于4元,那么x 的取值为 _____________17.不等式组的整数解是x= ________ .— l<x + 118•若不等式3x-mr< 0的正整数解恰好是 1、2、3,贝U m 的取值范围是 ___________三、计算题19•计算。
河北省2019年中考数学专题4不等式组与优化方案精讲试题

一元一次年与函数或方程等考解题策略(1)强化计算;(2)数形结合,对于一些不等式的纯代数问题,画数轴容易解决,应用题抓住题目中的不等关系加强训练.,重难点突破)解不等式组【例1】(2019张家口九中二模)解不等式组 ⎩⎪⎨⎪⎧9x +5<8x +7,①43x +2>1-23x.②并写出其整数解. 【解析】先求不等式组的解集,再在解集中找整数解.【答案】解:解不等式①得x<2.解不等式②得x>-12.把①、②的解集表示在数轴上如图,故原不等式组的解集是-12<x<2.其整数解是0,1.1.(苏州中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x2<1.②将不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x≥-1,解不等式②,得x<3,所以原不等式组的解集是-1≤x<3. 解集在数轴上表示如图:所以不等式组的非负整数解有0,1,2. 【方法指导】先求不等式组的解集,再从数轴上找解集.不等式的实际问题【例2】某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用76元,从A 地到B 地用电行驶纯用电费用26元.已知每行驶1 km ,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1 km 纯用电的费用;(2)若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【解析】(1)根据“某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用76元,从A 地到B 地用电行驶纯用电费用26元”“已知每行驶1 km ,纯燃油费用比纯用电费用多0.5元”,可以列出相应的分式方程,然后解分式方程即可求解;(2)根据(1)中纯用电每千米的费用和本问中的信息可列出相应的不等式,解不等式即可.【答案】解:(1)设每行驶1 km 纯用电的费用为x 元.则76x +0.5=26x.解得x =0.26.经检验,x =0.26是原分式方程的解.答:每行驶1 km 纯用电的费用为0.26元;(2)设从A 地到B 地油电混合行驶,用电行驶y km.则0.26y +⎝ ⎛⎭⎪⎫260.26-y ×(0.26+0.5)≤39.解得y≥74,即至少用电行驶74 km.2.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?解:设他应答对x 道题.根据题意,得 10x -5(20-x)>90.解得x >1223.∵x 为整数 ∴x 最小取13.答:他至少要答对13题.【方法指导】根据题意确定不等式(组)的不等量关系,再解不等式(组).由不等式确定优化方案【例3】(2019苏州中考)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:3 (1)5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少.【解析】(1)根据“经销商盈利=水果箱数×每箱水果的盈利”列式计算;(2)设甲店配A 种水果x 箱,分别表示出配给乙店的A 种水果、B 种水果的箱数,根据盈利不小于100元,列不等式求解,进一步利用一次函数性质求得答案即可.【答案】解:(1)5×11+5×17+5×9+5×13=5×50=250(元). 答:经销商能盈利250元;(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果10-(10-x)=x(箱).∵9×(10-x)+13x≥100,∴x ≥2.5且为整数.设经销商盈利为w 元,则w =11x +17(10-x)+9(10-x)+13x =-2x +260. ∵-2<0,∴w 随x 的增大而减小, ∴当x =3时,w 值最大,∴甲店配A 种水果3箱、B 种水果7箱,乙店配A 种水果7箱、B 种水果3箱时,经销商盈利最大,最大盈利为-2×3+260=254(元).3.(2019安顺中考)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1 000元,则商场共有几种进货方案?解:(1)设甲种玩具的进价为x 元/件,则乙种玩具的进价为(40-x)元/件.由题意得:90x =15040-x解得x =15,经检验,x =15是原方程的解. ∴40-x =25.答:甲、乙两种玩具的进价分别是15元/件,25元/件; (2)设购进甲种玩具y 件,则购进乙种玩具(48-y)件.由题意得:⎩⎪⎨⎪⎧y <48-y ,15y +25(48-y )≤1 000,解得20≤y<24.∵y 是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【方法指导】根据题意确定不等式(组)的不等量关系并解出结果,再进行分析找出最佳方案.2019-2020学年数学中考模拟试卷一、选择题1.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠2.某几何体的三视图如图所示,则该几何体的体积为( )A .3B .C .D .3.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A.2B.3C.4D.4.如图,反比例函数y =kx(k≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为( )A.﹣183B.﹣173C.﹣163D.﹣1535.下列所述图形中,是中心对称图形,但不是轴对称图形的是 A .正三角形 B .平行四边形C .正五边形D .圆6.如图,正的边长为2,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是( )A. B.2 C. D.47.已知一次函数y =﹣x+m 和y =2x+n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A.48B.36C.24D.188.在平面直角坐标系中,已知点()A 4,2-,()B 6,4--,以原点O 为位似中心,相似比为12,把ABO 缩小,则点A 的对应点A'的坐标是( )A .()2,1-B .()8,4-C .()8,4-或()8,4-D .()2,1-或()2,1-9.若数a 使关于x 的不等式组()3x a 2x 11x2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .210.如图所示,点A ,B ,C ,D 在O 上,CD 是直径,ABD 75∠=,则AOC ∠的度数为( )A .15B .25C .30D .3511.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70°12.下列四个几何体中,主视图是三角形的是( )A .B .C .D .二、填空题13.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.14.如图,抛物线y =ax 2﹣1(a >0)与直线y =kx+3交于MN 两点,在y 轴负半轴上存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称,则点P 的坐标是_____15.若关于x 的不等式(2)2a x a ->-的解集为1x <,化简3a -=______.16有意义,则字母x 的取值范围是 .17.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)18.用半径为2cm 的半圆围成一个圆锥的侧面,则这个圆锥的底面半径为____. 三、解答题19.如图,已知:△ABC 的外接圆⊙O 的圆心O 在等腰△ABD 的底边AD 上,点E 为弧AB 上的一点,AB 平分∠EAD ,∠C =60°,AB =BD =3. (1)求证:BD 是⊙O 的切线; (2)求图中阴影部分的面积.20.如图,一次函数y 1=kx+b (k ,b 为常数,k≠0)的图象与反比例函数y 2=mx(m 为常数,m≠0)的图象相交于点M (1,4)和点N (4,n ). (1)反比例函数与一次函数的解析式. (2)函数y 2=mx的图象(x >0)上有一个动点C ,若先将直线MN 平移使它过点C ,再绕点C 旋转得到直线PQ ,PQ 交x 轴于点A ,交y 轴点B ,若BC =2CA ,求OA•OB 的值.21.为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:八年级25名学生双休日课外阅读时间统计表(1)请求出阅读时间为4小时的人数所占百分比; (2)试确定这个样本的众数和平均数.22.如图,四边形ABCD 为菱形,且∠BAD=120°,以AD 为直径作⊙O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C 作AB 边上的高CE ;(2)在图2中,过点P 作⊙O 的切线PQ ,与BC 交于点Q .23.学校开展校外宣传活动,有社区板报(A )、集会演讲(B )、喇叭广播(C )、发宣传画(D )四种方式.围绕“你最喜欢的宣传方式”,校团委在全校学生中进行了抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下不完整的统计图表.请结合统计图表,回答下列问题:(1)本次抽查的学生共 人,m = ;(2)若该校学生有900人,估计其中喜欢“集会演讲”宣传方式的学生约有多少人?24.解不等式组()5x+33x-113x+46-x 22⎧>⎪⎨≤⎪⎩①②,请结合题意填空,完成本题的解答, I.解不等式①,得_________; II.解不等式②,得________;III.把不等式①和②的解集在数轴上表示出来:IV.原不等式组的解集为_________.25.如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠OCD =90°,点D 在第一象限,OC =6,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.【参考答案】*** 一、选择题二、填空题13.4或8 14.(0,-5) 15.3﹣a 16.x≥﹣5. 17.①②③⑤ 18.1 三、解答题19.(1)证明见解析;(2)2. 【解析】 【分析】(1)连接OB ,根据圆的基本性质,证OB ⊥BD ,即可得BD 是⊙O 的切线;(2)连接OE 、BE ,在Rt △OBD中,∠D =30°,BD =3,得OB E ,B 是半圆周的三等分点,得EB ∥AO ,证得S △ABE =S △OBE ,根据S 阴影=S 扇形OEB 可得.【详解】(1)证明:连接OB ,∵∠C =60°,∴∠AOB =2∠C =120°,∵OA =OB ,∴∠BAO =∠ABO =30°,∴AB =BD ,∠BAO =∠D =30°,∴∠ABD =180°﹣∠BAO ﹣∠D =120°,∴∠OBD =∠ABD ﹣∠ABO =120°﹣30°=90°,即OB ⊥BD ,∴BD 是⊙O 的切线;(2)连接OE 、BE ,在Rt △OBD 中,∠D =30°,BD =3,∴OB∵AB 平分∠EAD ,∴∠EAB =∠BAO =30°,∴∠EOB =∠BOD =60°,∴E ,B 是半圆周的三等分点,又∵OE =OB ,∴△OBE 是等边三角形,∴∠OEB =∠AOE =60°,∴EB ∥AO ,∴S △ABE =S △OBE ,∴S 阴影=S 扇形OEB =2π=.考核知识点:扇形面积和切线性质.根据所求找出相应条件,是关键.20.(1)y=4x,y=﹣x+5;(2)OA•OB的值为18或2.【解析】【分析】(1)将点M(1,4)代入y2=mx(m为常数,m≠0)求反比例函数解析式,再求得N的坐标,将M与N两点坐标代入y1=kx+b,即可求解;(2)过C作CH⊥y轴于点H,分三种情况结合三角形相似可求得OA和OB的值,则可求得OA•OB.【详解】(1)将点M(1,4)代入y2=mx(m为常数,m≠0),∴m=1×4=4,∴反比例函数的解析式为y=4x,将N(4,n)代入y=4x,∴n=1,∴N(4,1),将M(1,4),N(4,1)代入y1=kx+b,得到k b44k b1+=⎧⎨+=⎩,∴k1 b5=-⎧⎨=⎩,∴一次函数的解析式为y=﹣x+5;(2)设点C(a,b),则ab=4,过C点作CH⊥OA于点H.①当点B在y轴的负半轴时,如图1,∵BC=2CA,∵∠AOB=∠AHC=90°,∠OAB=∠CAH,∴△ACH∽△ABO.∴OB=CH=b,OA=AH=12a,∴OA•OB=12ab=2.②当点B在y轴的正半轴时,如图2,当点A在x轴的正半轴时,∵BC=2CA,∴13 CA AB=∵CH∥OB,∴△ACH∽△ABO.∴13 CH AH CA OB OA AB===∴OB=3b,OA=32a∴9A OB ab182O⋅==;③当点A在x轴的负半轴时,BC=2CA不可能.综上所述,OA•OB的值为18或2.【点睛】本题为反比例函数和一次函数的交点,用C点的坐标表示出OA和OB是解题的关键.21.(1)28%;(2)众数4小时;平均数3.36小时【解析】【分析】(1)先求得阅读时间为4小时的人数,然后除以被调查的人数即可求得其所占的百分比;(2)利用众数及加权平均数的定义确定答案即可.【详解】725100%=28%;(2)阅读量为4小时的人数最多,所以众数为4小时,平均数为(1×3+2×4+3×6+4×7+5×3+6×2)÷25=3.36(小时).【点睛】本题考查了确定一组数据的加权平均数和众数的能力,比较简单.22.(1)见解析;(2)见解析【解析】【分析】(1)连接BD,则P点和BD与⊙O的交点的延长线与AB的交点即为E点;(2)连接BD,则O点和BD与⊙O的交点的延长线与BC的交点即为Q点.【详解】解:(1)如图1,CE为所;(2)如图2,PQ为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定和菱形的性质.23.(1)300, 35%;(2)270人【解析】【分析】(1)由B选项的人数及其所占百分比可得总人数,总人数减去B、C、D的人数求得A的人数,再用A 选项人数除以总人数可得m的值;(2)用总人数乘以样本中B的百分比可得;【详解】解:(1)本次抽查的学生人数为90÷30%=300人,则A选项的人数为300﹣(90+75+30)=105,m=105300×100%=35%,故答案为:300、35%;(2)估计该校喜欢“集会演讲”这项宣传方式的学生约有900×30%=270人;【点睛】考查了扇形统计图及由样本估计总体的知识,解题的关键是读懂统计图、表,并从中整理出进一步解题的信息,难度不大.24.(Ⅰ)x 3>-;(Ⅱ).x 1≤;(Ⅲ)数轴表示见解析;(Ⅳ)3x 1-<≤.【解析】【分析】(Ⅰ)先去括号、移项,两边同时除以2即可得答案;(Ⅱ)移项,整理,两边同时除以2即可得答案;(Ⅲ)根据不等式解集的表示方法解答即可;(Ⅳ)根据数轴,找出不等式①②的公共解集即可.【详解】(Ⅰ)5x+3>3(x-1)去括号得:5x+3>3x-3移项得:2x>-6解得:x>-3.故答案为:x>-3 (Ⅱ)12x+4≤6-32x 移项得:2x≤2解得x≤1.故答案为:x≤1(Ⅲ)不等式①和②的解集在数轴上表示如图所示:由数轴可得①和②的解集的公共解集为-3<x≤1,∴原不等式组的解集为-3<x≤1,故答案为:-3<x≤1【点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.25.(1)6y x=;(2)133=-+y x . 【解析】【分析】(2)先求出点B的坐标,再利用待定系数法求解可得.【详解】解:(1)∵∠OCD=90°,点D在第一象限,OC=6,DC=4,∴D(6,4),∵OD的中点为点A,∴A(3,2);设反比例函数解析式为kyx =,那么k=3×2=6,∴该反比例函数的解析式为6yx =;(2)在6yx=中,当x=6时,y=1,则点B(6,1),设直线AB解析式为y=mx+n,(m≠0),代入A,B坐标得,则32 61 m nm n+=⎧⎨+=⎩,解得133mn⎧=-⎪⎨⎪=⎩,∴直线AB解析式为y=﹣13x+3.【点睛】本题主要考查用待定系数法求反比例函数解析式,中等难度,解题的关键是掌握待定系数法求解析式的方法.2019-2020学年数学中考模拟试卷一、选择题1.如图,▱ABCD 中,点A 在反比例函数y=(0)k k x≠的图像上,点D 在y 轴上,点B 、点C 在x 轴上.若▱ABCD 的面积为10,则k 的值是( )A .5B .5-C .10D .10-2.下列计算结果正确的是( )A .B .(-3m 2)·(-2m 3)=6m 6C .(-tan60°-1D .(-a+2b)2=a 2-4b 23.如图,反比例函数y =k x(k≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为( )A.﹣183B.﹣173C.﹣163D.﹣1534.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有三个整数解,则a 的取值范围是( ) A .5924a -<-… B .5924a -<<- C .5924a --剟 D .5924a -<-… 5.如图,已知a ∥b ,将直角三角形如图放置,若∠2=50°,则∠1为( )A .120°B .130°C .140°D .150°6.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为菱形的是( )A .AC BD ⊥B .ABD ADB ∠=∠C .AB CD = D .AB BC =7.据统计,2018年无锡市商品房待售面积(报告期末已竣工的可供销售或出租的商品房屋建筑面积)约为758万平方米,这个数据用科学记数法可表示为( )A .758×104m 2B .7.58×102m 2C .7.58×104m 2D .7.58×106m 28.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识。
中考数学 第4节不等式(组)的解法及不等式的应用

第4节 不等式(组)的解法及不等式的应用基础过关1. 己知实数a 、b 满足a +1>b +1,则下列选项可能错误的是( )A. a >bB. a +2>b +2C. -a <-bD. 2a >3b2. 不等式-2x >12的解集是( )A. x <-14B. x <-1C. x >-14D. x >-13. 不等式4-2x >0的解集在数轴上表示为( )4. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )第4题图A. ⎩⎨⎧x ≥2x >-3B. ⎩⎨⎧x ≤2x <-3C. ⎩⎨⎧x ≥2x <-3D. ⎩⎨⎧x ≤2x >-35. 一元一次不等式组⎩⎪⎨⎪⎧2x >x -112x ≤1的解是( ) A. x >-1 B. x ≤2 C. -1<x ≤2 D. x >-1或x ≤26. 将不等式组⎩⎨⎧2x -6≤0x +4>0的解集表示在数轴上,下面表示正确的是( )7. 不等式6-4x ≥3x -8的非负整数解有( )A. 2个B. 3个C. 4个D. 5个8.若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x <m的解是x <5,则m 的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <59. 关于x 的不等式组⎩⎨⎧x -a ≤02x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 2310.不等式组⎩⎨⎧2x >6x -2>0的解集是________. 11. 若关于x 的一元一次不等式组⎩⎨⎧x -a >01-x >x -1无解,则a 的取值范围是________. 12. 不等式组⎩⎪⎨⎪⎧2x +1>-12x -13≥x -1的整数解是________. 13. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.14. 运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,第14题图若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是________.15.若关于x 、y 的二元一次方程组⎩⎨⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是________.16. 解不等式:4x +5≤2(x +1).17. 解不等式组:⎩⎪⎨⎪⎧3x -5<-2x 3x +22≥1.18. 解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7x +103>2x .19. 解不等式组:⎩⎪⎨⎪⎧3x +6≥5(x -2)x -52-4x -33<1.20. 解不等式组⎩⎪⎨⎪⎧12(x -1)≤11-x <2,并写出该不等式组的最大整数解.21.解不等式组⎩⎨⎧2x ≥-9-x ,5x -1>3(x +1),并把它的解集在数轴上表示出来.第21题图22.已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.23. 为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a %,求a 的值至少是多少?24. 甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?满分冲关1. 如果关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,且关于x 的不等式组⎩⎨⎧2x +3>9x -m <0无解,那么符合条件的所有整数m 的个数为( ).A. 2B. 3C. 4D. 52. 已知关于x 的不等式组⎩⎨⎧5x -a <7-2-x <0只有2个非负整数解,且关于x 的分式方程a -6x -1+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A. 5 B. 4 C. 3 D. 23. 从1,2,3,4,5,6这6个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎨⎧x +1<a 3x +4≤4x无解,且使关于x 的分式方程2x -a x -2=12的解为非负数,那么这6个数中所有满足条件的a 的值之积是( )A. 6B. 24C. 30D. 1204. 2018年俄罗斯世界杯亚洲区12强赛A 组第8轮比赛于2017年6月13日进行,中国国家队将客场挑战叙利亚队,“爱我中华”球迷协会准备到现场为中国队加油助威,并计划购买A 、B 两种球票共600张.(1)若A 种票的数量不少于B 种票的4倍,求至少购买多少张A 种票;(2)“爱我中华”球迷协会从销售处得知,由于团体购票有一定优惠,本场比赛的球票以统一价格(m +80)元出售给该协会,由于路途遥远,部分球迷放弃现场看球的计划,协会最后购买的票数在原计划的基础上减少(m +5)%,购票总共用去45600元,求m 的值(m >0).5. 1月份,A 型汽油均价为5.7元/升,B 型汽油均价为6元/升,某汽车租赁公司购买这两种型号的汽油共支付40800元;2月份,这两种型号的汽油均价都上调了0.6元/升,该公司要购买与1月份A 型汽油和B 型汽油数量都相同的汽油就需多支付费用.(1)若多支付的费用不超过4200元,那么该公司1月或2月最多可购买A 型汽油多少升?(2)3月份,该公司A型汽油的购买量在(1)小题中2月份最多购买量的基础上减少了m%,但A型汽油的均价在2月份的基础上上调了m10元,因此3月份支付A种型号汽油的费用与(1)小题中2月份支付最多数量A型汽油的费用相同,求m 的值.6. 某文具店分别以每本5元和6元的价格一次性购进了A、B两种笔记本各若干本,共用去了1960元,A种笔记本按每本获利60%的价格销售,B种笔记本每本售价是A种笔记本每本售价的54倍,经过一段时间后,这两种笔记本都销售完毕,经统计,销售这两种笔记本共获利1240元.(1)该文具店此次购进的A、B两种笔记本各多少本?(2)调查市场需求后,该文具店又以上次相同的价格购进了相同数量的A、B两种笔记本.由于市场原因,该文具店调整了这两种笔记本的销售单价,A种笔记本每本售价下调了a%,B种笔记本售价上调了34a%,若要求销售完这些笔记本后的利润不低于1200元,求a的最大值.7. 手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…,最近的网红非“共享单车”莫属,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步,共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷,某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a %,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a %,三月底可使用的自行车达到7752辆,求a 的值.答案基础过关1. D2. A3. D4. D5. C 【解析】不等式组⎩⎪⎨⎪⎧2x>x -1 ①12x ≤1 ②,解不等式①得x >-1,解不等式②得x ≤2,所以不等式组的解集为-1<x ≤2.6. A 【解析】解不等式2x -6≤0,得x ≤3,解不等式x +4>0,得x >-4,∴不等式组的解集为-4<x ≤3,解集在数轴上表示为选项A .7. B 【解析】解不等式得x ≤2,则非负整数解有0,1,2,共3个.8. A 【解析】解不等式2x -1>3(x -2),得x <5,根据不等式组的解集为x <5,利用同小取小可知m ≥5.9. B 【解析】∵不等式组的解集为-3a 2<x ≤a ,该解集中至少有5个整数解,所以a 比-3a 2至少大5,即 a ≥-3a 2+5,解得a ≥2,所以a 的最小值是2. 10. x >311. a ≥1 【解析】由x -a >0得x >a ,由1-x >x -1得x <1,∴要使不等式组无解,则a ≥1.12. 0,1,2 【解析】⎩⎨⎧2x +1>-1 ①2x -13≥x -1②解不等式①得,x >-1,解不等式②得,x ≤2,∴不等式组的解集为-1<x ≤2,∴不等式组的整数解为0,1,2.13. 8 【解析】设至多可以打x 折,由题意得,100(1+50%)x -100≥100×20%,化简得,150x ≥120,x ≥80%.则至多可以打8折.14. x <8 【解析】根据程序,可得不等式3x -6<18,解得x <8.15. m >-2 【解析】将两方程等号两边分别相加,得2x +2y =2m +4,∴x +y =m +2,∵x +y >0,∴m +2>0,∴m >-2.16. 解:去括号得4x +5≤2x +2,移项,合并同类项,得2x ≤-3,解得x ≤-32.17. 解:解不等式3x -5<-2x ,移项得3x +2x <5,合并同类项得5x <5,解得x <1,解不等式3x +22≥1,不等式两边同乘以2得3x +2≥2,合并同类项得3x ≥0,解得x ≥0,∴原不等式组的解集为0≤x <1.18. 解:解不等式2(x +1)>5x -7,去括号得2x +2>5x -7,移项、合并同类项得-3x >-9,解得x <3.解不等式x +103>2x ,去分母得x +10>6x .移项、合并同类项得10>5x ,解得x <2.∴不等式组的解集为x <2.19. 解:令⎩⎪⎨⎪⎧3x +6≥5(x -2) ①x -52-4x -33<1 ②,由①得x≤8,由②得x>-3,∴不等式组的解集为-3<x≤8.20. 解:解不等式12(x-1)≤1.得x≤3,解不等式1-x<2,得x>-1,则不等式组的解集是-1<x≤3,∴该不等式组的最大整数解为x=3.21. 解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,∴不等式组的解集为x>2.其解集在数轴上表示如解图:第21题解图22. 解:(1)当m=1时,原不等式可变形为2-x2>x2-1,去分母得2-x>x-2,移项、合并同类项得2x<4,∴x<2.(2)解不等式2m-mx2>12x-1,移项、合并同类项2m-mx>x-2,(m+1)x<2(m+1)当m≠-1时,原不等式有解;当m>-1时,原不等式的解集为x<2;当m<-1时,原不等式的解集为x>2.23. 解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x. 根据题意得,7500(1+x)2=10800,解得x=0.2=20%或x=-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%. (2)2016年的人均借阅量为:10800÷1350=8(本).根据题意得,8(1+a%)×1440-1080010800≥20%, 解得a ≥12.5.答:a 的值至少是12.5.24. 解:(1)设乙工程队每天修路x 千米,则甲工程队每天修路(x +0.5)千米,根据题意列方程15x =1.5×15x +0.5,解得x =1, 答:甲工程队每天修路1.5 千米,乙工程队每天修路1千米.(2)设甲工程队修m 天,余下的工程由乙工程队修,由两个工程队修路总费用不超过5.2万元,可列不等式为0.5m +15-1.5m 1×0.4≤5.2,化简得0.5m +6-0.6m ≤5.2,解得m ≥8, 答:甲工程队至少修8天,这样总费用不超过5.2万元.25. 解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元, 则⎩⎨⎧200x +200y =8000y -x =20,解得⎩⎨⎧x =10y =30. ∴大樱桃进价为30元/千克,小樱桃进价为10元/千克,200×[(40-30)+(16-10)]=3200(元),答:大樱桃和小樱桃的进价分别是每千克30元和每千克10元,销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,由题意可得,(1-20%)×200×16+200a -8000≥3200×90%,解得a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.满分冲关1. C 【解析】∵关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,∴[-(2m-1)]2-4(m 2-3m )=8m +1≥0,∴m ≥-18;解不等式组⎩⎨⎧2x +3>9x -m <0得x <m 且x >3,又∵关于x 的不等式组无解,∴m ≤3.则m 的取值范围是-18≤m ≤3,满足条件的整数有0,1,2,3共4个.2. C 【解析】解不等式组⎩⎨⎧5x -a <7-2-x <0得-2<x <a +75,∵该不等式组只有2个非负整数解,∴1<a +75≤2,即-2<a ≤3,解分式方程a -6x -1+a =2,得x =4a -2,∵分式方程的解为整数,∴a 可取0,1,3,共3个数.3. C 【解析】解不等式组⎩⎨⎧x +1<a 3x +4≤4x 得,4≤x <a -1,要使其无解,则a -1≤4,即a ≤5;解分式方程2x -a x -2=12,得x =2a -23,∵x 为非负数,∴2a -2≥0,解得a ≥1,又∵x ≠2,解得a ≠4,综上1≤a ≤5且a ≠4,∴这6个数中,满足条件的a 值有1,2,3,5,它们之积为1×2×3×5=30.4. 解:(1)设购买x 张A 种票,则购买B 种票(600-x )张,由题意得,x ≥4(600-x ),解得x ≥480,∴至少购买480张A 种票.(2)由题意得(m +80)×[1-(m +5)%]×600=45600,解得m 1=15,m 2=0(舍去),∴m 的值为15.答:m 的值为15.5. 解:(1)设1月份可购买A 型汽油x 升,则1月份购买B 型汽油的升数为:40800-5.7x 6=(6800-0.95x )升, 由题意得,0.6x +0.6(6800-0.95x )≤4200,解得,x ≤4000,答:该公司1月或2月最多可购买A 型汽油4000升.(2)由题意可列方程,4000(1-m %)×(5.7+0.6+m 10)=4000×(5.7+0.6),即4000(1-m %)×(6.3+m 10)=4000×6.3,解得m 1=37,m 2=0(舍去),∴m 的值为37.答:m 的值为37.6. 解:(1)设购买A 种笔记本x 本,B 种笔记本y 本,由题意得,⎩⎪⎨⎪⎧5x +6y =1960,5×60%x +[5×(1+60%)× 54-6]y =1240. 解得⎩⎨⎧x =200y =160. 答:购买A 种笔记本200本,B 种笔记本160本.(2)A 原售价为5(1+60%)=8(元),B 原售价为8×54=10(元),由题意得,200×8(1-a %)+160×10(1+34a %)-1960≥1200.解得a ≤10.答:a 的最大值为10.7. 解:(1)设一月份该公司投入市场的自行车有x 辆,则7500-1200x≤1-10%, 解得x ≥7000,答:一月份该公司投入市场的自行车至少有7000辆.(2)由题意得[7500(1-20%)+1200×(1+4a %)]⎝ ⎛⎭⎪⎫1-14a%=7752, 设a %=x ,原方程可化为50x 2-125x +23=0,解得x 1=2.3(舍去),x 2=0.2,由a %=0.2,得a =20.答:a 的值为20.。
2019年全国中考数学真题分类汇编:方程、不等式与函数的实际应用题

(分类)专题复习(四)方程、不等式与函数的实际应用题类型1 多种函数的综合应用类型2 函数与方程或不等式的综合应用类型1 多种函数的综合应用(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.(2019十堰)(2019毕节)(2019襄阳)(2019咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x 天该产品的生产量z(件)与x(天)满足关系式z=-2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w圆.①求w与x之间的函数关系式,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?(2019随州)(2019荆门)(2019黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红。
经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100),已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w’(万元)不低于55万元,产量至少要达到多少吨?(2019鄂州)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元 …………6′(3)由题意,得:-5(x-70)2+4500=4220+200解得:x1=66 x2 =74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.…………10′(2019黔东南)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如下表:X(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(2019广西北部湾)(2019天水)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式,并求出没见销售价位多少元时,每天的销售利润最大?最大利润是多少?答案不完整……(2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值(2019攀枝花)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/干克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量;(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?(2019宿迁)(2019嘉兴)某农作物的生长率 与温度 ()有如下关系:如图 1,当10≤≤25 时可近似用函数p t C t 11505p t =-刻画;当25≤≤37 时可近似用函数 刻画.t 21()0.4160p t h =--+ (1)求 的值. (2)按照经验,该作物提前上市的天数(天)与生长率满足函数关系:h m p 生长率p0.20.250.30.35提前上市的天数 (天)m 051015①请运用已学的知识,求 关于 的函数表达式;m p ②请用含的代数式表示t m(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本 (元)与大棚温度()之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个w t C 最大利润(农作物上市售出后大棚暂停使用).x y (2019临沂)汛期到来,山洪暴发,下表记录了某水库20h内水位的变化情况,其中表示时间(单位:h),x表示水位高度(单位:m),当=8(h)时,达到警戒水位,开始开闸放水。
中考数学不等式的解及解集专题练习(含解析)

2019中考数学-不等式的解及解集专题练习(含解析)一、单选题1.在下列式子中,不是不等式的是()A. 2x<1B. x≠﹣2C. 4x+5>0D. a=32.无论x取什么数,下列不等式总成立的是()A. x+6>0B. x+6<0C. ﹣(x﹣6)2<0D. (x﹣6)2≥03.若不等式组有解,则a的取值范围是()A. a≤3B. a<3C. a<2D. a≤24.已知a<b,下列不等式变形中正确的是()A. a﹣2>b﹣2B. >C. ﹣2a>﹣2bD. 3a+1>3b+15.若不等式组的解集是x>3,则m的取值范围是()A. m>3B. m≥3C. m≤3D. m<36.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A. x>﹣1B. x>2C. x<﹣1D. x<27.下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2 ,⑤x≠3,⑥x+1>2中,不等式有()A. 1个B. 2个C. 3个D. 4个8.不等式组的解集在数轴上表示正确的是()A. B.C. D.9.①x+y=1;②x≤y;③x﹣3y;④x2﹣3y>5;⑤x<0中属于不等式的有()A. 2个B. 3个C. 4个D. 5个10.下列说法中,错误的是( )A. 不等式x<5的整数解有无数多个B. 不等式x>-5的负整数解集有有限个C. 不等式-2x<8的解集是x<-4D. -40是不等式2x<-8的一个解11.生物兴趣小组要在温箱里培养A、B两种菌苗.A种菌苗的生长温度x℃的范围是35≤x≤38,B种菌苗的生长温度y℃的范围是34≤y≤36.那么温箱里的温度T℃应该设定在()A. 35≤T≤38B. 35≤T≤36C. 34≤T≤36D. 36≤T≤3812.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤2613.不等式2x<6的非负整数解为( )A. 0,1,2B. 1,2C. 0,-1,-2D. 无数个二、填空题14.已知方程组的解x,y满足x>0,y>0,则m的取值范围是________.15.金坛市2月份某天的最高气温是15℃,最低气温是﹣2℃,则该天气温t(℃)的变化范围是 ________16.已知不等式组有解,则实数m的取值范围是________17.已知关于x的不等式组无解,则实数a的取值范围是________18.我市冬季某一天的最高气温为﹣1℃,最低气温为﹣6℃,那么这一天我市气温t(℃)的取值范围是________三、解答题19.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完.”一次服用这种药的剂量在什么范围?20.在生活中不等关系的应用随处可见.如图表示机动车驶入前方道路的最低时速限制.此标志设在高速公路或其他道路限速路段的起点,你会表示这些不等关系吗?四、综合题21.已知不等式≤ .(1)求该不等式的解集;(2)该不等式的所有负整数解的和是关于y的方程2y﹣3a=6的解,求a的值.22.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:________;(2)﹣2,﹣1,0,1都是不等式的解:________;(3)0不是这个不等式的解:________;(4)与X≤﹣1的解集相同的不等式:________.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围(2)化简:|m﹣3|﹣|m+2|(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.答案解析部分一、单选题1.在下列式子中,不是不等式的是()A. 2x<1B. x≠﹣2C. 4x+5>0D. a=3【答案】D【考点】不等式的解集【解析】【解答】解:A、B、C是不等式,D是等式,故选:D.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式可得答案.2.无论x取什么数,下列不等式总成立的是()A. x+6>0B. x+6<0C. ﹣(x﹣6)2<0D. (x﹣6)2≥0【答案】D【考点】不等式的解集【解析】【解答】解:A、x>﹣6时成立;B、x<﹣6时成立;C、根据非负数的性质,﹣(x﹣6)2≤0;D、根据非负数的性质,(x﹣6)2为非负数,所以(x﹣6)2≥0成立.故选D.【分析】通过解不等式可得A、B中x的取值范围;根据非负数的性质,可对C、D进行判断.3.若不等式组有解,则a的取值范围是()A. a≤3B. a<3C. a<2D. a≤2【答案】B【考点】不等式的解集【解析】【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1<2,解得:a<3,故选B【分析】分别表示出不等式组中两不等式的解集,利用不等式组取解集的方法判断即可确定出a的范围.4.已知a<b,下列不等式变形中正确的是()A. a﹣2>b﹣2B. >C. ﹣2a>﹣2bD. 3a+1>3b+1 【答案】C【考点】不等式的解集【解析】【解答】解;A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A 错误;B、不等式的两边都乘同一个正数,不等号的方向不变,不B错误;C、不等式两边都乘以同一个负数,不等号的方向改变,故C正确;D、不等式两边都加上同一个数,不等式的两边都乘以同一个正数,不等号的方向不变,故D错误;故选:C.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B;根据不等式的性质3,可判断C;根据不等式的性质1,2,可判断D.5.若不等式组的解集是x>3,则m的取值范围是()A. m>3B. m≥3C. m≤3D. m<3【答案】C【考点】不等式的解集【解析】【解答】解:∵若不等式组的解集是x>3,∴m≤3,故选:C.【分析】根据不等式组的解集,大大取大,可得答案.6.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A. x>﹣1B. x>2C. x<﹣1D. x<2 【答案】A【考点】不等式的解集【解析】【解答】解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选:A.【分析】首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法:大大取大可确定另一个不等式的解集,进而选出答案.7.下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2 ,⑤x≠3,⑥x+1>2中,不等式有()A. 1个B. 2个C. 3个D. 4个【答案】D【考点】不等式的解集【解析】【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥.故选D【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.8.不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】D【考点】不等式的解集【解析】【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.9.①x+y=1;②x≤y;③x﹣3y;④x2﹣3y>5;⑤x<0中属于不等式的有()A. 2个B. 3个C. 4个D. 5个【答案】B【考点】不等式的解集【解析】【解答】解:①中不含有不等号,所以不是不等式;②中含有不等号,所以是不等式;③中不含有不等号,所以不是不等式;④中含有不等号,所以是不等式;⑤中含有不等号,所以是不等式.故是不等式的有②④⑤.故选B.【分析】根据不等式的定义对四个小题进行逐一分析即①③不含有不等号,故不是不等式;②④⑤中含有不等号,故是不等式.10.下列说法中,错误的是( )A. 不等式x<5的整数解有无数多个B. 不等式x>-5的负整数解集有有限个C. 不等式-2x<8的解集是x<-4D. -40是不等式2x<-8的一个解【答案】C【考点】不等式的解集,一元一次不等式的整数解【解析】【分析】根据不等式的解集的定义及不等式的基本性质依次分析各项即可。
北京市2019年中考数学真题与模拟题分类汇编 专题04 方程与不等式之选择题(14道题)(解析版)(1)

专题04 方程与不等式之选择题参考答案与试题解析一.选择题(共14小题)1.(2019•通州区三模)若二元一次方程组,的解为,,则a+b的值为()A.0B.1C.2D.4【答案】解:把代入方程组得:,解得:,则a+b=2,故选:C.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.(2019•房山区二模)方程组,的解为()A.,B.,C.,D.,【答案】解:①,①+得:4x=4,解得:x=1,把x=1代入得:y=5,则方程组的解为.故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2019•东城区二模)二元一次方程组的解为()A.B.C.D.【答案】解:①,①+得:2x=4,解得:x=2,①﹣得:2y=0,解得:y=0,则方程组的解为,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(2019•顺义区二模)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.B.C.D.【答案】解:设甲类玩具的进价为x元/个,则乙类玩具的进价每个(x﹣5)元,根据题意得:,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.5.(2019•门头沟区二模)团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()A.20B.35C.30D.40【答案】解:∵990不能被13整除,∴两个部门人数之和:a+b≥51,(1)若51≤a+b≤100,则11 (a+b)=990得:a+b=90,①由共需支付门票费为1290元可知,11a+13b=1290解① 得:b=150,a=﹣60,不符合题意.(2)若a+b≥100,则9 (a+b)=990,得a+b=110 ③由共需支付门票费为1290元可知,1≤a≤50,51≤b≤100,得11a+13b=1290 ④,解③④得:a=70人,b=40人故两个部门的人数之差为70﹣40=30人,故选:C.【点睛】本题主要考查二元一次方程组的应用和一元一次方程的应用,结合门票价格和人数之间的关系,建立方程是解决本题的关键.考查学生分析问题的能力.6.(2019•海淀区二模)已知a>b,则下列不等式一定成立的是()A.﹣5a>﹣5b B.5ac>5bc C.a﹣5<b+5D.a+5>b﹣5【答案】解:∵a>b,∴﹣5a<5b,故选项A不合题意;5ac>5bc,错误,故选项B不合题意;a﹣5<b+5错误,故选项C不合题意;a+5>b﹣5,正确,故本选项符合题意.故选:D.【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.7.(2019•石景山区二模)不等式>的解集在数轴上的表示正确的是()A.B.C.D.【答案】解:去分母得,﹣x>4,系数化为1得,x<﹣4.在数轴上表示为:.故选:D.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.8.(2019•丰台区一模)方程组的解为()A.B.C.D.【答案】解:①,①×2﹣得:y=﹣3,把y=﹣3代入①得:x+3=2,解得:x=﹣1,原方程组的解为:,故选:C.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.9.(2019•朝阳区一模)把不等式组<中两个不等式的解集在数轴上表示出来,正确的是()A.B.C.D.【答案】解:①<,由①得,x≥﹣3,由得,x<1,故不等式组的解集为:﹣3≤x<1.在数轴上表示为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2019•怀柔一模)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x日相逢,可列方程()A.B.C.D.【答案】解:设甲乙经过x日相逢,可列方程:1.故选:B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出两人所走路程所占百分比是解题关键.11.(2019•西城一模)方程组的解为()A.B.C.D.【答案】解:①,①×2+得:9x=9,解得:x=1,把x=1代入①得:y=2,则方程组的解为,故选:C.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.12.(2019•顺义区一模)已知点M(1﹣2m,m﹣1)在第二象限,则m的取值范围是()A.m>1B.<C.<<D.<<【答案】解:∵点M(1﹣2m,m﹣1)在第二象限,∴<>,解得:m>1,故选:A.【点睛】本题考查了解一元一次不等式组和点的坐标,能根据题意得出不等式组是解此题的关键.13.(2019•北京一模)方程组的解为()A.B.C.D.【答案】解:①①+得:3x=3解得x=1将x=1代入①可解得:y=2∴原方程组的解为:故选:A.【点睛】本题考查二元一次方程组的解法,因此要对二元一次方程组的解法非常熟悉.14.(2019•延庆区一模)周末,小明带200元去图书大厦,下表记录了他全天的所有支出,其中小零食支出的金额不小心被涂黑了,如果每包小零食的售价为15元,那么小明可能剩下多少元?()A.5B.10C.15D.30【答案】解:设小明买了x包小零食,依题意得:小明剩下的人民币可以表示:200﹣20﹣140﹣5﹣15x,整理得:(35﹣15x)元﹣﹣﹣﹣﹣﹣①0<20+140+5+15x<200,解得:0<x<,又∵x是取正整数,∴x的取值为1或2,(Ⅰ)当x=1时代入①得:35﹣15x=35﹣15×1=20元,(Ⅱ)当x=2时代入①得:35﹣15x=35﹣15×2=5元.从A、B、C、D四个选项中,符合题意只有A答案.故选:A.【点睛】本题考查了整式的表示方法和一元一次不等式的应用,关键是把零食包数的范围求出来,易错点是x取正整数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学真题分类训练——专题四:不等式及其应用一、选择题1.(2019无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A.10 B.9 C.8 D.7【答案】B2.(2019宁波)不等式32x->x的解为A.x<1 B.x<﹣1C.x>1 D.x>﹣1【答案】A3.(2019重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为A.13 B.14 C.15 D.16【答案】C4.(2019舟山)已知四个实数a,b,c,d,若a>b,c>d,则A.a+c>b+d B.a–c>b–dC.ac>bd D.a b c d >【答案】A5.(2019绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有A.5种B.4种C.3种D.2种【答案】C6.(2019重庆A卷)若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为A .0B .1C .4D .6【答案】B7.(2019呼和浩特)若不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x -1)+5>5x +2(m +x )成立,则m 的取值范围是 A .m >-35B .m <-15C .m <-35D .m >-15【答案】C8.(2019常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为 A .10<x <12B .12<x <15C .10<x <15D .11<x <14【答案】B9.(2019德州)不等式组523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩的所有非负整数解的和是A .10B .7C .6D .0【答案】A10.(2019聊城)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .2m ≤B .2m <C .2m ≥D .2m >【答案】A11.(2019南充)关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为 A .-5<a <-3B .-5≤a <-3C .-5<a ≤-3D .-5≤a ≤-3【答案】C12.(2019云南)若关于x 的不等式组2(1)2x a x ->⎧⎨-<⎩的解集是x >a ,则a 的取值范围是A .a <2B .a ≤2C .a >2D .a ≥2【答案】D13.(2019宿迁)不等式12x -≤的非负整数解有 A .1个B .2个C .3个D .4个14.(2019山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-1【答案】A15.(2019威海)解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是 A .B .C .D .【答案】D16.(2019滨州)已知点3()2P a a --,关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是 A . B . C .D .【答案】C17.(2019宁波)不等式32xx ->的解为 A .1x <B .1x <-C .1x >D .1x >-【答案】A18.(2019桂林)如果a >b ,c <0,那么下列不等式成立的是 A .a +c >bB .a +c >b -cC .ac -1>bc -1D .a (c -1)<b (c -1)【答案】D19.(2019广安)若m n >,下列不等式不一定成立的是 A .33m n +>+B .33m n -<-C .33m n >D .22m n >20.(2019河北)语句“x 的18与x 的和不超过5”可以表示为 A .8x+x ≤5B .8x +x ≥5C .85x +≤5D .8x+x =5 【答案】A 二、填空题21.(2019荆州)对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________. 【答案】13≤x <1522.(2019温州)不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为__________.【答案】1<x ≤923.(2019甘肃)不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是__________.【答案】024.(2019宜宾)若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有两个整数解,则m 的取值范围是__________. 【答案】-2≤m <125.(2019绍兴)不等式3x ﹣2≥4的解为__________. 【答案】x ≥226.(2019鄂州)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足x +y ≤0,则m的取值范围是__________. 【答案】m ≤-227.(2019株洲)若a 为有理数,且2-a 的值大于1,则a 的取值范围为__________. 【答案】a <1且a 为有理数28.(2019金华)不等式3x ﹣6≤9的解是__________.29.(2019天津)解不等式组11 211xx+≥-⎧⎨-≤⎩.请结合题意填空,完成本题的解答.(1)解不等式①,得__________;(2)解不等式②,得__________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为__________.【答案】(1)x≥-2.(2)x≤1.(3)(4)-2≤x≤1.三、解不等式30.(2019淄博)解不等式513 2xx-+>-.解:将不等式513 2xx-+>-,两边同乘以2得,x-5+2>2x-6,解得x<3.31.(2019北京)解不等式组:4(1)273x xxx-<+⎧⎪+⎨>⎪⎩.解:4(1)273x xxx-<+⎧⎪⎨+>⎪⎩①②,解①得:x<2,解②得x<72,则不等式组的解集为2<x<72.32.(2019黄冈)解不等式组515264 253(5)x xx x-+⎧+>⎪⎨⎪+≤-⎩.解:515264253(5)x xx x-+⎧+>⎪⎨⎪+≤-⎩①②,解①得:x>-1,解②得:x≤2,则不等式组的解集是:-1<x≤2.33.(2019江西)解不等式组:2(1)7122x xxx+>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.解:2(1)7122x xxx+>⎧⎪⎨+-≥⎪⎩①②,解①得:x>-2,解②得:x≤-1,故不等式组的解为:-2<x≤-1,在数轴上表示出不等式组的解集为:.34.(2019黄石)若点P的坐标为(13x-,2x-9),其中x满足不等式组5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩,求点P所在的象限.解:5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩①②,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵13x-=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在的第四象限.35.(2019哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:3598 83158 x yx y+=⎧⎨+=⎩,∴1610 xy=⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40-z)副,根据题意得:16z+10(40-z)≤550,∴z≤25,∴最多可以购买25副围棋.36.(2019广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?解:(1)设购买篮球x个,购买足球y个,依题意得:60 70804600 x yx y+=⎧⎨+=⎩.解得2040 xy=⎧⎨=⎩.答:购买篮球20个,购买足球40个.(2)设购买了a个篮球,依题意得:70a≤80(60-a),解得a≤32.答:最多可购买32个篮球.37.(2019河南)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.解:(1)设A的单价为x元,B的单价为y元,根据题意,得32120 54210 x yx y+=⎧⎨+=⎩,∴3015 xy=⎧⎨=⎩,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30-z)个,购买奖品的花费为W元,由题意可知,z≥13(30-z),∴z≥152,W=30z+15(30-z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少.38.(2019聊城)某商场的运动服装专柜,对A B,两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问A B,两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?解:(1)设A B,两种品牌运动服的进货单价分别为x元和y元,根据题意,得203010200 304014400x yx y+=⎧⎨+=⎩,解得240180 xy=⎧⎨=⎩,经检验,方程组的解符合题意.答:A B,两种品牌运动服的进货单价分别为240元和180元.(2)设购进A品牌运动服m件,则购进B品牌运动服3(5)2m+件,∴3240180(5)213002m m++≤,解得,40m≤.经检验,不等式的解符合题意,∴33540565 22m+≤⨯+=.答:最多能购进65件B品牌运动服.39.(2019温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.解:(1)设成人有x人,少年y人,根据题意,得103212x yx y++=⎧⎨=+⎩,解得175xy=⎧⎨=⎩.答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元).答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b54≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.。