三维运动模拟平台总体设计
智慧校园三维实景平台设计

智慧校园三维实景平台设计目录第一章概述 (2)第二章核心技术 (2)2.1 倾斜摄影技术 (2)2.2 地理信息系统技术 (2)2.3 LOD技术 (2)第三章系统架构 (3)3.1 系统功能 (3)3.2 实景功能 (3)3.3 分析功能 (5)3.4 应用功能 (7)第一章概述三维实景平台(以下简称“平台”)为用户提供一种身临其境的现场信息体验模式。
通过实景拍摄制作模型,直观且真实地还原现场风貌;通过模型加载和漫游,使用户沉浸于现场体验;同时,通过开发集成业务数据和流程,可实现在真实场景下的规划、建设及精细化管理。
第二章核心技术2.1倾斜摄影技术倾斜摄影是指由一定倾斜角的航摄相机所获取的影像。
倾斜摄影技术是国际测绘遥感领域近年发展起来的一项高新技术,通过在同一飞行平台上搭载多台传感器,同时从垂直、倾斜等不同角度采集影像,获取地面物体更为完整准确的信息。
并通过倾斜摄影建模技术生成倾斜摄影模型,以此生成基于真实影像纹理的高分辨率实景三维模型。
2.2地理信息系统技术地理信息系统是以采集、储存、管理、显示和分析地球表面与空间、地理分布有关的数据的综合计算机信息系统,是一种分析和处理海量空间数据的技术。
地理信息系统与地图学、测绘学、地理学、信息系统、遥感技术以及全球定位系统(GNSS)等相关技术领域结合在一起,形成了现代技术与传统科学结合一门多方向、跨学科的研究领域。
这些学科的发展为GIS产业的进步注入了新的元素,提供了更好的方法和可行性技术。
2.3LOD技术细节层次模型,LOD技术在不影响画面视觉效果的条件下,通过逐次简化景物的表面细节来减少场景的几何复杂性,从而提高绘制算法的效率。
该技术通常对每一原始多面体模型建立几个不同逼近精度的几何模型。
与原模型相比,每个模型均保留了一定层次的细节。
在绘制时,根据不同的表准选择适当的层次模型来表示物体。
LOD技术具有广泛的应用领域。
目前在实时图像通信、交互式可视化、虚拟现实、地形表示、飞行模拟、碰撞检测、限时图形绘制等领域都得到了应用,已经成为一项要害技术。
三维运动模拟平台总体设计

三维运动模拟平台总体设计为实现对某型光电跟踪器的动态跟踪性能的测试,设计了一种可以实现方位、俯仰和垂直直线运动的模拟运动平台,角位置精度达到15″,线位置精度达到0.01mm。
标签:运动模拟;结构设计;机构设计1 引言动态角跟踪精度检测装置由被试系统、多波段点源目标发生器系统(以下简称“目标发生器”)、运动模拟平台及总控制系统四个部分组成,图1为动态角跟踪精度检测装置系统组成原理框图。
其中的运动模拟平台可以完成方位、俯仰和垂直直线运动。
2 目标运动平台目标运动平台包含圆弧导轨副(含驱动传动机构)、目标固定支撑台面(俯仰U型框)、俯仰/升降二维运动机构、平台三维(俯仰、升降及滑动)伺服驱动系统、平台运动控制系统等5部分组成,图2为运动平台组成框图。
导轨为目标平台的方位运动轨迹,围绕着圆弧导轨的圆心转动,形成方位视线角速度变化;目标固定支撑台面负载目标发生器在进行沿圆弧导轨水平运动的同时,通过俯仰和高低二维运动机构带动目标发生器进行自身的位置运动,形成复合俯仰方位视线角速度变化,进而模拟目标在空域范围内的位置信息,以便对被测系统进行测试及仿真。
2.1 运动平台功能平台本身具备三个运动自由度,目标发生器安放于运动平台的俯仰框上,平台依据操作者规划的运动路径,带动目标模拟系统形成相对被测试系统的方位、俯仰两个自由运动并保证目标光轴实时指向被测系统成像面中心,模拟真实环境下目标的运动特性,以便被测系统进行跟踪,分述如下。
2.1.1 模拟目标的方位运动整套设备在以GDX塔的转轴中心为圆心的圆弧导轨上运动,实现方位角度变化的模拟,由于被测系统及圆弧导轨都以GDX塔的转轴中心为圆心,可以实现旋转中心重合,所以可以保证目标在导轨上运动时,被测系统光轴可以始终跟随着目标发生器的光轴,且在某一视场可观测到多波段点源目标;2.1.2 模拟目标的俯仰运动升降机构为沿圆弧导轨运动的一套直线升降机构,带动目标发生器升降,与俯仰运动机构产生相应的俯仰视线角角度变化,以便测试时被被测系统对目标进行搜索或跟随。
ProENGINEER的卡车三维参数化总布置设计系统

1、引言产品设计通常可以分为创新设计和变型设计两类,在机械、汽车行业中,创新设计较少,大量的是变型设计,也就是在原有产品的基础上,按市场需求进行局部换型和调整、重组。
变型设计的实现过程可以最大限度地利用企业已有的成熟产品资源,具有很强的灵活性和适应性,这也就要求企业实施平台化战略。
卡车是一种多品种、多系列的产品,新技术、新产品日益广泛的应用使得卡车的底盘的更新和换型周期不断缩短。
卡车性能主要取决于底盘,卡车底盘设计制造水平的不断提高是卡车行业赖以发展的基础。
同时,底盘作为平台战略的主要对象,它的快速设计与开发对企业产品平台化战略的实施也必将产生积极的作用。
车辆的总布置是整车开发的基础,其水平对整车产品质量和性能起决定性作用。
现惯用的是二维平面方法,它要求总布置人员素质要高,必须对产品零部件相当熟悉且总布置工作必须做细,总布置过程当中要基本完成全部部件的布置,部件设计人员不独立进行部件的布置。
这种做法的优点是总布置人员站在整车的高度全局统筹考虑,一般不易发生由于部件之间缺乏沟通造成的干涉等矛盾;缺点是要求总布置人员具有相当丰富的专业知识和经验并且对各种繁杂的产品具有较深入的了解,对零部件掌握程度高,否则由于部件人员介入晚,一旦总布置出现问题极易影响开发进度和质量。
针对汽车总布置的性质和特点,结合企业实际,以大型CAD/CAE/CAM三维软件Pro/ENGINEER为基础进行二次开发,研制了卡车底盘总布置设计系统,同时采用部件设计人员参与部件布置、总布置与部件布置相结合同步进行的开发思路,使该系统操作简单,设计过程直观、高效,适用于轻卡底盘变型设计与开发。
2、Pro/ENGINEER软件Pro/ENGINEER是美国PTC公司(Parametric Technology Corporation,参数技术公司)开发的三维造型设计系统,它以单一数据、参数化、基于特征、全相关性以及工程数据再利用等改变了传统机械设计的观念,为工业产品设计提供完整的解决方案,成为当今世界机械CAD领域的新标准,广泛应用于造型设计、机械设计、模具设计、加工制造、机构分析、有限元分析及关系数据库管理等各个领域。
毕业设计(论文)-空间3-rps并联机构的运动分析与仿真[管理资料]
![毕业设计(论文)-空间3-rps并联机构的运动分析与仿真[管理资料]](https://img.taocdn.com/s3/m/3ad4a49648d7c1c709a145a5.png)
毕业设计(论文)题目:空间3-RPS并联机构的运动分析与仿真题目类型:论文型学院:机电工程学院专业:机械工程及自动化年级:级学号:学生姓名:指导教师:日期: 2010-6-11摘要3-PRS并联机构是空间三自由度机构,该机构具有支链数目少、结构对称、驱动器易于布置、承载能力大、易于实现动平台大姿态角运动等特点,目前已在工程中得到成功应用。
本文基于空间机构学理论,对3-RPS并联机构进行了相关的运动学分析。
在对机构结构分析的基础上,对机构的输出位姿参数进行了解耦分析,得到了机构输出参数间的解耦关系式;用解析法推导了机构的位置反解方程;用数值法实现了机构的位置正解;依据驱动副行程、铰链转角、连杆尺寸干涉等限制因素确立约束条件,利用极限边界搜索算法搜索了3-PRS并联机构的工作空间,分析了该机构工作空间的特点,并进行了工作空间体积计算。
最后基于ADAMS软件平台,建立了3-RPS并联机构的三维实体简化模型,对3-RPS并联机构的运动进行了仿真。
本文的研究为3-RPS并联机构的结构设计与应用提供了参考。
关键词:3-PRS并联机构;位置正解;位置反解;工作空间;运动仿真ABSTRACT3-PRS parallel mechanism is a three degrees of freedom of space agencies, the agency has a small number of branched-chain, structural symmetry, the drive is easy layout, carrying capacity, easy to implement a large moving platform attitude angle motion and other characteristics, has been successfully applied in engineering . Based on the theory of space agencies, on the 3-RPS parallel mechanism was related to kinematics analysis. In the analysis of the structure, based on the position and orientation of the body of the output parameters of the decoupling analysis, the decoupling of the output parameters of the relationship; analytic method derived by inverse position equations institutions; achieved by numerical methods body forward position; based driver Vice trip, hinge angle, rod size interference and other constraints set constraints, using the limit boundary search algorithm for searching for the 3-PRS parallel mechanism of the working space, analysis of the sector space characteristics, and a working space of volume. Finally, based on ADAMS software platform, the establishment of the 3-RPS parallel mechanism of three-dimensional solid simplified model of 3-RPS parallel mechanism of the movement is simulated. This study for the 3-RPS parallel mechanism structure provides a reference design and application.Key word: 3-PRS parallel mechanism; forward position;inverse position;workspace ;motion simulation.目录摘要IIABSTRACT III前言VII第1章绪论1课题研究的意义 1并联机构简介 2并联机构的国内外发展现状 3少自由度机构介绍 6少自由度的研究意义 6少自由度并联机构的研究现状 (6)本文主要研究内容7第2章并联机构的组成原理及运动学分析 (9)引言9并联机构自由度分析9并联机构的组成原理10并联机构的研究内容11运动学分析11工作空间分析12本章小结13第3章3-PRS并联机构位置分析14引言14空间3-RPS并联机构14机构组成143-RPS并联平台机构的位姿描述 (15)3-RPS并联平台机构位姿解耦 (19)3-RPS并联平台机构的位姿反解203-RPS并联平台机构的位置正解23本章小结:25第4章3-RPS并联机构的工作空间分析 (26)引言263-RPS并联平台机构的工作空间分析 (26)机构的运动学约束263-RPS并联机构工作空间边界的确定 (28)工作空间分析算例29工作空间体积的计算方法29本章小结30第5章3-RPS并联机构的仿真与应用 313-RPS并联机构的的三维建模31ADAMS软件介绍313-RPS并联机构的建模313-RPS并联机构的运动仿真323-RPS并联机构的应用34本章小结37总结与体会38谢辞39参考文献40前言机构的发明与发展同人类的生产、生活息息相关,它促进着生产力的发展、生产工具的改进和人类生活水平的不断提高。
三维仿真模拟训练系统(一)2024

三维仿真模拟训练系统(一)引言概述:三维仿真模拟训练系统是一种利用计算机技术和三维建模技术构建的虚拟训练环境,旨在通过模拟真实场景和情境,提供具有实战性的训练资源,以帮助训练对象提升技能水平和决策能力。
本文将对三维仿真模拟训练系统进行详细介绍,包括其原理、功能、应用领域、优势和未来发展方向。
正文内容:1. 原理1.1 数学模型:三维仿真模拟训练系统基于一系列数学模型,包括几何模型、物理模型、运动学模型等,通过对现实物体和运动过程进行建模和仿真,实现真实感观的模拟效果。
1.2 传感器技术:通过结合传感器技术,三维仿真模拟训练系统能够准确捕捉和反馈训练对象的动作和表现,以实时调整仿真环境和提供即时反馈,增强训练的针对性和实用性。
2. 功能2.1 场景模拟:三维仿真模拟训练系统能够模拟各种真实场景,如战场环境、航天飞行、医疗手术等,让训练对象在虚拟环境中感受到真实场景的复杂性和压力,提高应对复杂情况的能力。
2.2 交互体验:通过交互设备,训练对象可以与虚拟环境进行互动,进行各种操作和实验,同时系统能够根据训练对象的操作和反馈进行实时调整,提供个性化的训练体验。
2.3 数据分析:三维仿真模拟训练系统具备数据采集和分析功能,能够记录和分析训练对象的行为数据,包括反应时间、准确度等指标,为训练评估和改进提供数据支持。
2.4 多人协作:系统支持多人模式,多个训练对象可以在同一虚拟环境中进行训练,并进行协作和协同训练,提高团队合作能力和沟通协调能力。
2.5 定制开发:三维仿真模拟训练系统具备定制开发功能,可以根据不同的训练需求和应用领域进行定制化开发,提供个性化的训练方案和功能模块。
3. 应用领域3.1 军事训练:三维仿真模拟训练系统在军事领域得到广泛应用,可以模拟战场环境、武器操作等,提升作战能力和战时决策能力。
3.2 航空航天:在航空航天领域,三维仿真模拟训练系统能够提供飞行模拟、航天器操作等训练,培养飞行员和宇航员的技能和心理素质。
六自由度汽车驾驶运动模拟器设计

摘要汽车驾驶模拟器是一种用于汽车产品开发、“人—车—环境”交通特性研究或驾驶培训的重要工具。
近年来,由于具有安全性高、再现性好、可开发性强、成本低等显著特点,研究开发驾驶模拟器已经成为国内外一个重要发展方向。
本文在查阅国内外大量资料的基础上,结合老师的研究课题主要对六自由度汽车驾驶模拟器液压系统部分进行设计。
六自由度汽车运动模拟器采用液压伺服阀控制液压缸来驱动模拟平台的运动,以实现汽车驾驶模拟器运动姿态模拟。
本文主要进行机械机构的设计、液压伺服系统设计、液压泵站设计和液压缸的设计等。
通过模拟器的机构设计和驱动液压伺服系统设计,结合电气系统能够实现汽车在不同运行状态的模拟,当驾驶员坐在驾驶舱系统的座椅上进行模拟驾驶时,完全能够感受到实际汽车驾驶的各种体感,为实车训练驾驶提供了可替代的模拟平台;本设计也为今后的进一步研究及其在娱乐模拟器、动感电影等产业的实际推广和应用方面奠定了基础。
关键词:汽车驾驶模拟器六自由度运动平台液压伺服系统运动姿态控制AbstractThe Automobile-driving i an important tool which used for the development of auto mobile product and the study of the transportation characteristics of “man-car-environment”or the driver training .In recent years, the study of the automobile-driving simulator used for development has become an important development direction in the world because of the notable characteristics of high safety, well reappearance of scene, easy to develop and low cost.This article is based on searching the large quantity of information about at home and abroad, and combines with the tea cher’s research task which mainly designs the part of 6-dof driving Simulator of hydraulic system .The 6-dof motion simulator adopts valves of hydraulic servo to control actuator to drive the movement of driving simulation platform, and to achieve the movement posture simulation of the automobile driving simulator. This article is mainly about the designing of machine, the system of hydraulic servo, hydraulic pump station, and actuator and so on.According to the designing of agencies of simulator and hydraulic servo system, it can combines the electrical system which can bring out the imitation of cars in different movement conditions, when the driver simulating drive on the seat of cockpit system, you can feel the feeling of driving a true car, and it also offer the simulator platform which can be replaced for true driving training. At the same time, this designing is also establishes for the further researches and the practice extension and use.Keywords:Driving-automobile simulator, 6-dof of motion platform, the system of hydraulic servo, the control of campaign attitude目录1绪论 (1)引言 (1)国内外发展现状 (2)1.2.1国内外研究和发展概述 (2)1.2.2驾驶模拟器的应用和发展 (3)课题任务 (5)论文的主要研究内容 (5)2 运动学及力学分析 (6)六自由度运动模拟器机构位置反解 (6)2.1.1坐标系的建立 (6)2.1.2广义坐标定义 (6)2.1.3坐标变换矩阵 (7)2.1.4液压缸铰支点坐标的确定 (8)2.1.5位置反解 (10)六自由度运动模拟器机构位置正解 (11)静力学分析 (11)3 机械及液压部分设计 (12)运动模拟平台的设计 (12)3.1.1液压缸内壁D活塞杆直径d的计算 (12)3.1.2液压缸壁厚和外径的计算 (14)3.1.3缸盖壁厚的确定 (14)3.1.3液压缸工作行程的确定 (15)3.1.4缸体长度的确定 (15)3.1.5液压系统的计算 (15)液压泵站 (17)铰链的设计 (18)执行机构单元组成 (21)电液伺服控制单元与液压系统 (22)反馈单元 (23)4 电气部分设计 (24)电气原理及接口设计 (24)4.1.1MCS-51系列单片机的引脚及其功能 (24)4.1.2单个电液伺服液压缸位置控制电路设计 (26)4.1.3扩展电路 (26)电气原理图 (27)5 结论 (28)本文结论 (28)本文研究工作的不足 (28)参考文献 (29)致谢 (30)1绪论引言驾驶模拟器是一种用于汽车产品开发、“人-车-环境”交通特性研究或驾驶培训的重要工具。
《Maya三维动画制作》精品课程整体设计

(二)课程教学目标设计
1.课程教学目标体系
本课程的总体教学目标是:
使学生熟练掌握Maya动画制作的基本知识和基本 技能,培养学生全面掌握三维建模、曲面建模、材质 编辑、灯光、摄像机、渲染、动力学、角色动画等技 术,培养学生影视广告、影视特效、建筑动画、栏目 包装等制作能力,培养学生良好的职业素质及创新精 神及团队合作意识。
本课程的前导课程有《素描与色彩》、《Photoshop平面图 像处理》、《动画概论》、《Flash二维动画制作》等课程,后 续课程有《影视后期制作》等。
二、课程教学设计
(一)课程设计的理念与思路
1.课程设计的理念:
(1)以影视动画制作能力培养为重点,面向行业企业, 实现课程教学内容的整合以及与实验实训教学的有机统一; (2)创新工学结合方式,引入企业优秀教学资源,以 项目导入教学案例,全面激发学生学习兴趣及主动性,全 面强化实践教学环节; (3)突破专业基础课与专业课界限,实现其教学内容 的有机整合,突出学生核心职业能力的培养。
《Maya三维动画制作》精品课程
一、课程的性质与作用 二、课程教学设计 三、教学队伍介绍 四、教学环境、设施和实训实习条件 五、教学效果 六、课程特色与创新
一、课程的性质与作用
Maya是由美国Autodesk公司推出的著名三维建模和动画 软件,是世界上最为优秀的三维动画和制作软件之一,它包 含了建模、合成、视觉效果及动画等功能,可以在多种硬件 平台上实现电影、游戏等动画及效果的制作 ,特别适合制作 角色动画及影视作品,它已成为专业人士在三维设计与制作 领域中的首选工具软件之一。 Maya可以大大提高电影、电视、游戏等领域开发、设计、 创作的工作流效率,同时改善了多边形建模,通过新的运算 法则提高了性能,多线程支持可以充分利用多核心处理器的 优势,新的HLSL着色工具和硬件着色API则可以大大增强新 一代主机游戏的外观,另外在角色建立和动画方面也更具弹 性。 事实上,由于Maya三维动画软件的强大功能及作用以及 其在业界内的巨大影响,因此,《Maya三维动画制作》课程 必然成为动漫设计与制作等相关专业的骨干课程。
基于串联机构的三自由度运动平台设计与仿真分析_于鹏

4 仿真分析
实际汽车行驶过程中,绝大多数运动可看成侧翻、俯仰、竖 直平动三个分运动的合成运动。为使驾驶感受更加逼真,沉浸感 更强,对汽车运动过程中的各种状况进行分析转化。由于本机构 为串联机构,各运动互不影响,故分别对各自由度驱动电机进行 驱动设置,仿真测试平台模拟汽车爬坡、下坡、转弯、加速和减速 等运动的性能。
王培俊,(1962-),女,浙江宁波人,博士,教授,主要研究方向:数字化设计与检测、VR、CAD 技术等
第1期
于 鹏等:基于串联机构的三自由度运动平台设计与仿真分析
181
器设计要求各自由度行程大于汽车正常运动的运动幅度,设计其 竖直升降行程不低于 90mm,侧翻角度不小于 20°,俯仰角度不小 于 30°[3]。从机构的拓扑结构出发,通过分析各自由度运动特点,列 举出所有满足约束条件的可选构型,逐一分析可选构型的机构特 性,最终选出最佳构型。
步带—滚珠丝杠—丝杠螺母和升降台,实现由电机转动到升降平
动的功能。其中滚珠丝杠导程为 5mm,则平台升降位移 d1 与升降
减速机转动角位移 n1 的关系为:
d1=
n1 2π
×5
(1)
为增加动感体验、提高驾驶舒适性,在座椅与座椅安装台之
间添加减震装置。仿真时在虚拟样机中的座椅和安装台之间添加
图 1 串联运动平台结构图 Fig.1 Structure of the Series Motion Platform
建或衍生新零件。装配完成后得到三自由度串联运动平台的三维 数[6]。测量数据,如图 3 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维运动模拟平台总体设计
为实现对某型光电跟踪器的动态跟踪性能的测试,设计了一种可以实现方位、俯仰和垂直直线运动的模拟运动平台,角位置精度达到15″,线位置精度达到0.01mm。
标签:运动模拟;结构设计;机构设计
1 引言
动态角跟踪精度检测装置由被试系统、多波段点源目标发生器系统(以下简称“目标发生器”)、运动模拟平台及总控制系统四个部分组成,图1为动态角跟踪精度检测装置系统组成原理框图。
其中的运动模拟平台可以完成方位、俯仰和垂直直线运动。
2 目标运动平台
目标运动平台包含圆弧导轨副(含驱动传动机构)、目标固定支撑台面(俯仰U型框)、俯仰/升降二维运动机构、平台三维(俯仰、升降及滑动)伺服驱动系统、平台运动控制系统等5部分组成,图2为运动平台组成框图。
导轨为目标平台的方位运动轨迹,围绕着圆弧导轨的圆心转动,形成方位视线角速度变化;目标固定支撑台面负载目标发生器在进行沿圆弧导轨水平运动的同时,通过俯仰和高低二维运动机构带动目标发生器进行自身的位置运动,形成复合俯仰方位视线角速度变化,进而模拟目标在空域范围内的位置信息,以便对被测系统进行测试及仿真。
2.1 运动平台功能
平台本身具备三个运动自由度,目标发生器安放于运动平台的俯仰框上,平台依据操作者规划的运动路径,带动目标模拟系统形成相对被测试系统的方位、俯仰两个自由运动并保证目标光轴实时指向被测系统成像面中心,模拟真实环境下目标的运动特性,以便被测系统进行跟踪,分述如下。
2.1.1 模拟目标的方位运动
整套设备在以GDX塔的转轴中心为圆心的圆弧导轨上运动,实现方位角度变化的模拟,由于被测系统及圆弧导轨都以GDX塔的转轴中心为圆心,可以实现旋转中心重合,所以可以保证目标在导轨上运动时,被测系统光轴可以始终跟随着目标发生器的光轴,且在某一视场可观测到多波段点源目标;
2.1.2 模拟目标的俯仰运动
升降机构为沿圆弧导轨运动的一套直线升降机构,带动目标发生器升降,与俯仰运动机构产生相应的俯仰视线角角度变化,以便测试时被被测系统对目标进行搜索或跟随。
2.1.3 光轴调整用垂直直线运动机构
在直线升降机构上,叠放一俯仰运动机构,目标发生器以定位机构固定在这一俯仰机构上。
当产生如模拟目标的俯仰运动时,目标发生器被带动产生直线升降时,由于运动模式为平移,所以目标发生器光轴也出现上下平移,此时安放在GDX塔上的被测系统的光轴无论怎样调整都会与目标生成器光轴产生夹角,导致无法观测到目标图像。
本处的俯仰运动机构的作用就是在目标生成器出现水平上下运动时,实时调整光轴角度,使目标生成器的光轴始终指向被测系统,这样被测系统通过GDX塔帶动可实现光轴对准,达到测试或仿真的目的。
2.2 结构设计
目标运动平台主的结构部分要由目标支撑固定机构、俯仰/升降联动机构、方位滑动台体、圆弧导轨机构、电机驱动元件、光电编码器及气浮光学平台组成,以实现目标发生器的固定、俯仰/升降及方位运动,图3为目标运动平台系统组成三维设计效果图。
目标支撑固定机构(图中俯仰框)用于目标系统的安装及定位;俯仰/升降自由度设计成联动机构以保证滑动台体沿圆弧导轨机构进行方位运动时始终指向被试系统光轴。
2.2.1 方位旋转设计
圆弧导轨方位维由高精密重载圆弧导轨、涡轮蜗杆传动机构、伺服电机驱动机构、定位轴及轴承机构、承载台面等五个部分组成。
结构设计的关键是高精密重载圆弧导轨的定制和驱动与传动机构的设计,本方案的圆弧导轨机构为外购定制THK弧形内径1.8m的导轨副系统,采用4段各1/4圆拼接而成,内外环均为16个滑块支撑平台上面部分。
方位旋转维台面考虑试验台整体功能,由四块1/4圆形台面拼接而成,分别为升降台台面、人行通道台面(升降台台面对面的1/4台面)、布线台面及备用基准台面,拼接时采用高分辨率激光设备定位,从而实现各块各自功能,以满足设计指标要求。
方位驱动单元采用日本安川1.5kW伺服电机驱动,传动单元为直径950mm 的大型精密涡轮匹配蜗杆实现。
2.2.2 直线升降设计
直线升降维由导向支撑导轨机构、螺杆传动机构、刚性支架、辅助支撑、俯仰支撑台面及驱动单元等六部分组成,如图4所示。
直线升降机构行程长、精度高、驱动困难是设计及元件选型的三大难点,设计时考虑整体刚性,将外围框架设计为长方形加固铝合金支架及底角辅助支撑方式,采用航天级高强度铝合金型材经刮研工艺以保证导向导轨机构的定位精度;内部采用每侧2根共计4根THK高精度直线导轨副,其自身精度为每1m内位置误差0.02mm;通过松下1kW伺服电机及减速器带动THK高精度大型滚珠螺杆执行升降维移动;大型滚珠螺杆自身精度为每1m内位置精度误差0.02mm。
2.2.3 俯仰旋转设计
3 结束语
为了进行优化设计,本运动模拟单元通过三维实体建模,获得了大量的用于计算和优化的信息,这些信息用来进行优化设计计算,对结构的优化、电机的优选及反馈原件的布置都起到了很大的作用,通过实体加工检测,很好的完成了设计指标。
参考文献
[1]孙恒,傅则绍.机械原理[M].北京:高等教育出版社,2001.
[2]薛开.基于多轴运动控制器的两轴转台控制系统[J].哈尔滨工程大学学报,2006(8):570~573.
作者简介:纪小辉(1970-),男,陕西人,西安工业大学光电学院,副教授,主要从事教学和科研工作,研究方向为光电仪器设计。