速算与巧算(一)(含答案)-
四年级奥数知识点:速算与巧算(一)

四年级奥数知识点:速算与巧算(一)例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算201999+20199+2019+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)201999+20199+2019+199+19=(20199+1)+(20199+1)+(2019+1)+(199+1)+(19+1)-5=201900+20190+2019+200+20-5=222220-5=22225.例3 计算(1+3+5++1989)-(2+4+6++1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990497+9951990497=995.例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388=3907137564=273028=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=3807+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)6=(49406+2+321+1+3)6=(49406+6)6(这里没有把49406先算出来,而是运=494066+66运用了除法中的巧算方法)=4940+1=4941.副标题#e#例6 计算54+9999+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+9999+45=(54+45)+9999=99+9999=99(1+99)=99100=9900.例7 计算 99992222+33333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.99992222+33333334=333332222+33333334=33336666+33333334=3333(6666+3334)=333310000=33330000.例8 2019+999999解法1:2019+999999=1000+999+999999=1000+999(1+999)=1000+9991000=1000(999+1)=10001000=1000000.解法2:2019+999999=2019+999(1000-1)=2019+999000-999=(2019-999)+999000=1000+999000=1000000.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
速算与巧算 (1)

凝涵数理化第一讲速算与巧算【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43=125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
四秋 第1讲 速算与巧算(一)

速算与巧算(一)一、知识站点1、加法结合律2、加法交换律3、基本的运算技巧4、“取整补零”二、注意事项1、认真地观察算式中各个数的特点,确定简算的方法;2、简算的步骤必须清楚完整、简练。
例1、用简便方法计算下面各题。
(1)275+156+225+44 (2)9999+998+97+9(3)68+192+40 (4)529-395练一练:(1)172+55+62+45+28 (2)9+97+996+995(3)653-498 (4)865-489例2、用简便方法计算下面各题。
1)50+56+48+46+52+60 2)178+188-78练一练:(1)43+39+38+40+39+41 (2)88+79+82+75+85+81 (3)785+992-232 (4)5131+4367-1131-1367例3、用简便方法计算下面各题。
1)867-45-55 2)845-(45+130)3)324-(124-96)练一练:(1)375-88-12 (2)845-(88+45)(3)785-(185-99)例4、用简便方法计算下面各题。
1)18-16+14-12+10-8+6-4+2 2)42+39+50-38-32-42+48+37练一练:(1)97-95+93-91+89-87+85-83+81-79 (2)30+32+35+28-32-33课后测试题1★用简便方法计算下面各题。
(1)56+27+44+13 (2)85+32+68(3)4231+5648-4648-2231 (4)219+648+51-138-548-62(5)99998+9998+998+98+82★★歌唱比赛中,七位选手的分数分别为85分、82分、76分、78分、70分、76分、65分。
这七位选手的平均成绩是多少?3★★用简便方法计算下面各题。
1)80-79+78-77+76-75+74-73+72-71 2)65+58+55+60-57-62-553)52+49+57+50+48+514★★★用简便方法计算下面各题。
小学三年级上册数学奥数知识点讲解第1课《速算与巧算1》试题附答案

题目1:用一根0-9的数字重排列组成一个最小的两位数,这个最小的两位数是多少?解答:根据最小的两位数的定义,十位上的数字应为0。
个位上的数字既可以为1-9中的任意一个数字,所以最小的两位数是10。
题目2:求3+4+5+6+7+8+9的值。
解答:将要求和的数字按从小到大排列,即3+4+5+6+7+8+9=42题目3:小强几天之后就过生日了。
请大家帮忙计算一下,如果今天是星期二,那么他的生日将是星期几?解答:星期一到星期日依次为1-7,星期二再过一天就是星期三,再过一天就是星期四、所以小强的生日将是星期四题目4:小明有5个苹果,他吃了其中的3个。
请问小明还剩几个苹果?解答:小明吃了3个苹果后,还剩下5-3=2个苹果。
题目5:小猫有9只尾巴。
你知道小猫有几条腿吗?解答:一只猫有4条腿,所以9只小猫共有9×4=36条腿。
题目6:在1、2、3、4、5、6中任取2个数紧挨在一起,共有几种可能?解答:1、2、3、4、5、6中任取两个数,共有C(6,2)种组合方式。
C(6,2)=6!/(2!(6-2)!)=6×5/(2×1)=15种可能。
题目7:有一个数加上15等于36,这个数是多少?解答:设这个数为x,则x+15=36、解这个方程可得x=36-15=21,所以这个数是21题目8:一个长方形的周长是10m,宽是2m,你能求出它的长度吗?解答:设长方形的长为x,则2(x+2)=10。
解这个方程可得x=3,所以长方形的长度是3m。
题目9:在1、2、3、4、5中,最小的三位数是多少?解答:根据最小的三位数的定义,百位上的数字应为1、十位上和个位上的数字既可以为1-5中的任意两个数字,所以最小的三位数是123题目10:旺旺从家里到学校共需要2小时。
已经走了1小时,还需要多长时间才能到学校?解答:旺旺已经走了1小时,所以还需要2-1=1小时才能到学校。
四年级思维拓展-速算与巧算(一)

速算与巧算(一)☜知识要点速算与巧算是学习数学、解决生活中数学问题的基础,只有掌握了速算与巧算才能又快又准的计算出正确的结果。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
1.找互补数:两个数相加和是10、100、1000、10000、、、、、、我们就称这两个数互为补数。
☜精选例题【例1】(1)72+28 ;(2)654+346;(3)8742+42+1258;(4)2345+3243+7655+6757;☝思路点拨:对于算式(1)72+28 、(2)654+346,同学们会很快得出答案为100、1000。
对于算式(3)、(4)我们可以运用加法交换律:a+b=b+a 和加法结合律:(a+b)+c=a +(b+c),先把相加能得到10000的加起来再和其它数相加。
☝标准答案:解:(1)72+28=100 (2)654+346=1000(3)8742+42+1258 (4)2345+3243+7655+6757=8742+1258+42 =(2345+7655)+(3243+6757)=10000+42 =10000+10000=10042 =20000✌活学巧用1. 327+43+6732. 8973+342+1027+6583. 785342+________=10000004. 3270+______=10000总结:找互补数的方法:知道一个互补数求另一个互补数,如果知道的这个互补数个位不为零,它的互补数就等于用10来减去这个数的最高位与最低位,其它位上的数字用9来减。
注意个位为零时看前一位。
2.凑整:把相加能得到整十、整百、整千、整万、、、、、、的数先加起来有利于我们的计算简便。
【例2】简便计算:(1)48+54;(2)3999+5+456+539+5+6;(3)79998+7998+798+78+8;☝思路点拨:题目中没有能够凑成整十、整百、整千、、、、、的数,但是有些数很接近,我们可以把(1)的48分成2+46,这样46就可以和54凑成整百了,(2)中的5可以分解成1+4,分别加到前后的数上凑整,(3)式可以分别给这五个数添加上他们凑整所需的2,最后再减去5个2就行了。
速算与巧算(一)(含答案)-

速算与巧算(一)速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
(一)指导探索:例L 计算8 + 89 + 899 + 8999 + 89999分析与解:观察题目的特点发现:8可以看作9-1, 89可以看作90-1, 899可以看作900-1……,又是连加的算式。
根据这个特点,可以看作9, 90, 900, 9000与90000的和再减去5个1的和。
8 + 89÷899+ 8999 + 89999= (9-1) + (90-1) + (900-1) + (9000-1)÷ (90000-1)=(9+90 ÷ 900+ 9000 +90000)-(1 + 1 +1 + 1 + 1)=99999 - 5=99994还可以这样想:8 + 89 + 899 + 8999 + 89999= 4 + 1 + 1 + 1 + 1 + 89 + 899 + 8999 + 89999= 4 + (89 + 1) + (899 + 1) + (8999 + 1) + (89999 +1)= 4 + 90 + 900 + 9000 + 90000=99994例 2.计算:20+19 — 18—17 + 16+15—14- 13+・・・+4 + 3 — 2 — 1分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20-18 = 2, 19-17 = 2, 16-14 = 2, 15-13 = 2, -4-2 = 2,3-1 = 2,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20+19-18-17 + 16+15-14-13+ ∙∙∙+4 + 3-2-l=(20-18)+ (19-17)+ (16-14) + - ÷(4-2)+ (3-1)= 2 + 2+∙∙∙+2 + 210个2=20例 3. 444 × 25分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4o方法一:444 × 25= (400 + 40 + 4)×25= 400×25 + 40×25 + 4×25=10000+1000+100= 11100方法二:444 × 25= (111×4)×25= 111×(4×25)= 11100方法三:444 × 25=(444 ÷4)× (25 × 4)= lll×100= 11100例 4. 375×480 + 6250×48分析与解:观察题目的特点发现:“乘、力∏,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000o 375 × 480 + 6250 × 48=375 × 480 + 625 × 480=480 × (375 ÷ 625)= 480×1000=480000例 5.计算:333333×333333分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道333333 × 3 = 999999 ,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另 一个因数缩小3倍,变成111111。
三年级下册数学试题-思维训练:速算与巧算(1)(练习含答案)全国通用

速算与巧算一、运算律:1.交换律、结合律→加法、乘法5×2;25×4;125×82.分配率→乘法、除法a×b+a×c=a×(b+c) a÷b+c÷b=(a+c)÷b(只有除数相同才可以)二、公式1.等差数列求和公式(首项+尾项)×项数÷2或中间数×项数2.爬山数列求和公式中间数×中间数3.平方差公式二、特殊数1.重码数2.退一加补3.轮转数4.首同尾合十、尾同首合十四、定义新运算1.直接计算型(从左向右两两计算)2.找规律(逆推法)3.解方程本次课重点、1.读符号2.分组3.求项数4.求组数5.每组得数×组数=结果二、基准数法(平均数)三、首同尾合十、尾同首合十尾=尾×尾首=首×首+同【例1】100+99-98+97-96+95-94+…+7-6+5-4+3-2+1【例2】1000+999-998-997+996+995-994-993+…+104+103-102-101【例3】199+298+397+496+595+20=( )“”【例4】今天的午餐是美味的中国传统名吃——水饺,小朋友们各个都成了david wang 。
下面这8个数分别是第一组小朋友所持的水饺个数,你知道他们平均每人吃了多少个吗?18、19、23、20、20、23、18、19【例5】67×47=32×72=39×32=3【例5】韩国朝鲜79×71=560978×72=561677×73=562176×74=562475×75=5625【例6】韩国朝鲜93×13=120983×23=190973×33=240963×43=270953×53=2809【例7】69×49=37×77=46×67=4测试题1.求下列20个数的平均数:2009、2010、2008、1999 、1997 、2003、2009、1996、2001、2000、2009、1993、2011、2010、2000、1999、1998、2008、2010、20102.199-198+197-196+195-194+……+5-4+3-2+13.200+199-198-197+196+195-194-I93+……+4+3-2-14.108+107+111+111+115+116+113+113+110+110+1065.求下列10个数的平均数:41,43,38,38,46,47,43,44,37,436.⑴42×48⑵29×21⑶19×167.⑴75×45⑵69×49⑶38×35答案1.答案:这20个数都接近2000;这20个数的平均数是:2000+(9+10+8-1-3+3+9-4+1+0+9-7+11+10+0-1-2+8+10+10)÷20=2000+80÷20=2000+4=20042.答案:原式=(199-198)+(197-196)+(195-194)+……+(5-4)+(3-2)+1=99×1+1=1003.答案:原式=(200+199-198-197)+(196+195-194-193)+……+(4+3-2-1)=4×50=2004.答案:原式=110×11-2-3+1+1+5+6+3+3-4=1210+10=12205.答案:这10个数都比较接近40:这10个数的平均数是:(41+43+38+38+46+47+43+44+37+43)÷10=(40×10+1+3-2-2+6+7+3+4-3+3)÷10=420÷10=426.答案:⑴42×48=2016⑵29×21=609(尾为9×9=9不足两位补一位为09,首为2×3=6)⑶19×16=19×11+19×5=209+95=3047.答案:⑴75×45=75×35+75×10=2625+750=3375⑵69×49=3381(首为6×4+9=33,尾为9×9=81)⑶38×35=38×32+38×3=1216+114=1330。
四年级奥数 速算与巧算(1)

第1讲速算与巧算(一)【例1】计算9+99+999+9999+99999思路点拨:凑整(答案:111105)【例2】计算199999+19999+1999+199+19思路点拨:凑整(答案:222215)【例3】计算(1+3+5+...+1989)-(2+4+6+ (1988)思路点拨:配对、打包(答案:995)【例4】计算389+387+383+385+384+386+388思路点拨:基准数(答案:2702)【例5】计算(4942+4943+4938+4939+4941+4943)÷6思路点拨:基准数(答案:4941)【例6】计算54+99×99+45思路点拨:观察数的特征(答案:9900)【例7】计算9999×2222+3333×3334思路点拨:等积变形(答案:33330000)【例8】计算1999+999×999思路点拨:多9数的特征(答案:1000000)思路点拨:多9数的特征(答案:)巩固练习1:1.计算899998+89998+8998+898+88(答案:999980)2.计算799999+79999+7999+799+79(答案:888875)3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)(答案:994)4.计算1-2+3-4+5-6+…+1991-1992+1993(答案:997)5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推。
从1点到12点这12个小时内时钟共敲了多少下?(答案:78)6.求出从1→25的全体自然数之和。
(答案:325)7.计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101(答案:900)8.计算92+94+89+93+95+88+94+96+87(答案:828)9.计算(125×99+125)×16(答案:200000)10.计算3×999+3+99×8+8+2×9+2+9(答案:3829)11.计算999999×78053(答案:78052921947)12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?(答案:11111111108888888889)13.已知被乘数是888…8,乘数是999…9,它们的积是多少?(答案:888…87111…12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速算与巧算(一)
速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
(一)指导探索:
例1. 计算889899899989999++++ 分析与解:
观察题目的特点发现:8可以看作9189-,可以看作901-,899可以看作
9001-……,又是连加的算式。
根据这个特点,可以看作9,90,900,9000与90000的
和再减去5个1的和。
889++899+8999+89999
=(9-1)+(90-1)+(900-1)+(9000-1)+(90000-1)=(9+90+900+9000+90000)-(1+1+1+1+1)=99999-5=99994
还可以这样想:889899899989999++++
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
=++++++++=++++++++=++++=4111189899899989999
489189918999189999149090090009000099994
()()()()
例2. 计算:20191817161514134321+--++--+++--…
分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20182191721614215132422-=-=-=-=-=,,,,…,
312-=,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20191817161514134321+--++--+++--…
=-+-+-++-+-=++++=()()()()()
20181917161442312222
10220
……个
例3. 44425⨯
分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4。
方法一:44425⨯ =++⨯=⨯+⨯+⨯()40040425
400254025425
=++=10000100010011100
方法二:44425⨯ =⨯⨯=⨯⨯=()()111425
11142511100
方法三:44425⨯
=÷⨯⨯=⨯=()()
4444254111100
11100
例4. 375480625048⨯+⨯
分析与解:观察题目的特点发现:“乘、加,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000。
375480625048
3754806254804803756254801000480000
⨯+⨯=⨯+⨯=⨯+=⨯=()
例5. 计算:333333333333⨯
分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道
3333333999999⨯=,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另
一个因数缩小3倍,变成111111。
333333333333⨯
=⨯⨯÷=⨯=-⨯=⨯-⨯=-=()()()33333333333333999999111111
1000000111111110000001111111111111111111000000111111111110888889
例6. 计算:343535353434⨯-⨯
分析与解:题目中的各数都与34,35有直接的关系。
方法一:343535353434⨯-⨯
=⨯⨯-⨯⨯=⨯⨯-⨯⨯=3435101353410134351013534101
()()
方法二:343535353434⨯-⨯
=⨯+-⨯+=⨯+⨯-⨯+⨯=3435003535340034343500343535340035340
()()
()()
【模拟试题】(答题时间:40分钟)
1. 用简便方法计算
(1)678354322++() (2)283147171653+++ (3)38437184-+() (4)29041327173-- (5)653197-
(6)12517125⨯-
(7)23599⨯
(8)()130052013-÷
(9)672118218579⨯+⨯+⨯
(10)222222999999⨯
2. 计算:
(1)399999399993999399393+++++ (2)201918174321-+-++-+-…
(3)10099989796959493929190898810++---+++---++++…
987654321+---+++- (4)8888125⨯
3. 计算:34534515015÷.
【试题答案】
1. 用简便方法计算
(1)678354322++()
(2)283147171653+++
=++=+=678322354
1000354
1354
=+++=+=2831714716533001800
2100
()
(3)38437184-+()
(4)29041327173--
=-+=--=-=384184373841843720037163
()
=-+=-=2904132717329041500
1404
()
(5)653197-
(6)12517125⨯-
=-+=+=65320034533456 =⨯-=⨯=⨯⨯=⨯=125171125161258210002
2000
()
(7)23599⨯
(8)()130052013-÷
=⨯-=⨯-⨯=-=235100123510023512350023523265
()
=÷-÷=-=130********
10040
60
(9)672118218579⨯+⨯+⨯
(10)222222999999⨯
=+⨯+⨯=⨯+⨯=⨯+=⨯=()()671821857985218579852179851008500
=⨯-=⨯-⨯=-=2222221000000122222210000002222221222222000000222222222221777778
()
2. 计算:
(1)399999399993999399393+++++
=+++++-⨯=-=40000040000400040040416
4444446
444448
(2)201918174321-+-++-+-…
=-+-++-+-=++++=()()()()
2019181743211111
10110
……个
(3)10099989796959493929190898810++---+++---++++…
987654321+---+++-
=-+-+-+-++-+-+-+-++()()()()()()()
()1009799969895949110796854132
…
=++++++=33333503
2152
…个
(4)8888125⨯
=⨯⨯=⨯⨯=⨯=()()81111125
11118125111110001111000
3. 计算
34534515015÷
=⨯÷⨯=÷=()()
345100115100134515
23。