大功率电动三轮车电瓶充电电路的设计

合集下载

电动车(48v)充电原理图

电动车(48v)充电原理图

电动车(48v)充电原理图充电器.一插上电源,充电器一点反应都没有.但储能电容还有电,如果不及时在这里放电的话,还会让你心惊肉跳一下,很难受。

首先确定13007是否好,测二个管子的中点电压是否是150V,是150V就是电容68UF/400V到大变压器电路之间有问题。

不是150V就是二只240K启动电阻有一只坏了。

大部分是后一种情况。

如果是3842的电路一般是启动电阻变的无穷大,那两个2.2欧姆的电阻也要检查。

TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。

常用电动车充电器根据电路结构可大致分为两种。

第一种充电器的控制芯片一般是以TL494为核心,推动2只13007高压三极管。

配合LM324(4运算放大器),实现三阶段充电。

还有一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。

整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。

1.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。

TL494是PWM开关电源集成电路。

引脚功能和内部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。

第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。

第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。

第4脚为死区电压控制端,该脚电压决定死区时间。

电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。

凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。

部分电动自行车充电器电路详解(1)

部分电动自行车充电器电路详解(1)

部分电动自行车充电器电路详解2.具有工频变压器的电动自行车充电器(1)快乐牌KLG智能充电机快乐牌KLG智能充电机是一款货运三轮常用的大功率带环牛变压器的充电机。

电路原理图见图15所示。

变压器T初级有一个抽头.次级有两个独立绕组.下边14V是辅助电源绕组.给控制电路供电;上边充电绕组有个抽头,供36V电瓶充电使用.上边是供48V电瓶(未用)。

市电通过继电器常闭触点J-1接在初级抽头A上时,是恒流充电位置,输出43.2V;通过继电器常开触点接在初级上端B时,是涓流充电位置,输出37.5V~43.2V。

U3、G2组成滞后型电瓶电压检测电路,电瓶电压通过电压取样电阻W2、R2和R3加到U3B的⑤脚,当电瓶电压升到43.2v时,U3B翻转,⑦脚输出高电平,U3A翻转,其①脚输出高电平,导致G2导通,使U3基准电位下降,产生滞迟闭锁效应。

此时由于U3A的①脚输出高电平,G1导通,继电器J得电,继电器常开触点接在B点上,进入涓流充电位置,输出37.5V~43.2V。

调整W2可以改变切换电压。

R6、C6是积分电路,延时一分钟左右。

字串9该充电器用于48V电瓶充电时,只需做两处改动:充电主绕组由抽头改接到上端;增大电压取样电阻上半部分。

如有必要则更换电压表头。

(2)千鹤100Hz脉冲充电器电路原理图见图16。

工频变压器T1是降压变压器,D5~D8组成桥式整流,输出的脉动直流不经滤波供电瓶充电。

上述脉动直流经D1、R9、DW2为控制电路供电。

充电开关SCRl是单向可控硅,它导通时为电瓶充电,由于供电电源是馒头形的100Hz脉动直流电,过零时关断,所以这个充电器为100Hz脉冲充电器,充电电流波形如图16中所示。

充电开关控制由DW3、T1、T2组成。

在馒头形的100Hz脉动直流电的每个周期,V+电位上升到DW3反向击穿时,V+经D4、R20、R21、DW3使T2导通,进而使T1导通,V+经T1、D2使SCR1导通,在V+电位高于电瓶电压时,V+对电瓶充电。

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理(上)根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。

也就是说,充电器输出最大达到43V/3A/129W,已经可满足。

在充电过程中,充电电流还将逐渐降低。

以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。

输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。

MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。

目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。

MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。

尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。

由于MC3842的应用极广,本文只介绍其特点。

MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。

MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。

MC3842内部方框图见图1。

其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。

启动电压大于16V,启动电流仅1mA即可进入工作状态。

进入工作状态后,工作电压在10~34V之间,负载电流为15mA。

超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。

内设5V/50mA基准电压源,经2:1分压作为取样基准电压。

输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。

讲解几款电动车充电器的电路解析

讲解几款电动车充电器的电路解析

讲解几款电动车充电器的电路解析电动自行车充电器给电动车辆的铅酸电瓶、镍镉电瓶补充能源,要通过充电器进行。

充电器的种类很多。

一般以有无工频变压器区分可分为分两大类。

大功率的普遍采用环牛工频变压器。

虽然效率低,但是电流大(可到30A)、可靠。

货运电动三轮无一例外地使用它,而30Ah以下的电瓶则大多采用开关电源技术,这样便提高了效率,甩掉了笨重的工频变压器。

电动自行车充电器最大充电电流大多在2A左右。

1.采用开关电源技术的电动自行车充电器(1)山东GD36充电器电路原理图见图12所示。

该充电器为半桥式充电器。

主要性能指标为:输入电压:170-260V;输出电压:44 V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。

1)电路原理本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM 控制、电压控制、电流控制、输出整流滤波六部分组成。

整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。

自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。

自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。

自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。

设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。

这是一个十分强烈的正反馈过程,Q1迅速饱和导通。

与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。

Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。

但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。

常见的几款电动车充电器基本电路原理详解高清大图(西普尔)

常见的几款电动车充电器基本电路原理详解高清大图(西普尔)

常见的几款电动车充电器基本电路原理详解高清大图(西普尔)常见的几款电动车充电器基本电路原理首先就目前市场上面常见的几款充电器我们来认识一下:西普尔内部电路结构图:(直接在论坛找到了一个4812的图,感谢manstain 网友照片) 正面反面×××××××××××××××××××××××××××××××××××××××××××××××××××××特能充电器 (感谢幸福家园网友提供照)正面反面首先我们把充电器内部的电路基本结构部件进行了分割和注解电动车充电器其实还有另外的电路结构,大致可以分成2个大的板块,TL494芯片组成的半桥电路,UC3842芯片组成反激式电路,各自都有自己的特点。

目前市场上面绝大部分的充电器都是3842电路,我们就用3842作为我们主要讲解例子。

1.输入线2.NTC3.输入保险丝4.整流管×45.400V滤波电容6.PWM芯片38427.3842供电部分8.启动电阻9.MOS管10.开关变压器11.光耦12.输出整流管13.输出滤波电容14.控制部分供电15.运放LM324/35816.电流采样电阻17.输出保险丝18.输出线补充:19.输出电压控制部件(431)三、充电器工作基本原理基本的工作方框图(下午下班回家开始画,历时3小时...汗一个)注:图片里面的电流基准其实和电流检测存在比较关系,为了画的方便和直观,连到了一起~下面就这个基本工作方框图我们简单的说一下,怎么和维修的思路结合在一起。

常见的几款电动车充电器基本电路原理详解高清大图(西普尔)

常见的几款电动车充电器基本电路原理详解高清大图(西普尔)

常见的⼏款电动车充电器基本电路原理详解⾼清⼤图(西普尔)常见的⼏款电动车充电器基本电路原理⾸先就⽬前市场上⾯常见的⼏款充电器我们来认识⼀下:西普尔内部电路结构图:(直接在论坛找到了⼀个4812的图,感谢manstain ⽹友照⽚)正⾯反⾯下载 (95.89 KB)2009-6-1 21:20×××××××××××××××××××××××××××××××××××××××××××××××××××××特能充电器(感谢幸福家园⽹友提供照)正⾯反⾯⾸先我们把充电器内部的电路基本结构部件进⾏了分割和注解电动车充电器其实还有另外的电路结构,⼤致可以分成2个⼤的板块,TL494芯⽚组成的半桥电路,UC3842芯⽚组成反激式电路,各⾃都有⾃⼰的特点。

⽬前市场上⾯绝⼤部分的充电器都是3842电路,我们就⽤3842作为我们主要讲解例⼦。

1.输⼊线2.NTC3.输⼊保险丝4.整流管×45.400V滤波电容6.PWM芯⽚38427.3842供电部分8.启动电阻9.MOS管10.开关变压器11.光耦12.输出整流管13.输出滤波电容14.控制部分供电15.运放LM324/35816.电流采样电阻17.输出保险丝18.输出线补充:19.输出电压控制部件(431)三、充电器⼯作基本原理基本的⼯作⽅框图(下午下班回家开始画,历时3⼩时...汗⼀个)注:图⽚⾥⾯的电流基准其实和电流检测存在⽐较关系,为了画的⽅便和直观,连到了⼀起!下⾯就这个基本⼯作⽅框图我们简单的说⼀下,怎么和维修的思路结合在⼀起。

完整版电动车充电器原理及带电路图维修

完整版电动车充电器原理及带电路图维修

常用电动车充电器根据电路结构可大致分为两种。

第一种是以UC3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

其电原理图和元件参数见图表1)220v交流电经TO双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。

U1为TL3842脉宽调制集成电路。

其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整R25(2.5 欧姆)的阻值可以调整充电器的最大电流。

2脚为电压反馈,可以调节充电器的输出电压。

4脚外接振荡电阻R1,和振荡电容C1。

T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为UC3842提供工作电源。

D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。

调整w2(微调电阻河以细调充电器的电压。

D10是电源指示灯。

D6为充电指示灯。

R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200 —300 mA )。

通电开始时,C11上有300v左右电压。

此电压一路经T1加载到Q1。

第二路经R5,C8,C3,达到U1的第7脚。

强迫U1启动。

U1 的6脚输出方波脉冲,Q1工作,电流经R25到地。

同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。

T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。

此电压一路经D7 (D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。

D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。

正常充电时,R27上端有0.15 —0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。

48v 10A大功率电动三轮车充电器

48v 10A大功率电动三轮车充电器

高频开关型充电机因体积小、效率高正流行于市面。

前不久笔者从湘桥电子公司购得一块62.4V、10A高频开关型充电机芯,随机还配有散热风扇,笔者认为百余元的价位物有所值。

为了便于维修调整,笔者根据实物绘出了原理图。

现介绍如下:该机芯由主板和驱动、辅助电源、保护、过载取样四个模块组成,主板含市电整流、功率变换、高频整流等部件。

48v 10A大功率电动三轮车充电器市电从主板输入,经整流滤波后作本机主电源。

变压器T1、T2与Q1、Q2等构成高频功率变换电路。

D2、D3、L2为高频整流及输出隔离元件,D4、IC4等为散热风扇提供12V电源。

辅助电源模块为整机提供12V直流工作电源,它以UC3844作脉宽调制,Q8(K1204)、T3等组成功率变换,经D9、C23整流滤波后从该板③、④脚输出12V直流电源。

R33、C20决定UC3844的工作频率,本电路工作频率约为200kHz,R38为该电源的电流取样电阻,其压降经R39馈给IC2的③脚,超过1V时即关闭本电源。

IC2⑦脚为电源端,开机时+300V经R32为IC2提供电源,电路工作后由D6、D7、C22提供工作电源。

驱动板⑨脚为电源输入,⑧脚为公共地,⑥、⑦脚为高频推动输出端,⑤脚为恒流调整端,④脚为过载保护输入,①脚为充电限压调整端。

该板以PWM专用ICTL494为核心,其原理许多报刊已有介绍,在此从略。

本板具有过载保护、自动恒流、限压多重保护功能。

过载保护是通过L2的检测经过载取样板调整处理后经④脚输入,过载时D14、Q3导通,驱动板U1导通,IC1{14}脚5V基准电压经U1使④脚呈高电平,使死区时间最大,以此关闭IC1的输出。

自动恒流是通过R4压降的变化经该板②脚馈至IC1①脚,调整W1可使IC1②脚电压在0~0.5V之间。

若确定输出电流Io为10A,则②脚电压应调为0.25V。

过压自动保护是将输出电压通过R13、W2、R23分压后供给IC1{16}脚,因{15}脚经R28、R29、R30、R31分压后约为2.2V,故应调整W2使蓄电池充足电后,IC1{16}脚电压为2.2V,改变R23、W2可改变最高充电电压值,该功能对维修行业讲似乎意义不大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届本科毕业设计大功率电动三轮车电瓶充电电路的设计姓名:许申林系别:物理与电气信息学院专业:电气工程及其自动化学号: 110314090指导教师:郑世旺2015年5月14日目录摘要与关键词 (II)0 引言 (1)1 电动车蓄电池 (1)2 蓄电池的充电方式 (2)2.1 恒流充电方式 (2)2.2 恒压充电方式 (2)2.3 阶段充电方式 (2)2.4 脉冲式充电方式 (2)3 系统总体的设计 (2)3.1 系统实现基本要求 (2)3.2 系统实现整体结构图 (2)4 整体硬件电路的设计 (3)4.1 整体电路的连接及工作原理 (3)4.2 调试及说明 (4)5 部分硬件电路的设计 (4)5.1 电源电路的设计 (4)5.2 振荡电路的设计 (5)5.2.1 振荡电路的振荡方式 (5)5.2.2 振荡电路的作用 (5)5.3 保护电路的设计 (6)5.3.1 过流保护电路的设计 (6)5.3.2 输出回路的设计 (7)5.3.3 基准电路的设计 (7)5.3.4 电压比较电路的设计 (8)5.4 充电状态指示电路的设计 (8)6 结语 (9)参考文献 (9)致谢 (9)大功率电动三轮车电瓶充电电路的设计摘要本次大功率电动三轮车充电电路的设计是将220V的电压经过整流、滤波后再对蓄电池进行充电,整体硬件电路设计包括了电源电路设计、振荡电路设计、保护电路设计、充电状态指示电路设计四大模块。

其中四运算放大器LM324有充放电状态控制和过流保护等作用。

基准电路采用了精密稳压专用集成电路TL431来精确控制主回路输出电压。

关键词充电器;电源;振荡;保护电路Design of high power electric tricycle chargingcircuitAbstract:The design of high power electric tricycle charging circuit is the 220V voltage is rectified, filtered and then charging the battery, the overall design of hardware circuit includes power circuit, oscillator circuit design, protection circuit design, charging state indication circuit design four modules. The four operational amplifier LM324 state of charge and discharge control and overcurrent protection function. Using a precision voltage reference circuit ASIC TL431 to accurately control the main circuit output voltage.KeywordsThe charger; power; oscillation; protection circuit0 引言近几年随着全世界工业化进程的突飞猛进,车辆越来越多,机动车燃油排放的尾气成为危机大气的一个重要污染源。

而电动三轮车因其轻巧、安全、省力并有益于环保等优点,成为了人们青睐的理想交通工具。

如今,铅酸蓄电池已获得人们的青睐,并得到普遍利用。

主要在与其具有很多优点,比如能够保持平稳的电压,可以长时间使用,用于制造蓄电池的材料多且便宜等等。

但是,在蓄电池的充电过程中,如果不能合理使用充电器或充电器选择不当,都会导致蓄电池的使用时间大大降低。

在给蓄电池充电时一定要充足电,同时避免过充电来延长其充电寿命[1]。

现在大部分蓄电池只能正常使用3-5 年,远远低于10-15 年的设计要求。

研究发现:电池的过早损坏主要是由于充电方式不当和充电器质量差造成的。

因此,一个性能良好的充电器对电池的使用寿命具有举足轻重的作用[2]。

蓄电池充放电的研究在很早以前就有人开始研究,人们从各个角度来探索影响蓄电池寿命的原因,1935年,伍德布里奇发现了影响蓄电池充电过程的有温度这个条件,温度不同,充电效率也不一样。

麦斯在1967年发现了对蓄电池充电时析气的原因和规律。

在人们的不断研究和探索下,创造出了很多种充电装置,例如随着电流的变化而变化的铅酸蓄电池充电装置等,但这些充电设备基本上是采用模拟电路实现,调试复杂,体积大,并且控制效果很差。

随着时代的发展,集充放电于一体,检测和管理相结合的智能化充电控制器在90年代被开发出来[3]。

在我国的蓄电池研究中,其充电装置中的整流设备多用晶闸管硅来制造,虽然其有功率密度低的缺点,但是由于它工作可靠的性能,仍然被大家所普遍应用。

最近几年,由于快速充电技术用途越来越广泛,因此人们也是努力研究和探索,并且很成功的将这种技术应用到蓄电池中[4]。

但是这些充电技术仍然有很多不理想之处,尤其是思想和方法的守旧,已经不符合蓄电池的性能指标。

如今,一直有人提出一些新型的充电方法,但是更完善更快速的充电方式仍需要被探索和发现[5]。

本次大功率电动三轮车充电电路的设计是将220V的电压经过整流、滤波后再对蓄电池进行充电,整体硬件电路设计包括了电源电路设计、振荡电路设计、保护电路设计、充电状态指示电路设计四大模块。

其中LM324四运算放大器起到充放电状态控制和过流保护等作用。

基准电路采用了精密稳压专用集成电路TL431来精确控制主回路输出电压。

1 电动车蓄电池蓄电池是一种新能源动力,在使用过程中不断放电,电量逐渐降低。

经过对蓄电池的研究和技术的发展,蓄电池种类越来越丰富,比如有氢镍电池、铁镍电池、镉镍电池、锂二次电池和铅酸电池。

如今铅酸蓄电池已经普遍进入市场并为人们所用。

本文即为铅酸电池充电电路的设计。

由于电能源车具有环保节能的特点,国内外对其能源供应的蓄电池的研究和发展尤其重视,而当今社会节奏加快,机动车可以直接添加汽油保持其动力,如果电动车充电需要很长一段时间的话,那么其速度较慢的缺点将导致它不被大家所认可,因此,提出一种能够快速充电的充电方式和充电电路的设计来保证蓄电池能够快速充电及能够具有更长的寿命,具有深远的意义。

随着人们对蓄电池的深入研究,现在人们已经清晰的了解到它的工作原理以及内部能量的转化,这将有助于了解影响电动车寿命的外界因素和内部电路设计优劣所在。

铅酸电池的正极板和负极板放在电解质溶液里,在蓄电池放电时,二氧化铅和海绵状铅分别在正极板和负极板上相互转化,所以,在蓄电池放电至能量消耗完毕后,当再对蓄电池充电后还能回到原来的状态供电。

如此循环,来达到持续循环供电的目的。

2 蓄电池的充电方式多次实践得出,正确的充电方法对蓄电池寿命的影响非常大,对蓄电池进行充电时经常把粗电池串联起来提高输出电压进行充电。

但只有在充电过程中能够均衡的进行才能保证蓄电池的寿命持续。

充电不均衡对蓄电池寿命影响很大。

以下介绍了当下常用的充电方式[6]。

2.1 恒流充电方式恒流充电法是将蓄电池放完电后,在蓄电池充电时,按照充电器的A.h数来确定一个稳定的输出电流对蓄电池进行充电。

充电时充电电流一直不变,优点是方便控制,但是,充电的时间越长,电池的接受电流的能力也随之减弱。

缺点是充电器出气量较大,这是由于充电后期电流电解水产生气体的结果。

2.2 恒压充电方式恒压充电方式指在充电时一直用一个特定的电压,这种方式在充电开始阶段,由于蓄电池内部的电动势处于较低状态,则充电电流比较大。

充电维持的时间越长,充电的电流也越少。

这种充电方式的优点在于电流不剩余,很少用于电解水,电池出气量较少。

缺点是充电开始时充电电流过大,容易导致电池极板变形,很大程度地缩短了蓄电池的寿命。

由于这些原因,这种充电方式并不被人们所青睐,只有在电源电压低电流大时使用[7]。

2.3 阶段充电方式阶段充电方式可以利用二阶段充电方式进行,也可以使用三阶段充电方式来实现。

其充电方式也是按照恒流充电方式维持电流不变和恒压充电方式保持电压不变来实现,但是还有区别在其中。

二阶段充电方式是先使用恒流充电方式,等电压到一个确定的值后,再按照这个确定值,使用恒压充电法进行充电。

三阶段充电方式同样先使用恒流充电方式,然后用恒压充电,当电流逐渐减少至一个预定值时,再使用恒流充电法进行充电。

三阶段充电法虽然出气量很少,但是并不能快速充电方式的要求[8]。

2.4 脉冲式充电方式脉冲式充电方式是充电理论的新发展,能够有效地提高蓄电池充电接受率。

这种充电方式在充电前期使用脉冲电流,然后停止充电,接着再用脉冲电流充电,一直循环直到充电完成。

脉冲电流将电池充满电后,停止充电这段时间可以将充电产生的气体重新化合吸收,消除掉欧姆极化和浓差极化来减轻蓄电池的内部压力,从而满足蓄电池充电程度的最大化。

同样,在充电停止时有足够反应时间,减少析气量,有效地提升了蓄电池的充电电流接受率[9]。

3 系统总体的设计3.1 系统实现基本要求(1)电压参数:22V交流电经过整流和滤波转变成44V的直流电。

(2)充电显示:LED灯闪烁,充电正常。

LED灯不闪烁,充电关断。

(3)充电保护:使充电电压大约为44V且输出的电流及电压能够自行调节。

3.2 系统实现整体结构图由课题可知,整体电路必须满足有充电状态指示和充电保护等部分电路,这样有很多种方案供选择。

进过多重的分析和筛选,最终确定了包括充电状态指示电路的设计、电源电路的设计、振荡电路的设计和保护电路的设计的整体电路图。

系统实现整体结构图如图1。

的两个电阻分压后相连接。

当-VEE小于负向最大电压时,比较器U2BLM324输出的是低电平,比较器U2ALM324相反为高电平,因此,二极管D11截止,D12导通,无电流流向发光二极管,则二极管不发绿光。

当-VEE负向电压为最大时,比较器U2BLM324负端电压变化低至小于正端电压时,其输出为高电平。

二极管D12处于截止状态,对于比较器U2ALM324来说,状态刚好相反,二极管D11导通,发光二极管发出绿光。

发光二极管在整个充电过程中一直处于闪烁状态。

2.5V和-VEE由电阻R22和电阻R14分压后与U2CLM324负端相连接,当-VEE小于最大反向电压时,该比较器的负端输入小于0,输出为高电平,D15导通,U1PC817处于工作状态,Q2导通,场效应管由于没有电压,因此处于断开状态。

当-VEE达到最大反向电压时,该比较器负端输入大于0,输出为低电平,D15截止,U1PC817不工作,Q2不导通,场效应管有电压供给,处于导通状态且D5截止。

充电结束后,充电电压已经和蓄电池电压基本相等,这个时候二极管D8截止。

相关文档
最新文档