2011-2012学年度第一学期期末考试九年级数学试题

合集下载

2011-2012第一学期九年级数学期末考试卷

2011-2012第一学期九年级数学期末考试卷

第一学期期末质量检测试卷·九 年 级 数 学·一、选择题(本题共10小题,每小题4分,满分40分) 1.下列计算正确的是+=;B.2+=;C.=321=-=.2.方程x=x(x-1)的根是 A.x=0; B. x=2; C.x 1=0, x 2=1; D.x 1=0, x 2=2.3.下列平面图形中,既是轴对称图形,又是中心对称图形的是4.根据电视台天气预报:无为县明天降雨的概率为80%.对此信息,下列几种说法中正确的是 A.无为县明天一定会下雨; B.无为县明天有80%的地区会降雨; C.无为县明天有80%的时间会降雨; D.无为县明天下雨的可能性比较大.5.如图是小颖同学的眼镜,则两镜片所在两圆的位置关系是 A.外离; B.外切; C.内含; D.内切.6.把一个正五角星绕着中心旋转到与原来重合,至少需要转动的度数是A.36°;B.72°;C.108°;D.144°.7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A.第①块;B.第②块;C.第③块;D.第④块. 8.如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为A.264πcm ; B.2112πcm ; C.2144πcm ; D.2152πcm .9.如图,在ΔABC 中,AB=13,AC=5,BC=12,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是 A.125; B.6013; C.5; D.无法确定. 10.如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B 地;B.老鼠先到达B 地;C.猫和老鼠同时到达B 地;D.无法确定. 二、填空题(本题共4小题,每小题5分,满分20分)11.请写出一个无理数,使它与12的积是有理数,这个无理数可以是 .12.挂钟分针的长10cm ,经过45分钟,它的针尖转过的弧长是 cm.13.如图,在10×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止⊙B 内切,那么⊙A 由图示位置需向右平移个单位. 14.小华与父母从合肥乘车去无为县米公祠(北宋大书法家米芾故居)参观,车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 .三、(本题共2小题,每小题8分,满分16分)15.计算:0(π1)+-. 16.用配方法解方程:0562=--x x .第5题图第10题图BA第9题图第7题图ACOB第8题图A 第13题图四、(本题共2小题,每小题8分,满分16分)17.⑴计算各次检查中“优等品”的频率,并填入上表; ⑵估计该厂生产的羽毛球“优等品”的概率.18.如图是无为中学某景点内的一个拱门,它是⊙O 的一部分.已知拱门的地面宽度CD=2m ,它的最大高度EM=3m ,求构成该拱门的⊙O 的半径.五、(本题共2小题,每小题10分,满分20分)19.如图所示,点O 、B 坐标分别为(0,0)、(3,0),将△ABO 绕点O 按逆时针方向旋转90°得到△OA 'B ';⑴根据题中条件在图中画出直角坐标系,并画出△OA ′B ′; ⑵点A ′的坐标是 ; ⑶求BB ′的长;20.下图表示的是聪聪从自已家到叔叔家,再到奶奶家的路线图.由图中可以看到:从聪聪家到叔叔家有4条路,从叔叔家到奶奶家有2条路.你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.C DM E第18题图 ·O第20题图航运第19题图六、(本题满分12分)21.某商场购进一种新商品,每件进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售高(或低)于130元时,每涨(或降)价1元,日销售量就减少(或增加)1件.据此规律,请回答: ⑴当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少? ⑵在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价—进价) 七、(本题满分12分) 22.如图,已知在⊙O 中,AC 是⊙O 的直径,AC⊥BD 于F ,∠A=30°.⑴求图中阴影部分的面积; ⑵若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥底面圆的半径. 八、(本题满分14分)23.如图,在平面直角坐标系中,以坐标原点O 为圆心的⊙O 的半径为2-1,直线l :y=-x -2分别与x 轴、y 轴交于A 、C 两点,点B 的坐标为(4,1),⊙B 与x 轴相切于点M. (1)求点A 的坐标及∠CAO 的度数;(2)⊙B 以每秒1个单位长度的速度沿x 轴负方向平移,那么经过多长时间⊙B 与⊙O 第一次相切?(3)在⊙B 移动的同时,直线l 绕点A 顺时针匀速旋转.当⊙B 第一次与⊙O 相切时,直线l 也恰好与⊙B 第一次相切.问:直线AC 绕点A 每秒旋转多少度?第22题图第23题图无为县2011~2012学年度第一学期期末质量检测参考答案·九 年 级 数 学·一、选择题二、填空题11、答案不惟一.如3等. 12、15π. 13、4或6. 14、31.三、15、解:原式=1-332+ =31-. 16、解:配方,得 95962+=+-x x . ()1432=-x .∴ 143±=-x .∴1431+=x , 1432-=x .四、17、⑴从左到右分别是:0.9、0.92、0.91、0.89、0.9.(每空1分)⑵约为0.9. 18、解:连接OC.设⊙O 的半径为xm. ∵ EM ⊥CD , ∴ CM=21CD=1m.在Rt △OCM 中,由OM 2+CM 2=OC 2,得(3-x)2+1=x 2. 解得: x=35. 答:构成该拱门的⊙O 的半径为35m. 五、19、⑴ 图略.(画出直角坐标系2分,画出△OA ′B ′3分)⑵ 点A ′的坐标是(-2,4).⑶ 解:连接BB ′.∵ OB ′=OB=3,∠BOB ′=90°, ∴ BB ′=2233+=32. 20、解:用树状图表示如下:由上图可知,从聪聪家到奶奶家的行走路线共有8种结果,其中始终利用一种交通工具的路线有2种结果:(铁路,铁路)、(公路,公路). ……………………………… 7分所以,从聪聪家到奶奶家始终利用一种交通工具的概率是:4182=.…………… 9分 答:从聪聪家到奶奶家始终利用一种交通工具的路线概率是41.……………… 10分六、21、解:⑴每天销售商品的件数是:70-(170-130)=70-40=30(件).…………… 2分商场获得的日盈利是:30×(170-120)=1500(元).…………………………… 5分答:当每件商品售价定为170元时,每天可销售30件商品,商场获得的日盈利是1500元.⑵设每件商品的销售价定为x 元时,商场日盈利可达到1600元. 根据题意,得(x-120)[70-(x-130)]=1600.化简,得 x 2-320x+25600=0.解得 x 1=x 2=160. 答:每件商品的销售价定为160元时,商场日盈利可达到1600元. 七、22、解:⑴ ∵ ∠A=30°, ∴ ∠BOC=60°. ∴ ∠OBF=90°-60°=30°. ∴ OF=21OB.在Rt △ABF 中,∵ AB=43, ∠A=30°,∴ BF=21AB=23. 在Rt △OBF 中,由OB 2=OF 2+BF 2 得 OB 2=(21OB)2+(23)2.解得 OB=4.又 AC ⊥BD , ∴ ∠BOD=60°×2=120°.∴ S 阴影=ππ31636041202=⋅. 即图中阴影部分面积是π316. ⑵设这个圆锥底面圆的半径为r ,则2πr=1804120⨯⨯π.解得 r=34. 即这个圆锥底面圆的半径为34.八、23、解:⑴当y=0时,x=-2.∴点A 的坐标是(-2,0).∴ OA=2.当x =0时,y =-2. ∴ OB=2.从聪聪家到叔叔家: 从叔叔家 到奶奶家:公路铁路水路航运铁路 铁路 铁路 铁路 公路 公路 公路 公路 (5分)∴ OA=OB.又 ∠AOC=90°. ∴∠CAO=∠ACO=29018000-=45°. ⑵如图,设⊙B 平移t 秒到⊙B 1处与⊙O 第一次相切,⊙B 1与x 轴相切于点N,连接B 1O 、B 1N,则MN=t, OB 1=2, B 1N ⊥AN.……………… 6分 在Rt △OB 1N 中,由勾股定理,得 ON=2121N B OB -=()2212-=1.………… 7分∴MN=4-1=3 即t=3.………………………… 8分(3) 设⊙B 平移到⊙B 1处与⊙O 第一次相切时,直线l 旋转到l '恰好与⊙B 1第一次相切于点P, 连接B 1A 、 B 1P. 则B 1P ⊥AP , ∴B 1P = B 1N.∴∠PAB 1=∠NAB 1.…………………………………………………………………… 10分 ∵OA=OB 1=2, ∴∠AB 1O=∠NAB 1. ∴∠PAB 1=∠AB 1O.∴PA ∥B 1O .…………………………………………………………………………… 12分 在Rt △NOB 1中,∵ON=B 1N , ∴∠B 1ON=450,∴∠PAN=450, ∴∠1= 900.∴直线AC 绕点A 每秒旋转的度数为900÷3=300.………………………………… 14分第23题图。

重庆市2011-2012学年度九年级数学上期期末考试试卷

重庆市2011-2012学年度九年级数学上期期末考试试卷

重庆市2011-2012学年度九年级数学上期期末考试试卷考生注意:本试题共28小题,满分150分,考试时间120分钟一、选择题:(每小题只有一个正确答案,请将答案填入括号内。

本大题共10个小题,每小题4分,共40分。

) 1.-1-3等于( )A .2B .-2C .4D .-4 2.函数11-=x y 中,自变量x 的取值范围是( ) A. 0x =/ B. 1x =/ C. 1x > D. 1x <3.在ABC ∆中,90,1,2,C AC BC ∠=== 则tan B 是( )A.1B. 2 C. 2 1D. 34.一次函数y ax b =+的图像经过点A 、点B ,如图所示,则不等式0<+b ax 的解集是( ).A. 2x <-B. 2x >-C. 1x <D. 1x >5.我校初三参加体育测试,一组10人(女生)的立定跳远成绩如下表:这组同学立定跳远成绩的众数与中位数依次是( )米.A. 1.96和1.91 B .1.96和1.92 C. 1.91和1.96 D .1.91和1.91 6.抛物线2y ax bx c =++的对称轴是直线1x =,且过点(3,2),则a b c -+的值为( ) A. 0B. 1C. -1D. 2 7.若关于x 的一元二次方程0962=+-x kx 有两个不相 等的实数根,则k 的取值范围是( )A. 1k <B. 0k =/C. 10k k <=/且D. 1k >8.一个空间几何体的主视图和左视图都是边长为30cm 的 正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( )2A. 250 cm π 2B. 300 cm π2C. 450 cm π 2 cm9.如图(甲),水平地面上有一面积为232 cm π的灰色扇形OAB ,其中OA 的长度为6cm ,且与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB 垂直地面为止,如图(乙)所示,则O 点移动的距离为( ) A .10 cm π B .11 cm π C .32 cm 3π D .33cm 210.如图,ABC ∆中,BC BC ,10=边上的高5, h D =为BC 边上的一个动点,,//BC EF 交AB 于点E ,交AC 于点F ,设E 到BC 的距离为,x DEF ∆的面积为y ,则y 关于x 的 函数图象大致为( )二、填空题:(请将答案填写在横线上。

2011-2012学年九年级(上)期末数学试卷

2011-2012学年九年级(上)期末数学试卷

2011-2012学年九年级(上)期末数学试卷一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=02.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 _________ .14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 _________ .15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 _________ b2(选填“>”、“=”、“<”).16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 _________ .17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 _________ 条鱼.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 _________ .19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 _________ 度.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=021.(4分)补全右图的三视图:22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.26.(6分)(附加题)你还记得图形的旋转吗?如图,P是正方形ABCD内一点.PA=1,PB=2,PC=3,将△APB 绕点B按顺时针方向旋转,使AB和BC重合,得△CBP′.求证:(1)△PBP′是等腰直角三角形.(2)猜想△PCP′的形状,并说明理由.六、(每题6分,共12分)27.(6分)(2005•济南)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图所示.(1)写出y与s的函数关系式;(2)求当面条粗1.6mm2时,面条的总长度是多少米?28.(6分)(2004•无为县)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?七、(6分)29.(6分)(2005•扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?八、(7分)30.(7分)如图,四边形ABCD是正方形,CE是∠BCD的外角∠DCF的平分线.(如果需要,还可以继续操作、实验与测量)(1)操作实验:将直角尺的直角顶点P在边BC上移动(与点B、C不重合),且一直角边经过点A,另一直角边与射线CE交于点Q,不断移动P点,同时测量线段PQ与线段PA的长度,完成下列表格(精确到0.1cm).PA PQ第一次第二次(2)观测测量结果,猜测它们之间的关系: _________ ;(3)对你猜测的结论是否成立均进行说明理由;(4)当点P在BC的延长线上移动时,继续(1)的操作实验,试问:(1)中的猜测结论还成立吗?若成立,请给出理由;若不成立,也请说明理由.2011-2012学年北师大版九年级(上)期末数学试卷参考答案与试题解析一、选择题:请将唯一正确答案的编号填入答卷中,本题共12题,每题2分,共24分.1.(2分)(2006•邵阳)方程x2﹣2x=0的解是( ) A.x=2 B.x1=,x2=0 C.x1=2,x2=0 D.x=0考点:解一元二次方程-因式分解法.专题:计算题.分析:本题应对方程进行移项,等式右边化为0,即为x2﹣2x=0,提取公因式x,将原式化为两式相乘的形式,x(x﹣2)=0,再根据“两式相乘值为0,这两式中至少有一式值为0”来求解.解答:解:原方程变形为:x2﹣2x=0,x(x﹣2)=0,x1=0,x2=2.故本题选C.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,本题运用的是因式分解法.2.(2分)电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观B.减小盲区C.增大盲区D.盲区不变考点:视点、视角和盲区.分析:电影院呈阶梯或下坡形状可以使后面的观众看到前面,避免盲区.解答:解:电影院呈阶梯或下坡形状是为了然后面的观众有更大的视角范围,减小盲区.故选B.点评:本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.3.(2分)(2005•枣庄)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( ) A.1B.2C.4D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解答:解:由于点M是反比例函数y=(k>0)图象上一点,则S△MOP=|k|=1;又由于k>0,则k=2.故选B.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义. 4.(2分)某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是( ) A.至少有两人生日相同 B.可能有两人生日相同,且可能性较大 C.不可能有两人生日相同 D.可能有两人生日相同,但可能性较小考点:可能性的大小.专题:分类讨论.分析:依据可能性的大小的概念对各选项进行逐一分析即可.解答:解:A、因为一年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选B.点评:本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.(2分)下列四个命题中,假命题的是( ) A.有三个角是直角的四边形是矩形 B.对角线互相垂直平分且相等的四边形是正方形 C.四条边都相等的四边形是菱形 D.顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形考点:命题与定理.分析:根据矩形、正方形、菱形、等腰梯形的判定即可求出答案.解答:解:A、四边形的内角和为360°,正确;B、对角线互相垂直平分且相等的四边形是正方形,正确;C、四条边都相等的四边形是菱形,正确;D、顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形可能是矩形,不正确.故选D.点评:本题综合考查四边形的性质和特点.6.(2分)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( ) A.4cm B.6cm C.8cm D.10cm考点:平行四边形的性质;线段垂直平分线的性质.分析:根据平行四边形的对角线互相平分,可得OA=OC,又因为OE⊥AC,可得OE是线段AC的垂直平分线,可得AE=CE,即可求得△DCE的周长.解答:解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选C.点评:此题主要考查平行四边形的性质和中垂线的性质.7.(2分)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( ) A.B.C.D.考点:几何概率.分析:根据几何概率的求法:镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解答:解:观察这个图可知:阴影部分占四个小正方形,占总数36个的,故其概率是.故选C.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(2分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°考点:等边三角形的判定与性质.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.(2分)(2006•兰州)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( ) A.()B.()C.()D.()考点:翻折变换(折叠问题);坐标与图形性质;解直角三角形.专题:计算题.分析:根据折叠的性质,OA=OA1,∠AOB=∠A1OB,从而求出∠A1OD,利用三角函数求出OD、A1D即可解答.解答:解:在Rt△AOB中,tan∠AOB=,∴∠AOB=30°.而Rt△AOB≌Rt△A1OB,∴∠A1OB=∠AOB=30°.作A1D⊥OA,垂足为D,如图所示.在Rt△A1OD中,OA1=OA=,∠A1OD=60°,∵sin∠A1OD=,∴A1D=OA1•sin∠A1OD=.又cos∠A1OD=,∴OD=OA1•cos∠A1OD=.∴点A1的坐标是.故选A.点评:此题主要考查图形对折的特征及点的坐标的求法.10.(2分)(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是( ) A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)考点:反比例函数图象的对称性.专题:计算题.分析:根据关于原点对称的两点横坐标,纵坐标都互为相反数即可解答.解答:解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(2,1).故选A.点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用.11.(2分)(2005•湘潭)如图,它们是一个物体的三视图,该物体的形状是( ) A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.12.(2分)(2007•黔东南州)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( ) A.都是等腰梯形B.都是等边三角形 C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向上对折,对角顶点对折,沿折痕中点与重合顶点的连线剪开展开可得到两个直角三角形,一个等腰三角形.故选C.点评:本题是剪纸问题,主要考查学生的动手能力及空间想象能力,进行动手操作是正确解答本题的最简单办法. 二、填空题(每空2分,共14分)13.(2分)(2005•大连)若点(2,1)在双曲线y=上,则k的值为 2 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.解答:解:把点(2,1)代入y=得k=2×1=2.故答案为:2.点评:本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.14.(2分)请写出一个根为x=1,另一根满足﹣1<x<1的一元二次方程 x2﹣x=0 .考点:根与系数的关系.专题:开放型.分析:首先在﹣1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.解答:解:由题意知,另一根为0时,满足﹣1<x<1,∴方程可以为:x(x﹣1)=0,化简,得x2﹣x=0.故答案为x2﹣x=0.点评:本题考查的是已知方程的两根,写出方程的方法.这是需要熟练掌握的一种基本题型,解法不唯一,答案也不唯一.15.(2分)(2005•威海)已知双曲线y=经过点(﹣1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,那么b1 < b2(选填“>”、“=”、“<”).考点:反比例函数图象上点的坐标特征;反比例函数的性质.分析:根据反比例函数的增减性解答.解答:解:把点(﹣1,3)代入双曲线y=得k=﹣3<0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y随x的增大而增大,∵A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<a2<0,∴A、B在同一象限,∴b1<b2.故答案为<.点评:本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.(2分)(2006•曲靖)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为 .考点:规律型:图形的变化类.分析:根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处.解答:解:第n次跳动后,该质点到原点O的距离为.故答案为:.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.17.(2分)某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 1000 条鱼.考点:利用频率估计概率.专题:应用题.分析:先得到鱼塘中带记号的鱼的频率为=,由此可估计鱼塘中带记号的鱼的概率为,然后根据鱼塘中带记号的鱼有100条可计算出鱼塘里约有鱼的条数.解答:解:∵100条鱼,带记号的鱼有10条,∴估计鱼塘中带记号的鱼的概率==,而鱼塘中带记号的鱼有100条,∴估计该鱼塘里约有鱼的条数=100÷=1000.故答案为1000.点评:本题考查了利用频率估计概率:当事件的概率不易求出时,可根据其中的某事件发生的频率来估计这个事件的概率.18.(2分)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼3块分别写有“20”、“08”和“北京”的字块.如果婴儿能拼出“2008北京”和“北京2008”,他们就给婴儿奖励.假设该婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率为 .考点:概率公式.分析:列举出所有情况,让拼出“2008北京”和“北京2008”的情况数除以总情况数即为所求的概率.解答:解:将3块分别写有“20”、“08”和“北京”的字块,随机排列共3×2=6种情况,能拼出“2008北京”和“北京2008”两种情况即有奖,故婴儿能得到奖励的概率为.点评:明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.19.(2分)如图,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度α(0°<α<90°),若两正方形重叠部分的面积为,则这个旋转角度为 30 度.考点:旋转的性质;三角形的面积;全等三角形的性质;全等三角形的判定;正方形的性质;解直角三角形.分析:设A′D′与CD的交点为E,连接BE;由于A′B=BC,易证得△A′BE≌△CBE,因此两者的面积相等,即可根据△CBE的面积求得CE的值,从而通过解直角三角形求出∠CBE、∠CBA′的度数,进而可求得旋转角的度数.解答:解:设A′D′与CD的交点为E,连接BE.∵A′B=BC,BE=BE,∴Rt△A′BE≌Rt△CBE.(HL)∴∠A′BE=∠EBC,且S△BA′E=S△BCE=.在Rt△BCE中,BC=2,则:S△BCE=×2×CE=,∴CE=.∴tan∠EBC==,即∠EBC=30°.∴∠A′BC=2∠EBC=60°,∠ABA′=90°﹣∠A′BC=30°.故旋转的角度为30°.点评:此题主要考查了旋转的性质、正方形的性质、全等三角形的判定和性质以及三角形的面积、解直角三角形等相关知识,综合性较强.三、解答题(第20、21每题4分,第22题5分,共13分)20.(4分)解方程:x2﹣2x﹣3=0考点:解一元二次方程-因式分解法.专题:计算题.分析:通过观察方程形式,本题可用因式分解法进行解答.解答:解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.点评:熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.21.(4分)补全右图的三视图:考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.解答:解:主视图正确,俯视图与左视图如图所示:点评:此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.22.(5分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M 处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.考点:中心投影.专题:作图题.分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE 的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段MN是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,MN处于视点的盲区.解答:解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,MN处于视点的盲区.(叙述不清,只要抓住要点,酌情给分)点评:本题考查中心投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、(第23题6分,第24题6分,共12分)23.(6分)学了一元二次方程后,学生小刚和小明都想出个问题考考对方.下面是他们俩的一段对话:聪明的你能替小刚或小明解决问题吗?(要求任选一人回答)考点:一元二次方程的解;根与系数的关系.分析:首先选出要解答的问题:小刚.然后根据一元二次方程的解的定义,将x=0代入方程,然后解关于m的方程即可.解答:解:我替小刚解答问题;根据题意,得x=0满足关于x的方程x2+2(m+1)x+m2=0,∴0+0+m2=0,解得m=0;∴0+x2=2(m+1),即x2=2.故小刚的问题中m的值为0,另一个根为2.点评:本题考查了一元二次方程的解、根与系数的关系.一元二次方程的解,即方程的根,一定满足该方程.24.(6分)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路.例如,在证明三角形中位线性质定理时,就可以采用下图①的剪拼方式:将三角形转化为平行四边形,使问题得以解决.请你依照图①的方法,在图②和图③中,分别只剪一次,实现下列转化:(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.(要求:作出剪切线,不写作法,画出拼补图形,工具不限.)考点:作图—应用与设计作图.专题:作图题.分析:(1)过点D垂直于AB边剪下,然后把△ADE向左右移至点A与点B重合即可;(2)取BC的中点E,沿DE剪下,把△DCE绕点E顺时针旋转180°即可.解答:解:如图所示进行剪切并拼接即可.点评:本题考查了应用于设计作图,读懂题目①的信息,并熟练掌握平行四边形与矩形的联系,梯形的问题转化为三角形进行解答的技巧与方法是解题的关键.五、(每题6分,共12分)25.(6分)(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.考点:翻折变换(折叠问题);直角三角形全等的判定.专题:几何综合题.分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:。

2011-2012学年度九年级第一学期期末质量检测(含答案)_

2011-2012学年度九年级第一学期期末质量检测(含答案)_

ADEBC(第3题图)1)1(21=-+a xa 2011—2012学年度第一学期期末质量检测九年级数学试题(时间:120分钟 满分:120分)成绩统计栏题号 一 二 三总分 25 26 27 28 29 得分一、选择题(本题包括20个题,每题3分,共60分。

每题只有一个正确答案,请将选项填入答题框内。

)1.下列方程: ①x 2=0,②21x-2=0, ③22x +3x=(1+2x)(2+x), ④32x-x =0, ⑤32x x-8x+ 1=0中, 一元二次方程的个数是( )A.1个B.2个C.3个D.4个2.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形; ⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ). A.①②③ B.①④⑤ C.①②⑤ D.②⑤⑥3. 如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线 于点E ,则下列式子不成立...的是( )A. DE DA = B. CE BD =C. 90=∠EAC °D. EABC ∠=∠24.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC的度数是( ).A.150°B.125°C.135°D.112.5°5.如图,△ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( ) A. 62° B.56° C.60° D.28°6.若关于x 的方程是一元二次方程,则a 的值是()A.0B.-1C. ±1D.17.方程(1)(3)1x x --=的两个根是 ( )A.121,3x x == B.122,4x x ==C.1222,22x x =+=-D.1222,22x x =--=-+8. 一个多边形有9条对角线,则这个多边形有多少条边( )A. 6B. 7C. 8D. 99.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α=0.6,AB=4,则AD 的长为( ) A.320 B.310 C.3 D.31610.点A 、B 、C 都在⊙O 上,若∠AOB=680,则∠ACB 的度数为( ) A 、340 B 、680 C 、1460 D 、340或146011. 如图,菱形ABCD 中,60=∠B °,2=AB ,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A.32B.33C.34D.3题号 1 2 3 4 5 6 7 8 9 10 选项 题号 11 12 13 14 15 16 17 18 19 20 选项九年级数学试题 共8页 第1页九年级数学试题 共8页 第2页得 分 评卷人A(第11题图)BECF D第9题图第4题图第5题图学校__________________ 班级____________ 姓名_____________ 考场_____________ 准考证号______________密 封 线 内 不 要 答 题12.如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''的位置.若AC=15cm ,那么顶点A 从开始到结束所经过的路径长为( )A.10πcmB.103πcmC.15πcmD.20πcm13.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12, BD=10,AB=m ,那么m 的取值范围是( ).A 、1<m <11B 、2<m <22C 、10<m <12D 、5<m <614.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm15.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意列出方程为 ( ) A.x(x +1)=1035 B.x(x -1)=1035×2 C.x(x -1)=1035 D.2x(x +1)=103516.如图,已知EF 是⊙O 的直径,把A ∠为60的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边与AB ⊙O 交于点P ,点B 与点O 重合。

2011-2012上学期期末九年级期末试卷(修改)

2011-2012上学期期末九年级期末试卷(修改)

2011-2012学年度上学期期末考试九年级数学试题一、选择题(每小题3分,满分36分)下面每小题给出的四个选项中,只有一个是符合1.下列图形中,既是中心对称图形又是轴对称图形的有A .1个B .2个C .3个D .4个 2.下列根式中属最简二次根式的是A .12+aB .21C .32aD .27 3.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是A .内切B .相交C .外切D .外离4.下列事件中,必然事件是A .同时掷两枚均匀的骰子,朝上一面的点数和为6B .某彩票中奖率为0036,说明买100张彩票,有36张中奖C .打开电视,中央一套正在播放新闻联播D .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大5. 若3是关于x 的方程260x cx ++=的一个根,则c 的值是A .3B . 6C . 5-D .6- 6.下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是A .1)2(2+-=x yB .1)2(2++=x yC .3)2(2--=x yD .3)2(2-+=x y7.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得m CD 30=,在DC 的延长线上找一点A .测得m AC 5=,过点A 作AB ∥DE 交EC 的延长线于B ,测得m AB 6=,则池塘的宽DE 为A .m 25B .m 30C .m 36D .m 408.如图,一圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长为100m ,测得圆周角︒=∠45ACB ,则这个人工湖的直径AD 为A .m 250B .m 2100C .m 2150D .m 22009.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形的上底AD 、下底BC 以及腰AB 均相切,切点分别是D 、C 、E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是A .14B .12C .10D .9 10.如图,点F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是 A .AB DF EA ED = B .FB EF BC ED = C .BE BF DE BC = D .AEBCBE BF =11.如图,在中,,将绕点按逆时针方向旋转︒15后得到11C AB ∆,11C B 交AC 于点D ,如果22=AD ,则A B C ∆的周长等于(第7题图) (第8题图) (第9题图)A .6B .C .246+D .326+12.如图所示的二次函数2y ax bx c =++的图象中,小明同学观察得出了下面四条信息:(1)042>-ac b ;(2)1>c ;(3)02<-b a ; (4)0<++c b a . 你认为其中错误..的有 A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共21分)请将答案直接写在题中横线上. 13.化简:18=_________.14.若n 12是整数,则正整数n 的最小值是_______________.15.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连 接BC .若∠A =26°,则∠ACB 的度数为 ____________.16.如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :BD = 1:2,则△ADE 与△ABC 的面积比为 .17.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的 增大而增大时,x 的取值范围是 .18.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011 年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投 资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.若设每年市政府投 资的增长率为x ,则根据题意得方程为_____________________________________. 19.如图为抛物线2y ax bx c =++的图象,A 、B 、C 为抛物线与坐标轴的交点,且 OA =OC =1,则a 、b 之间满足的关系是 . 三、解答题(本大题共6小题,共63分解答要求写出文字说 明,证明过程或计算步骤) 20.(本题满分7分)已知关于x 的方程0122=-+kx x .(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求方程的另一根和k 的值. 21.(本题满分10分)在复习《反比例函数》一课时,同桌的小丽和小芳有一个问题观点不一致.小丽认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点(),P m n 的横坐标,第二个数作为点(),P m n 的纵坐标,则点(),P m n 在反比例函数12y x =的图象上的概率一定大于在反比例函数6y x=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点(),P m n 的情形;(2)分别求出点(),P m n 在两个反比例函数的图象上的概率,并说明谁的观点正确.22.(本小题满分10分)如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F .(1)求证:ADE ∆∽BEF ∆;(2)若AE ∶EB =1∶2,求DE ∶EF 的值.AD F(第22题图)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大? 最大面积是多少?24.(本题满分13分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________、D_________________;②⊙D的半径=_____________________(结果保留根号);③求ADC∠的度数(写出解答过程);④若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);⑤若)07(,E,试判断直线EC与⊙D的位置关系并说明你的理由.25.(本题满分13分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.。

2011-2012学年北京市西城区初三数学第一学期期末数学试题(南区)(含答案)

2011-2012学年北京市西城区初三数学第一学期期末数学试题(南区)(含答案)

北京市西城区2011—2012学年度第一学期期末试卷(南区)九年级数学 2012.1考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

3.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是A .2B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5tan A 的值为A 5B 25C .12D .24. 如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°, BD =2,则AE 的长为 A .2 B .3 C .4 D .55.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个6.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为 A .21 B .31 C .41 D .617.如图,抛物线2y ax bx c =++经过点(-1,0),对称轴为x =1,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最大值是 A .2 B . 83C .2+D . 2-二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4.以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转 α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时 α等于 ° ,△DEG 的面积为 .12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m , n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .13.计算:2cos30602sin 45︒+︒-︒.14.如图,网格中每个小正方形的边长均为1,且点A ,B ,C ,P 均为格点.(1) 在网格中作图:以点P 为位似中心,将△ABC 的各边长放大为原来的两倍,A ,B ,C 的对应点分别为A 1 ,B 1 ,C 1;(2) 若点A 的坐标为(1,1),点B 的坐标为(3,2),则(1)中点C 1的坐标为 .15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6, 在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 的一部分 与BC 重合,点A 与BC 延长线上的点D 重合,求DE 的长.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示). 设矩形的一边AB 的长为x 米(要求AB <AD ),矩形 ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E . (1)若AD =10,4sin 5ADC ∠=,求AC 的长和tan B 的值;(2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2α的值(用sin α和cos α的值表示).19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等. (1) 求函数2y x bx c =++(x ≥ 0)的解析式并 画出它的图象(不要求列表);(2)若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++≥=⎨-<⎩ 又已知关于x 的 方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于 点E .(1)求证:直线DE 是⊙O 的切线; (2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF 的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,列出ax 与a x +的差()y ax a x =-+再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决.参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=. (1)分别用含a 的代数式表示4b ,4c ; (2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示); (2)若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点.(1)如图,若△ABC 为等边三角形,BM =1,CM =2, 求AM 的长;(2) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).25. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B 在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ; (2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式;② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.北京市西城区2011 — 2012学年度第一学期期末试卷(南区)九年级数学参考答案及评分标准2012.1 一、选择题(本题共32分,每小题4分)阅卷说明:第10题写成2(1)1y x=--不扣分;第11题每空各2分;第12题第(1)问2分, 第(2)问每空各1分.三、解答题(本题共30分,每小题5分)13.解:原式= 222⨯…………………………………………………3分= 22+.……………………………………………………………………5分14.解:(1)…………………………………………3分(2)点C1的坐标为(2,8). ……………………………………………………5分图115.解:(1)抛物线与x 轴的交点的坐标为(5,0) (1,0)-和. …………………………2分抛物线与y 轴的交点的坐标为(05)-,. …………………………………3分 (2)245y x x =+-2(44)9x x =++-…………………………………………………………4分2(2)9x =+-. …………………………………………………………5分 16.解: 在RtΔACB 中,∠ACB =90°,AB =6, ∠A =30°,(如图2) ∴ 362121=⨯==AB BC . ………………………1分 ∵ 沿BE 将ΔABC 折叠后,点A 与BC 延长线上的点D∴ BD=AB=6,∠D =∠A =30°.……………………3分∴CD=BD -BC =6-3=3. ……………………………4分在RtΔDCE 中,∠DCE =90°,CD =3, ∠D =30°,∴3223330cos ===CD DE . ………………………………………………5分17.解:(1)∵ 四边形ABCD 是矩形,AB 的长为x 米, ∴ CD=AB=x (米).∵ 矩形除AD 边外的三边总长为36米,∴ 362BC x =-(米).………………………………………………………1分 ∴ 2(362)236S x x x x =-=-+. ……………………………………………3分 自变量x 的取值范围是012x <<. …………………………………………4分 ( 说明:由0<x <36-2x 可得012x <<.)(2)∵222362(9)162S x x x =-+=--+,且9x =在012x <<的范围内 ,∴ 当9x =时,S 取最大值.即AB 边的长为9米时,花圃的面积最大.…………………………………5分18.解:(1)在Rt △ACD 中,90C ∠=︒, AD =10,4sin 5ADC ∠=,(如图3) ∴ 4sin 1085AC AD ADC =⋅∠=⨯=.……1分3cos 1065CD AD ADC =⋅∠=⨯=. ∵ DE 垂直平分AB ,∴ 10BD AD ==.……………………………2分 ∴ 16BC CD BD =+=. ……………………3分 在Rt △ABC 中,90C ∠=︒,∴ 81tan 162AC B BC ===.……………………………………………………4分 (2)sin tan 21cos ααα=+.(写成1cos sin αα-也可) ……………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)第三个和第四个正方形的位置 如图4所示.……………………2分 第三个正方形中的点P 的坐标为 (3,1). …………………………3分(2)点(,)P x y 运动的曲线(0≤x ≤4)如图4所示. …………………………4分它与x 轴所围成区域的面积等于1π+. ……………………………………5分20.解:(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩解得 4b =-,2c =.…………………………………………………………2分 ∴ 所求的函数解析式为242y x x =-+(x ≥0). …………………………3分 它的函数图象如图5所示.……………………………………………………4分(2)k 的取值范围是22k -<≤.(如图6)……………………………………………5分 21.(1)证明:连接OD .(如图7) ∵ AD 平分∠BAC ,∴ ∠1=∠2.…………………………………………………………………1分 ∵ OA =OD , ∴ ∠1=∠3. ∴ ∠2=∠3.∴ OD ∥AE .∵ DE ⊥AC , ∴ ∠AED =90°.∴ 18090ODE AED ∠=︒-∠=︒.∴ DE ⊥OD . ……………………………2分 ∵ OD 是⊙O 的半径,∴ 直线DE 是⊙O 的切线. ………………………………………………3分(2)解:作OG ⊥AE 于点G .(如图7) ∴ ∠OGE =90°.∴ ∠ODE =∠DEG =∠OGE =90°. ∴ 四边形OGED 是矩形.∴ OD =GE .……………………………………………………………………4分 在Rt △OAG 中, ∠OGA =90°,4cos 5BAC ∠=,设AG =4k ,则OA =5k . ∴ GE =OD =5k . ∴ AE =AG +GE =9k . ∵ OD ∥GE , ∴ △ODF ∽△EAF . ∴59DF OD AF AE ==.……………………………………………………………5分 22.解:(1)∵ 2220a a b c ---=,2230a b c +-+=,∴ ⎪⎩⎪⎨⎧+=--=+.322,222a b c a a c b消去b 并整理,得243c a =+.………………………1分消去c 并整理,得2423b a a =--. ………………2分(2)∵ ()()()411332422--=+-=--=a a a a a b , 将4b 看成a 的函数,由函数24(1)4b a =--的性质结合它的图象(如图8所示),以及a ,b 均为非负数得a ≥3.又 ∵ a <5,∴ 3≤a <5.……………………………………………………………………3分∵ 224()63(3)12b a a a a -=--=--,将4()b a -看成a 的函数,由函数24()(3)12b a a -=--的性质结合它的图象(如图9所示)可知,当3≤a <5时,4()0b a -<.∴ b <a . ……………………………………………4分∵ 24()43(1)(3)c a a a a a -=-+=--,a ≥3,∴ 4()c a -≥0.∴ c ≥a .∴ b <a ≤c . ………………………………………5分阅卷说明:“b <a ,b <c ,a ≤c ”三者中,先得出其中任何一个结论即可得到第4分,全写对得到5分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)令0y =,得方程 2(2)20kx k x +--=.整理,得 (1)(2)0x kx +-=.解得 11x =-,22x k= . ∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分 抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k k k-++-. ………3分 (2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14x k k y ⎧=⎪⎪⎨⎪=--⎪⎩可得 114y x =-- . ∴ 所求新函数的解析式为114y x=--. …………………………………7分 24.解:(1)因AB =AC 且∠BAC=60°,故将△ABM 绕点A 逆时针旋转60︒得△ACN ,则△ABM ≌△ACN ,(如图10)………………………………………………1分∴ ∠BAM =∠CAN ,∠ABM =∠ACN ,AM =AN ,BM =CN .∵ 四边形ABMC 内接于⊙O ,∴ ∠ABM +∠ACM =180︒.∴ ∠ACN +∠ACM =180︒.∴ M ,C ,N 三点共线.……………………2分∵ ∠BAM =∠CAN ,∴ ∠BAM +∠MAC =∠CAN +∠MAC =60︒, 即∠MAN =60︒. ………………………………………………………………3分∵ AM =AN ,∴ △AMN 是等边三角形.……………………………………………………4分 ∴ AM =MN =MC +CN =MC +BM =2+1=3. ……………………………………5分(2)AM)b a -)b a +.……………………………………………7分 25.解:(1)图2中的m1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中的点P 运动到与点B 重合,∴ 1131222BOC C S OB y OB ∆=⨯⨯=⨯⨯=. 解得 8OB =,点B 的坐标为(8,0). ……………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM CON ∠=∠.又∵ 3A C y y ==,即AM= CN ,可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中AB ==∴ 图11中DE =,2D OF x DE =+= …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线W 的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,∴ 由抛物线的对称性可知P 点的横坐标为4,即OG=BG=4.由3tan 6AM PG ABM BM BG∠===可得PG=2. ∴ 点P 的坐标为(4,2)P .………………5分设抛物线W 的解析式为(8)y ax x =-(a ≠0).∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=. 解得 18a =-. ∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分 ②如图14.i )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W 上, 点P 为抛物线W 的顶点,结合抛物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………………………………………7分 ii )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-.∴ 2Q 点的横坐标是方程212118x x x -+=-的解.将该方程整理得28880x x +-=.解得4x =-± 由点Q 在直线1y =-上方的抛物线W 上,结合图14可知2Q 点的横坐标为4.∴ 点2Q 的坐标是219)Q . …………………………8分综上所述,符合题意的点Q 的坐标是1(0,0)Q ,219)Q .。

高新区2011-2012学年第一学期期末试题 九年级数学

高新区2011-2012学年第一学期期末试题 九年级数学

义务教育阶段学生学业质量测试九年级数学2012.01注意事项:1.本试卷共3大题、28小题,满分130分,考试用时120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号、考试号填写清楚,并用2B铅笔认真正确填涂考试号下方的数字;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效,一、选择题(本大题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题的选项代号填涂在答题卡相应位置)1.不解方程判别方程2x2+3x-4=0的根的情况是A.有两个相等实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为A.40°B.30°C.45°D.50°3.要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的A.平均数B.中位数C.方差D.众数4.二次函数y=-2(x-1)2+3的图象如何移动就得剑y=-2x2的图象A.向左移动1个单位,向上移动3个单位B.向右移动1个单位,向上移动3个单位C.向左移动1个单位,向下移动3个单位D.向右移动1个单位,向下移动3个单位5.⊙O1的半径为3cm,⊙O2的半径为5cm,圆心距O1O2=2cm,这两圆的位置关系是A.外切B.相交C.内切D.内含6.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是A.第8秒B.第10秒C.第12秒D.第15秒7.一个长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板左上角一点A位置的变化为A→A1→A2,其中第二次翻滚被面上一小木块挡住,使木板与桌面成30°的角,则点A滚到A2位置时共走过的路径长为A.B.C.D.8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是A.6B.8C.9.6D.10二、填空题(本大题共10小题,每小题3分,共30分,请把答案填在答题卡相应位置上9.若-1是方程x2-k x+1=0的一个根,则k=▲.10.一组数据3,x,0,-1,-3的平均数是1,则这组数据的极差为▲.11.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球▲个.12.一圆锥的母线长为6cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径r为▲cm.13.对于函数y=-x2+2x-2,当x≤a时,y随x的增大而增大,则a的最大值为▲.14.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB 于点C、D,若PA=5,则△PCD的周长为▲.15.如图,两圆⊙O1和⊙O2相交于A、B两点,DBC和EAO1都是直线,且∠AO1C=140°,那么∠E=▲.16.如图,点E(0,4),0(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t a n∠OBE的值是▲.17.若A(-4,y1),B(-1,y2),C(1,y3)为二次函数y=x2+4x-5的图像上的二点,则y1,y2,y3的从小到大顺序是▲.18.如图,已知⊙P的半径为2,圆心P在抛物线y=x2-3上运动,当⊙P与x轴相切时,圆心P的坐标为▲.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相对应的位置上.解答时应写出必要的计箅过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.) 19.(本题10分)解方程(1) 8x2+10x=3(2)20.(本题6分)已知函数y=-x2+2x-.(1)用配方法求它的顶点坐标;(2)在平面直角坐标系中画出它的简图:(3)根据图象回答:x取什么值时,y>0.21.(本题6分)五一节假日,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界:B:神秘河谷中随机选择一个项目,下午再从C:恐龙半岛;D:儿童王国;E:海螺湾中随机选择两个项目游玩,请用树状图或列表法表示小宝所有可能的选择方式.(用字母表示)(2)在(1)问的随机选择方式中,求小宝当天恰能游玩到太空世界和海螺湾这两个项目的概率.22.(本题6分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的图像△A'B'C';(2)若一个二次函数的图象经过(1)中△A'B'C'的三个顶点,求此二次函数的关系式.23.(本题7分)已知一元二次方程x2-2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.24.(本题7分)为了解学生的出行状况,某中学就到校的方式问题对各个年级的部分学生进行了一次调查,并将调查结果制作了表格和扇形统计图,请你根据图表信息完成下列各题:(1)补全下表:(2)在扇形统计图中,“步行”对应的圆心角的度数为▲.(3)若该中学有学生1900人,请估计乘公交车上学的学生有多少人?25.(本题8分)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;(2)若AD=1,DE=3,求BD的长.26.(本题8分)某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每问每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?(3)当每间商铺的年租金定为多少万元时,该公司的年收益最大?(假设年租金每次增加的幅度必须为5000元的倍数)27.(本题8分)如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,RD交AC于点F.(1)求证:DE是⊙O的切线;(2)若CE=2,ED=4,求⊙O的半径.28.(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.(1)写出顶点B的坐标▲(用a的代数式表示);(2)求抛物线的解析式:(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.。

20112012学年度第一学期九年级期末考试数学

20112012学年度第一学期九年级期末考试数学

2011-2012学年度第一学期九年级期末考试数学科试卷一.选择题(本大题共8小题,每小题4分,共32分) 1.下列根式中,不是..最简二次根式的是 ABCD2.下列图形中,是中心对称图形的是3.将量角器按如图所示的方式放置在三角形纸片上,使点C 在半圆圆心上, 点B 在半圆上,则∠A 的度数约为A .10°B .20°C .25°D .35° 4.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定 A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 5.某城2009年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2011年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是A 、300(1+x )=363B 、300(1+x )2=363 C 、300(1+2x )=363 D 、363(1-x )2=300 6.某中学为庆祝党的生日,,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年 级各有一名同学进入决赛,九年级有两名同学进入决赛,则九年级同学获得前两名的概率是A . 12B .13 C .14 D .167.如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交 小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺 测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是A .甲、乙B .丙C .甲、乙、丙D .无人能算出 8.如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A 点出发, 绕侧面一周又回到A 点,它爬行的最短路线长是A .2πB. C.D .5二.填空题(本大题共5小题,每小题4分,共20分) 9有意义的条件是10.在平面直角坐标系内,点P (-3,2)关于原点对称的点的坐标是 11..同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、能围成一个三角形,则这两个圆的位置关系是 12.已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为____________13.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形 A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2;以M 2A 1为对角线作BA第3题图AP 8题A B C D第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……, 依次类推,这样作的第n 个正方形对角线交点M n 的坐标为 三.解答题(本大题共5小题,每小题7分,共35分) 14.计算:20100(1)|(2-+-15.用适当的方法解方程:22(3)5x x -+=16.已知a ,b ,c 为三角形的三边, 化简222)()()(a c b a c b c b a -++--+-+17. 已知关于x 的一元二次方程x 2-(2k+3) x+k 2+3k+2=0 求证:无论k 为何值时,方程总有两个不相等的实数根. 18.已知在△ABC 中,∠ A=90°,请用圆规和直尺作⊙P ,使圆心P 在AC 上,且与AB 、BC 两边都相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

松滋市2012-2013学年度第一学期九年级数学期末考试题--1
松滋市2012-2013学年度第一学期期末考试
九 年 级 数 学 试 题
温馨提示:1.各题的答案或解答过程,写在“答题卡”相应的答题位置,写在草稿上和本试卷上无效;书写内容不得超过答题卡上规定的边框。

2.将选择题的正确选项用“2B ”铅笔涂黑,其余答案与解答过程一律用0.5mm 黑色签字笔书写。

3.注意答题卡卡面整洁;全卷4页,共三大题25小题;考试时间120分钟,卷面满分120分.
★ 祝考试顺利!★
一、选择题:(每小题后面代号为A 、B 、C 、D 的四个选项中,只有一个正确,将它选出来并将答题卡上
对应的选项涂黑,选对一题3分,不选和选错0分,本题满分为30分)
1.如图,正方形ABCD 的对角线相交于O ,旋转后与原图重合,下面不能做到的是( ) A.绕0点顺时针旋转90º B.绕0点逆时针旋转90º C.绕B 点顺时针旋转90º D.绕0点顺时针旋转180º
2.下面的四个值中,取到其中的一个时式子
4
52
--x x
没有意义,这个数是( ) A.-3 B.-2 C.3 D.5
3.已知一个正方形,面积是5平方厘米。

下面的四正方形中,面积分别如图中所标,其中边长是已知正方形边长整数倍的是( )
4.下面的一元二次方程: ①0122
=+x , ②0122
=-x , ③01)1(2
=+-x , ④03)2(2
=--x ,其中没有实根的是( )
A.①③④
B.①③
C.①②④
D.①③④ 5. 如图,弦AB 的同侧弧上有点C 、D,∠ACB=80º, D 是弧AB 的中点,则∠DBA 的度数是( ) A.50º B.45º C.40º D.60º
6. 把二次函数442
--=x x y 配方成顶点式,配方后得( ) A. 2
)2(-=x y B. 8)2(2
--=x y
C. 6)2(2--=x y
D. 5)2(2
--=x y
7.甲口袋里装有5个球,球上分别写有“A 、B 、C 、D 、E ”,乙口袋里装有4个球,上面分别写有 “F 、G 、
H 、I ”,这些球大小、质地完全相同,在每个口袋里各摸出1个球,两个球上面都写有“元音字母”(英语26个字母中A 、E 、I 、O 、U 为元音,其余为辅音)的概率是( ) A.
51 B.52 C.41 D.10
1
8. 如图,以等腰Rt ⊿OAB 的直角顶点O 为圆心作⊙O ,与斜边AB 相切,当⊙O 的半径是5cm 时,⊿OAB 的面积是( )
A.25平方厘米
B.5π平方厘米
C.25π平方厘米
D.50平方厘米
9.立在桌面上的矩形ABCD ,AB=4cm,AD=3cm,将它绕A 旋转放倒,如图。

B 、C 分别到达B ’、C ’.在这一过程中,C 点到达C ’运行的路径长是( ) A.)(23cm π B.)(2cm π C.)(2
5
cm π D. )(3cm π
10.抛物线n mx x y ++-
=2
2
1的图象经过A(-1,0)和B(2,0)两点,与y 轴交于C,如图。

则下面的结论中错误..
的是( ) A.12=m B.点C 的坐标是(0,1)
C.022
>+n m D.x=0时的函数值小于x=1时的函数值 二、填空题:(本大题共6小题,每题3分,满分为18分)
11. 化简=-818 ★ 。

12.使二次根式32
-x 取到的值最小,这个x 应该是 ★ 。

13.m m n ---=
63,其中m 为整数。

则正数n= ★ 。

14. 工人师傅准备给圆柱体储油罐加工一个稳定的基座,断面是轴对称图形,如图。

圆柱体底面圆的直径是8m,BC 与圆相切,∠B=∠C=45º.劣弧AD 是整个圆周的三分之一。

那么,下料时BC 的长应该是 ★ 米(取7.13≈)。

15.按程序: 运算,当输出的y=4时,输入的x 是 ★ 。

松滋市2012-2013学年度第一学期九年级数学期末考试题--2
16.如图是底面圆半径是20cm 的圆柱体养蜂桶,底面圆周有蜜渗出,A 、B 分别是它相对的母线上的点,A 离底面圆7π厘米,B 离底面圆8π厘米.一只蜜蜂从A 出发,在底面圆周一点吮吸蜜后到达B 点,它最短要爬过的路径长是 ★ 厘米。

三.解答题:(本大题共9小题,满分为72分)
17.(本题6分)用配方法解一元二次方程:01222
=+-x x
18.(本题6分)如图,坐标平面内有 A(-5,6)、B(1,6)、C(5,2)三点。

(1) 画出经过A 、B 、C 三点的圆; (保留画图痕迹,不写画法。


(2)求出经过A 、B 、C 三点的圆的圆心的坐标。

19.(本题7分)关于x 的方程03)32(2
2
=-+--k x k x 的两实数解的积是1 ,求k 的值。

20.(本题共7分) 在树干的A 处确定一个固定点,用两 根钢索BA 、AC 将一根被风刮歪的古树固定到与地面垂直, AB 比AC 的2倍少3米。

BD=8米,DC=19米。

求两根钢索AB 、AC 各是多少米。

21.(本题8分)小梅和小菊在一起玩数学游戏:一个盒子里装有三张卡片,上面分别写有1,-1,2.小梅从盒子里摸出一张,以上面的数字作为P,摸出后不放回。

小菊再从盒子里摸出一张,以上面的数字作为q,建立关于x 的方程02
=++q px x .
(1)写出所有可能的一元二次方程;
(2)求他们这样做一次,所得到的方程有实数解的概率。

22.(本题8分)养殖能手张军准备了可以砌1.5米高,18米长墙体的材料。

他一面靠墙,另外修砌1.5米高的四面墙,围成如图所示的两个矩形水池,若AB=DE=FC=x 米。

(墙的厚度不计) (1)水池容积是36立方米时,求x 应该取多大; (2)如果容积记为y (立方米),求y 关于x 的函数关系式,并写出x 的取值范围; (3)x 取多少时,水池的容积最大,是多少立方米?
23. (本题9分)AB 是⊿ABC 的外接圆⊙O 的直径,D 是弦AC 的中点,AC=6cm,BC=8cm. (1)求⊙O 的半径;
(2)在射线DE 上有一点P,以P 为圆心,8cm 为半径的圆与AB 相切,求DP 的长; (3)在射线DE 上有一点Q,QD=6cm,⊙Q 与⊙O 相切,求⊙Q 的半径。

24.(本题9分)定义新运算“€”,它的含义是x €y=(x+1)(y-1)-2。

(1)求3€(-2)的值;
(2)求m 在什么范围内取值时,有实数x 满足x €x+m €x+4
2
m =0。

25.(本题12分)抛物线32++=bx ax y 经过A(-3,0)和B(-1,0)两点,抛物线的顶点为D,经过D 、O
的直线交y=-2x+9的图象于G ,如图。

(1)求a 、b 的值;
(2)求⊿OGE 外接圆圆心的坐标;
(3)将抛物线的顶点在直线OD 上移动,抛物线与射线EG (包括E )只有1个交点时,求顶点横坐标的范围;。

相关文档
最新文档