九年级上学期数学《期末考试题》及答案解析
人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。
人教版九年级上册数学期末考试试题及答案解析

人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程是一元二次方程的是( )A .222x +=B .221x y -=C .20x =D .11x x=- 3.若关于x 的方程20x m -=有实数根,则m 的取值范围是( )A .0m <B .0m ≤C .0m >D .0m ≥4.二次函数y =﹣3(x +1)2﹣7有( )A .最大值﹣7B .最小值﹣7C .最大值7D .最小值75.将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为( )A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--6.下列事件是随机事件的是( )A .购买一张福利彩票就中奖B .有一名运动员奔跑的速度是50米/秒C .在一个标准大气压下,水加热到100C ︒会沸腾D .在一个仅装有白球和黑球的袋中摸球,摸出红球7.如图,AB 是⊙O 的直径,AC =BC ,则⊙A 的度数等于( )A .30°B .45°C .60°D .90°8.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为( )A .12 B .15 C .110 D .3109.已知圆心角是60︒,半径为30的扇形的弧长为( )A .5πB .10πC .20πD .25π10.已知圆心角为120︒的扇形的弧长为6π,该扇形的面积为( )A .12πB .21πC .27πD .36π11.已知直线y ax b =+经过一、二、三象限,则抛物线2y ax bx =+大致是( )A .B .C .D .12.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12二、填空题 13.一元二次方程()()320x x --=的根是_____.14.抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为_____.15.数学老师将全班分成4个小组开展合作学习,采用随机抽签方式确定2个小组进行展示活动,则第1小组和第2小组被抽到的概率是_________.16.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.17.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.18.如图,把ABC 绕点C 顺时针旋转某个角度α得到A B C ''',30A ∠=︒,170∠=︒,则旋转角α的度数为______.三、解答题19.用指定方法解方程:(1)2250--=(公式法);x x(2)2-=(配方法).22x x20.(1)画图:图⊙为正方形网格,画出ABC绕点O顺时针...旋转90︒后的图形.(2)尺规作图:在图⊙中作出四边形ABCD关于点O对称的图形(不写作法,保留作图痕迹,用黑色笔将作图痕迹涂黑).21.已知y是关于x的二次函数,x,y满足下表观察上表(不用求解析式),直接写出该函数如下性质:(1)图象函数名称________,开口方向_______;(2)对称轴表达式_________;(3)顶点坐标_________;(4)y随x的变化情况___________,___________.22.如图1,点P 表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O 为圆心,5m 为半径的圆.若O 被水面截得的弦AB 长为8m ,求水车工作时,盛水筒在水面以下的最大深度.23.如图是一张长24cm ,宽12cm 的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a = ;(2)若铁盒底面积是80cm 2,求剪去的小正方形边长.24.某电脑销售店电脑原价为每台5000元,元旦期间开展了促销活动,将原价经过两次下调后,促销价为每台4050元.(1)求平均每次下调的百分率;(2)某校计划以促销价购买100台电脑.该店还给予以下两种优惠方案以供选择:⊙打9.8折销售;⊙不打折,送12个月的免费保修费,免费保修费为每台每月10元.请问哪种方案更优惠?25.如图,ABC 中,90C ∠=︒,BD 平分ABC ∠,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作O ,O 恰好经过点D .(1)求证:直线AC 是O 的切线;(2)若30A ∠=︒,2OB =,求线段CD 的长.26.如图,在平面直角坐标系中,已知点B的坐标为(﹣2,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊙AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.参考答案1.D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 2.C【分析】根据一元一次方程的定义依次判断即可.【详解】解:A、该方程是一元一次方程,故本选项不符合题意;B、该方程是二元二次方程,故本选项不符合题意;C、该方程是一元二次方程,故本选项符合题意;D、该方程分式方程,故本选项不符合题意.故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(a,b,c为常数且a≠0).3.D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:20-=x m2=x m⊙关于x的方程20-=有实数根x m⊙0m≥故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.4.A【分析】根据顶点式直接写出答案即可.【详解】二次函数y =﹣3(x +1)2﹣7中,k =﹣3<0,⊙二次函数y =﹣3(x +1)2﹣7,当x =﹣1时有最大值﹣7,故选:A .【点睛】本题考查了二次函数的最值,解题的关键是了解二次函数的顶点式,难度不大.5.B【分析】根据二次函数图象的平移方法即可求解.【详解】解:将抛物线2y x 图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的方法.6.A【分析】根据随机事件的定义,随机事件:是指在一定条件下可能发生也可能不发生的事件,进行一一排查即可.【详解】解:A. 购买一张福利彩票就中奖,是随机事件,故A 正确;B. 有一名运动员奔跑的速度是50米/秒,是确定事件中不可能事件,故B 不正确;C. 在一个标准大气压下,水加热到100C ︒会沸腾,是确定事件中必然事件,故C 不正确;D. 在一个仅装有白球和黑球的袋中摸球,摸出红球,是确定事件中不可能事件,故D 不正确;故选择:A .【点睛】本题考查随机事件,掌握随机事件的定义,随机事件与确定性事件相比,是不确定的,因为对这种事件不能确定它是发生,还是不发生,即对事件的结果无法确定.7.B【分析】先由AB 是⊙O 的直径得出⊙C=90°,再根据AC=BC ,得出⊙ABC 是等腰直角三角形,由此求出⊙A=45°.【详解】⊙AB 是⊙O 的直径,⊙⊙C=90°,⊙AC=BC,⊙⊙ACB为等腰直角三角形,⊙⊙A=45°.故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同时考查了等腰直角三角形的性质.8.D【分析】根据概率计算公式,直接用黄色小球的个数除以总个数计算即可得结果.【详解】解:搅匀后任意摸出一个球,是黄球的概率为33 23510=++,故选:D.【点睛】本题考查了概率的计算,牢记概率的计算公式是解题的关键.9.B【分析】直接利用弧长公式计算即可得到答案.【详解】扇形圆心角为60︒,半径为30∴该扇形的弧长603010 180180n rlπππ⨯⨯===故选:B.【点睛】本题考查了扇形弧长的计算,熟练掌握弧长公式是解题关键.10.C【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:120180rπ=6π,⊙S 扇形=21209360π⨯=27π, 故选择:C .【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 11.A【分析】由直线y ax b =+经过一、二、三象限,可确定00a b >>,,由0a >,抛物线开口向上,可判断D 不正确,由00a b >>,抛物线的对称轴x≠0,可判断C 不正确,由x=02b a-<抛物线对称轴在y 轴左侧可判断D 不正确,A 正确. 【详解】解:⊙直线y ax b =+经过一、二、三象限,⊙00a b >>,,⊙0a >,抛物线开口向上,则D 不正确,⊙00a b >>,,⊙抛物线的对称轴x≠0,则C 不正确,由x=02b a -<, 抛物线对称轴在y 轴左侧,则D 不正确,A 正确,故选择:A .【点睛】本题考查一次函数经过象限确定抛物线的位置,掌握抛物线的性质,特别是抛物线的性质与系数a b ,的关系是解题关键.12.C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长= ,所以最短弦为8;所以符合题意的弦长为8到10,【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.13.123,2==x x【分析】利用因式分解法把方程化为x -3=0或x -2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14.(0,﹣5)【分析】要求抛物线与y 轴的交点,即令x =0,解方程.【详解】解:把x =0代入y =﹣x 2+2x ﹣5,求得y =﹣5,则抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与y 轴的交点坐标,正确掌握令0x =或令0y =是解题的关键.15.16【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:如图所示:由图可知,共有12种可能结果,其中第1小组和第2小组被抽的结果有2种,所以第1小组和第2小组被抽到的概率为21= 126.故答案为:16.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.16.2【分析】连接OE,OD,OF,由切线长定理可得AE=AD,BF=BD,证明四边形OECF是正方形,根据勾股定理求出AB的长,然后根据AD+BD=AB列方程求解即可.【详解】解:连接OE,OD,OF,设⊙O的半径为r,⊙⊙O分别与边AB、AC、BC相切于点D、E、F,⊙OE⊙AC,OD⊙AB,OF⊙BC,AE=AD,BF=BD,⊙⊙OEC=⊙OFC=90°,⊙⊙C=90°,⊙四边形OECF是矩形,⊙OE=OF,⊙四边形OECF是正方形,⊙EC=FC=r,⊙AE=AD=6-r,BF=BD=8-r,⊙⊙C=90°,6AC=,8BC=,⊙AB=10,⊙AD+BD=AB,⊙6-r+8-r=10,⊙r=2.故答案为:2.【点睛】此题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17【分析】连接AE,过点F作FH⊙AE,根据正六边形的内角和得出⊙AFE=⊙DEF=120°,再根据等腰三角形的性质可得⊙FAE =⊙FEA=30°,得出⊙AEP=90°,由直角三角形的性质和勾股定理求得FH,AE,再利用勾股定理即可得出AP.【详解】解:如图,连接AE,过点F作FH⊙AE,⊙六边形ABCDEF是正六边形,⊙AB=BC=CD=DE=EF=AF=2,⊙AFE=⊙DEF=120°,⊙⊙FAE=⊙FEA=30°,⊙⊙AEP=90°,⊙FH=1AF=1,2⊙AH,⊙AE=2AH=⊙P是ED的中点,DE=1,⊙EP=12⊙AP【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.18.40°【分析】根据旋转的性质可得30A A '∠=∠=︒,再根据外角的性质求得ACA '∠,从而得到结果.【详解】由旋转得,30A A '∠=∠=︒,又⊙170A ACA ''∠=∠+∠=︒,⊙1703040ACA A ''∠=∠-∠=︒-︒=︒,即40α∠=︒.故答案为:40°.【点睛】本题考查了旋转的性质及外角的性质,明确旋转角,熟练掌握旋转性质是解题的关键.19.(1)11x =21x =(2)1x =2x =【分析】(1)先确定原方程各项系数的值,再代入求根公式即可得到方程的解;(2)方程整理后,再移项,把二次项系数化为1,最后运用配方法求解即可.【详解】解:(1)2250x x --=⊙1a =,2b =-,5c =-,⊙441(5)240∆=-⨯⨯-=>,则1x ==⊙11x =21x =.(2)222x x -= 把原方程化为2112x x -=. 配方,得2221111244x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭, 即2117416x ⎛⎫-= ⎪⎝⎭.由此可得14x -=.1x =2x = 【点睛】此题主要考查了一元二次方程的解法,熟练地掌握一元二次方程的解法特别是因式分解法解一元二次方程,可以大大降低计算量.20.(1)见解析;(2)见解析.【分析】(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连接即可;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连接即可.【详解】解:(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连结DE ,EF ,FD ,如图⊙,则DEF 为所求;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连结A′B′、B′C′、C′D′、D′A ',如图⊙,四边形A B C D ''''为所求.【点睛】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.21.(1)抛物线,向下;(2)1x =;(3)(1,1);(4)当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【分析】根据已知表格和二次函数的性质依次判断即可;【详解】(1)因为y 是关于x 的二次函数,⊙图像名称是抛物线,观察x ,y 的值可知抛物线开口方向向下;故答案是:抛物线,向下;(2)由表可知,图象与x 轴交于点()1,0-,()3,0,故对称轴1312x -+==; 故答案是1x =;(3)因为对称轴为1x =,所以顶点坐标为(1,1);故答案是(1,1);(4)因为对称轴为1x =且开口向下,所以当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.故答案是:当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【点睛】本题主要考查了二次函数的图像性质,准确分析判断是解题的关键.22.水车工作时,盛水桶在水面以下的最大深度为2m .【分析】如图:过O 点作半径⊥OD AB 于E ,则5OD =,由垂径定理得4AE BE ==,在利用勾股定理可求得3OE =,水深DE OD OE =-,即可求解.【详解】如图:过O 点作半径⊥OD AB 于E118422AE BE AB ∴===⨯=在Rt AEO △中,3OE ==532ED OD OE ∴=-=-=∴水车工作时,盛水桶在水面以下的最大深度为2m【点睛】本题考查了垂径定理的,解题关键在于作辅助线利用勾股定理计算.23.(1)12;(2)2cm【分析】(1)根据题意找到等量关系列出方程组,转化为一元二次方程求解即可;(2)根据题意,得mn =80,结合(1)转化为一元二次方程求解即可.【详解】解:(1)设底面长为mcm ,宽为ncm ,正方形的边长为xcm ,根据题意得:2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,由⊙⊙得2a =24,解得a =12(cm ),故答案为:12cm ;(2)根据题意,得mn =80,由2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,得由⊙得,n =12﹣2x ,把a =12代入⊙得m =12﹣x ,再把m 和n 代入mn =80中,得(12﹣x )(12﹣2x )=80,解得x =2或x =16(舍去).答:剪去的小正方形边长为2cm .【点睛】本题考查了矩形的性质,正方形的性质,方程组,一元二次方程的解法,准确理解剪图的意义,把问题转化为方程组和一元二次方程问题求解是解题的关键.24.(1)平均每次降价的百分率为10%;(2)方案⊙更优惠.【分析】(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= 解方程即可;(2)方案⊙的电脑款是:9.8405010010⨯⨯(元),方案⊙的电脑款是:40501001001012⨯-⨯⨯(元)计算结果比较即可. 【详解】解:(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= ,2(1)0.81x -=, 10.9x -=±,解得10.110%x ==,2 1.9x =(不合题意,舍去),答:平均每次降价的百分率为10% ;(2)方案⊙的电脑款是:9.8405010039690010⨯⨯=(元), 方案⊙的电脑款是:40501001001012393000⨯-⨯⨯=(元), 396900元393000>元,答:方案⊙更优惠.【点睛】本题考查降价率与方案设计问题应用题,掌握减价率一元二次方程应用题的解法,会根据方案列出数式并计算进行决策.25.(1)证明见解析;(2)CD =【分析】(1)连接OD 由BD 平分ABC ∠得DBC DBO ∠=∠ ,由圆的半径OD OB =得ODB DBA ∠=∠ ,利用传递性ODB DBC ∠=∠,利用内错角相等,得//OD BC 利用平行线性质90ODA C ∠=∠=︒即可;(2)在Rt ADO ∆中,30A ∠=︒可得24AO DO ==,可求426AB =+=,132BC AB ==,设DC x =,则2DB x = 由勾股定理222DC BC BD +=,即2294x x +=可,求CD =【详解】(1)证明:连接OD , BD 平分ABC ∠,DBC DBO ∴∠=∠ ,OD OB =,ODB DBA ∴∠=∠ ,ODB DBC ,//OD BC ∴ ,90ODA C ∴∠=∠=︒,∴直线AC 是O 的切线;(2)解:在Rt ADO ∆中,30A ∠=︒,24AO DO ∴== ,426AB ∴=+=,132BC AB ==, 在Rt BCD ∆中,903060ABC ∠=︒-︒=︒,30DBC DBA ∴∠=∠=︒,设DC x =,则2DB x = ,222DC BC BD +=,即2294x x +=,解得x =由x>0,即CD =【点睛】本题考查圆的切线,角平分线,等腰三角形,平行线的判定,含30°角直角三角形的性质,勾股定理,一元二次方程及其解法,本题难度不大,综合运用知识多,是基础知识复习的好题.26.(1)点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)y =12x 2﹣3x ﹣8;(3)最大值为P (4,﹣12)【分析】(1)根据B 点坐标及OA =OC =4OB 结合图象即可确定A 点,C 点的坐标;(2)由(1)可将抛物线的表达式写成交点式,然后代入C 点坐标即可求出解析式;(3)求出直线CA 的解析式,过点P 作y 轴的平行线交AC 于点H ,求出⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),写出PD 的表达式根据二次函数的性质求最值即可.【详解】解:(1)⊙B 的坐标为(﹣2,0),⊙OB =2,⊙OA =OC =4OB =8,故点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)由(1)知,抛物线的表达式可写为:y =a (x +2)(x ﹣8)=a (x 2﹣6x ﹣16),把C (0,﹣8)代入得:﹣16a =﹣8,解得:a =12,故抛物线的表达式为:y =12x 2﹣3x ﹣8;(3)⊙直线CA 过点C ,⊙设其函数表达式为:y =kx ﹣8,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣8,过点P 作y 轴的平行线交AC 于点H ,⊙OA =OC =8,⊙⊙OAC =⊙OCA =45°,⊙PH ⊙y 轴,⊙⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),⊙PD =HP sin⊙PHD a ﹣8﹣12a 2+3a +8)=2+= 24)a -+⊙当a =4时,其最大值为P (4,﹣12).【点睛】本题主要考查二次函数的综合题,熟练掌握待定系数法求解析式及二次函数的性质结合三角函数是解题的关键.。
苏科版九年级上册数学《期末考试试题》附答案解析

2021年苏科版数学九年级上册期末测试 学校________ 班级________ 姓名________ 成绩________ 一、选择题 1.下列四组图形中,相似图形为( ) A. B.C .D.2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 423.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –14.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+7.如图,护林员在离树8m 的A 处测得树顶B 的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为( )A. 8mB. 9.6mC. (42+1.6)mD. (82+1.6)m 8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大9.我们把宽与长的比值等于黄金比例512的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512-C. 352 D. 512+ 10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.12.二次函数23y x =-的顶点坐标为_____________.13.若'''ABC A B C ∆∆,2''AB A B =,ABC ∆的周长为4,则'''A B C ∆的周长为_______.14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π). 15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.16.如图,⊙O 弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.18.如图,用同样长度的篱笆分别围成一个正方形ABCD 和矩形AEFG ,若图中矩形BCHE 的面积比矩形DGFH 的面积多100m 2,则矩形AEFG 的长比宽多_______m.三、解答题19.计算:2sin 45tan 30cos302︒+︒︒20.解方程:2(1)62x x -=+.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c的值.22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ; (2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率.23.某校课程中心为了了解学生对开设3D 打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m 的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D 打印课程的学生约有多少人?24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示);(2)'''A B C ∆的面积为 .25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数;(2)求证: ACE BFE ∆~∆.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知2PQ =,求点P 的坐标.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动速度为 cm/s;(2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.答案与解析一、选择题1.下列四组图形中,相似图形为( ) A. B. C.D.【答案】B【解析】【分析】 根据相似多边形的判定,对应角相等且对应边成比例即可解题.【详解】解:A 图形一个是等边三角形一个是等腰三角形,所以不是相似三角形;B 图形两个都是正方形,是相似图形;C 图形一个是正方形,一个是菱形,不是相似图形;D 图形一个是正方形,一个是长方形,不是相似图形;故选B.【点睛】本题考查了相似多边形的判定,属于简单题,熟悉相似多边形的判定条件是解题关键. 2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 42【答案】C【解析】【分析】众数是指数据中出现次数最多的数据,一组数据的众数可以有多个.【详解】解:这7个数据中41出现的次数最多,出现了3次,所以这组数据的众数是41,故选C.【点睛】本题考查了数据的统计,众数的识别,属于简单题,熟悉众数的概念是解题关键.3.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –1【答案】A【解析】【分析】将x=2代入方程即可求解. 【详解】解:将x =2代入一元二次方程230x x a -+=得,a=2,故选A.【点睛】本题考查了一元二次方程的求解,属于简单题,熟悉代入求值的方法是解题关键.4.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】【分析】 连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选 C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC 的长是解题关键.5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º 【答案】D【解析】【分析】 利用特殊的三角函数值求出∠A=30°,∠B=60°,再利用角平分线性质得∠ACD=∠BCD=45°,最后利用三角形内角和即可解题.【详解】解:在直角三角形ABC 中,∵90ACB ∠=︒,1sin 2A =, ∴∠A=30°,∠B=60°, 又∵CD 平分ACB ∠,∴∠ACD=∠BCD=45°, ∠BDC=180°-60°-45°=75°, 故选D.【点睛】本题考查了特殊的三角函数值,角平分线的性质,三角形的内角和,属于简单题,熟悉特殊三角函数值是解题关键.6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+【答案】D【解析】【分析】利用正六边形内接于圆O,证明△AED是特殊的直角三角形,再利用三角函数值即可解题.【详解】解:在正六边形ABCDEF中,每个内角都等于120°,∴∠F=120°,AF=EF,∴∠FAE=∠FEA=30°,∴∠AED=90°,∵正六边形ABCDEF内接于⊙O,∴∠ADE=60°,即△ADE是特殊的直角三角形,AD=2DE,(30°所对直角边等于斜边一半)∵⊙O的半径为6,∴AD=12,DE=6,AE=63,∆∴ADE的周长是1863+, 故选D. 【点睛】本题考查了正六边形的性质,直角三角函数的应用,中等难度,证明△AED是特殊的直角三角形,找到边长之间的关系是解题关键.7.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A. 8mB. 9.6m2+1.6)m2+1.6)m【答案】B【解析】【分析】过点C作CE⊥BD于E,证明△CEB是等腰直角三角形,利用矩形性质即可解题.【详解】解:过点C作CE⊥BD于E,∵∠BCE=45°,∴△CEB是等腰直角三角形,∴CE=BE=8,四边形ACED 是矩形,∴AC=DE=1.6,∴BD=8+1.6=9.6米,故选B.【点睛】本题考查了等腰直角三角形和矩形的性质,属于简单题,正确作辅助线是解题关键.8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大【答案】C【解析】【分析】 根据已知条件求出抛物线与x 轴的交点坐标,对称轴,利用开口向上时的增减性即可解题.【详解】解:令y=0,即2230x x --=,解得:x 1=3,x 2=-1,∵二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(-1,0),B(3,0),C(0,-3),∴AB=4,A 项正确,∴△COB 是等腰直角三角形,∴∠ABC=45°,B 项正确,∵抛物线的对称轴为直线x=1,开口向上,∴当1x >时,y 随x 的增大而增大,D 项正确,当0x >时,抛物线对应的图像为y 轴右侧,即函数值能取到最小值,y ≥-4,C 项错误,故选C.【点睛】本题考查了二次函数的图像和性质,中等难度,熟悉二次函数的性质,会求函数与x 轴的交点坐标是解题关键.9.我们把宽与长的比值等于黄金比例51-的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512C. 352 D. 512【答案】B【解析】【分析】利用黄金矩形的定理求出AD AB =51-,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD --===-,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB =512, ∵BE BC =,∴511151AE AB BE AB AD AB AD AD AD AD ---===-=-=- 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 【答案】D【解析】【分析】 利用对称性和两点之间线段最短,作出辅助线,将A 代入求出函数解析式,进而求出G(3,4),B(0,1),H (0,-1),待定系数法即可求出直线解析式.【详解】解:如下图,取A 关于抛物线的对称轴的对应点G ,B 关于x 轴的对称点H,连接HG ,与抛物线的对称轴交于点D,与x 轴的交点为点C,连接AD,CD,BC,利用对称的性质可知DA=DG ,CB=CH,∵两点之间线段最短,并且此时H,C,D,G 四点共线,∴此时的四边形ABCD 是周长最小的,将()1,4A -代入()21y a x =-中得,a=1, ∴抛物线的解析式为()21y x =-,∴抛物线的对称轴为直线x=1,∴G(3,4),B(0,1),H (0,-1)设直线CD 的解析式为y=kx+b,(k ≠0)代入G(3,4), H (0,-1)得 431k b b =+⎧⎨-=⎩解得:5 31kb⎧=⎪⎨⎪=-⎩,∴直线CD的解析式为513y x=-故选D.【点睛】本题考查了二次函数的图像和性质,待定系数法求直线解析式,对称的实际应用,难度较大,首先利用对称性作出辅助线,再用待定系数法求解析式是解题关键.二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.【答案】1【解析】【分析】根据平均数计算公式即可解题.【详解】解:平均数=1013215+-++=,所以它们的平均数是1.【点睛】本题考查了平均数的计算,属于简单题,熟悉平均数的计算方法是解题关键.12.二次函数23y x=-的顶点坐标为_____________.【答案】(0,-3).【解析】【分析】利用顶点式即可直接找到顶点坐标.【详解】解:由顶点式可知23y x=-的顶点为(0,-3).【点睛】本题考查了二次函数的顶点坐标,属于简单题,熟悉二次函数的性质是解题关键.13.若'''ABC A B C∆∆,2''AB A B=,ABC∆的周长为4,则'''A B C∆的周长为_______.【答案】2【解析】【分析】利用相似三角形的周长比等于相似比即可解题.【详解】解:∵'''ABC A B C ∆~∆,2''AB A B =,∴2:1AB A B ''=:,∵ABC ∆的周长为4,∴'''A B C ∆的周长为2.【点睛】本题考查了相似三角形的性质,属于简单题,熟悉相似三角形的周长比等于相似比是解题关键. 14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π).【答案】15π【解析】【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm 2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.【答案】12【解析】【分析】 将阴影部分进行平移,利用阴影部分的面积占总面积的一半即可解题.【详解】解:由题可知,图形被四等分,各圆心角的度数等于90°, 所以将阴影部分进行平移可得,阴影部分的面积占整个圆的面积的一半,∴任意投掷一次,飞镖投中阴影部分的概率是12. 【点睛】本题考查了几何概型,属于简单题,对阴影部分进行平移是解题关键.16.如图,⊙O 的弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.【答案】36°. 【解析】【分析】利用同弧所对的圆心角的度数是圆周角度数的2倍得∠O=2∠C,再利用平行线性质得∠O=∠B 即可证明OA=AD,最后利用三角形内角和即可解题.【详解】解:设∠C=x,由图可知∠O=2∠C=2x,(同弧所对的圆心角的度数是圆周角度数的2倍)∵//BC OA ,∴∠O=∠B=2x,∵AO AD =,∴∠O=∠ADO=∠CDB=2x,在△CDB 中,5x=180°,(三角形内角和) 解得:x=36°, ∴∠C=36°. 【点睛】本题考查了圆周角和圆心角的关系,平行线的性质,三角形内角和的性质,中等难度,熟悉圆周角的性质是解题关键.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.【答案】2【解析】【分析】作辅助线, 取AC得中点D,连接BD,利用格点三角形的性质求出各边边长,证明△BAC是等腰三角形,再利用三线合一性质证明直角三角形,最后运用正切值等于对边比邻边即可解题.【详解】解:取AC得中点D,连接BD,设相邻两点之间的距离为1,利用格点三角形特征可得:AB=5,BC=5,AC=25,∴△BAC是等腰三角形,AD=5,∴∠BDA=90°,(三线合一)BD=25,∴25tan5BDBACAD∠===2.【点睛】本题考查了解直角三角形,中等难度,作辅助线证明直角三角形,利用边长之间的关系求正切值是解题关键.18.如图,用同样长度的篱笆分别围成一个正方形ABCD和矩形AEFG,若图中矩形BCHE的面积比矩形DGFH的面积多100m2,则矩形AEFG的长比宽多_______m.【答案】20【解析】【分析】分别设AD=y,DG=x,利用矩形BCHE的面积比矩形DGFH的面积多100m2,列出方程,根据实际情况进行取舍,即可解题.【详解】解:设AD=y,DG=x,由图可知,AB=y,BE=x,AE=y-x,∵矩形BCHE的面积比矩形DGFH的面积多100m2,∴xy-(y-x)x=100,解得:x=10,或x=-10(不合题意,舍)∵矩形AEFG 的长为AG=x+y,宽为GF=y-x,∴长-宽= x+y-(y-x )=2x=20,∴矩形AEFG 的长比宽多20m.【点睛】本题考查了矩形的性质,中等难度,用方程思想进行解题是解题关键.三、解答题19.计算:2sin 45tan 30cos30︒+︒︒【答案】12 【解析】【分析】利用特殊的三角函数值即可解题.【详解】解:原式12 =12【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉特殊的三角函数值是解题关键.20.解方程:2(1)62x x -=+.【答案】x 1=5,x 2=-1.【解析】【分析】先将一元二次方程变成一般式,再利用十字相乘的方法即可解题.【详解】解:()2162x x -=+x 2-2x+1=62x +x 2-4x-5=0(x-5)(x+1)=0∴x 1=5,x 2=-1.【点睛】本题考查了一元二次方程的求解,中等难度,熟悉十字相乘的方法是解题关键.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c 的值.【答案】b=-3,c=-4.【解析】【分析】将()1,0A -,()3,4B -代入2y x bx c =++中,求解二元一次方程组即可解题.【详解】解:将()1,0A -,()3,4B -代入2y x bx c =++中得, 10493b c b c-+=⎧⎨-=++⎩ 解得:34b c =-⎧⎨=-⎩∴b=-3,c=-4.【点睛】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键. 22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率. 【答案】111224()(). 【解析】【分析】(1)利用概率等于红球的个数除以全部球的个数即可解题;(2)树状图见下图.【详解】解:1()∵4个球中一共有2个红球,∴P (红)=24=12, 2()树状图见下图,由树状图可知一共有16种可能,其中两次都摸中红球的有4种,∴P (红)=416=14.【点睛】本题考查了概率的实际应用,树状图的画法,属于简单题,熟悉概率的计算方法和树状图的画法是解题关键.23.某校课程中心为了了解学生对开设的3D打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D打印课程的学生约有多少人?【答案】(1)m=30,图形见详解(2)630【解析】【分析】(1)用100%分别减去电脑编程,3D打印,木工制作的百分比即可求出m,根据喜爱机器人的总人数为36,用36除以30%即可求出总人数,再由总人数分别计算出木工制作和电脑编程的人数即可;(2)用1800×35%即可解题.【详解】解:(1)1-15%-35%-20%=30%,∴m=30,∴总人数=36÷30%=120人,其中木工制作=120×15%=18人,所以女生有18-9=9人,电脑编程=120×20%=24人, 所以女生有24-14=10人,补全统计图见下图,(2)1800×35%=630人, ∴该校最喜爱3D 打印课程的学生约有630人.【点睛】本题考查了扇形统计图和条形统计图的使用,统计的实际应用,中等难度,从统计图中提取有效信息是解题关键.24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示); (2)'''A B C ∆的面积为 .【答案】1'D ()的坐标为(2a,2b) (2)12 【解析】 【分析】(1)位似图形见下图,根据相似比即可求出对应坐标;(2)三角形的面积等于矩形的面积减去四周三个直角三角形的面积.【详解】解:1()位似图形见下图, ∵相似比2:1,∴横纵坐标都扩大2倍,∵(),D a b∴'D 的坐标为(2a,2b )(2)将'''A B C ∆放进矩形中, 则S '''A B C ∆=8×4-12×4×4-12×4×2-12×8×2=12. 【点睛】本题考查了位似图形的作图,相似三角形的性质,中等难度,熟悉相似三角形的性质是解题关键. 25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).【答案】62【解析】 【分析】作辅助线得到两个特殊的直角三角形,利用三角函数即可解题. 【详解】解.过点P 作PQ ⊥AB 于Q, 由方位角的性质可知∠ABC=30°, ∵∠PBC=15°, ∴∠PBQ=45°,∴△PQB 是等腰直角三角形, 设PQ=x,则BQ=x, ∵∠PAQ=30°, ∴AQ=30PQtan ︒=3x ,∵AB=16,即x+3x =16, 解得:x=83-8 ∴PB=()228388682x =-=-【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念和特殊三角函数值是解题关键. 26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数; (2)求证: ACE BFE ∆~∆.【答案】(1)∠D=70°, (2)见详解. 【解析】【分析】(1)连接OE,利用切线证明∠DBA=∠CAB=90°,根据已知得∠AOE=140°,在直角三角形ABD 中即可解题;(2)利用同角的余角相等证明∠CEA=∠FEB, ∠CAE=∠EBA 即可证明三角形相似. 【详解】解:(1)设圆的圆心为点O,连接OE(作图略), ∵AC 、BD 是以AB 为直径的半圆的两条切线, ∴∠DBA=∠CAB=90°, ∵弧AE 的度数为140º,即∠AOE=140°, ∵OA=OE, ∴∠EAO=20°, 在直角三角形ABD 中,∠D=70°, (2)∵AB 为直径,∴∠AEB=90°,(直径所对圆周角是90°) ∵EF CE ⊥, ∴∠CEF=90°, ∴∠CEA=∠FEB (同角的余角相等) 又∵∠CAE+∠EAF=∠EBA+∠EAF ∴∠CAE=∠EBA (同角的余角相等)∴ACE BFE ∆~∆(有两个角对应相等的三角形是相似三角形)【点睛】本题考查了圆的性质,相似三角形的判定,中等难度,熟悉圆的性质和三角形相似的判定方法是解题关键.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知PQ =,求点P 的坐标.【答案】(1)AC=4 (2)P (-1,4)或(-2,3). 【解析】 【分析】(1)求出B 点坐标,再利用OA=OB 求出A 点坐标,代入二次函数求出解析式,再令y=0即可求出与x 轴的交点坐标,进而即可解题;(2)作PF ∥x 轴于F,利用∠BAO=45°,证明三角形PQF 是等腰直角三角形,求出PF=2,再设出P,F 的坐标,代入直线解析式求解方程即可解题.【详解】解:(1)由23y x bx =-++可知二次函数与y 轴的交点为B (0,3) ∵OA=OB, ∴A (-3,0),将A 点代入二次函数解析式得:b=-2,即二次函数解析式为223y x x =--+, 令y=0,即2230x x --+=解得:x 1=-3,x 2=1, ∴C (1,0) ∴AC=4,(2)过点P 作PF ∥x 轴于F,由A,B 坐标可得直线AB 的解析式为y=x+3, ∴∠BAO=45°, 又∵PQ AB ⊥, PF ∥x 轴 ∴三角形PQF 是等腰直角三角形, 设P(a,b), ∵P 在抛物线上, ∴b=-a 2-2a+3,∵2PQ =∴PF=2(勾股定理), ∴F (a+2, -a 2-2a+3)将F 代入y=x+3,即-a 2-2a+3=a+5, 解得a 1=-1,a 2=-2, ∴P (-1,4)或(-2,3).【点睛】本题考查了二次函数的图像和性质,等腰直角三角形的性质,二次函数与动点问题,难度较大,熟悉函数的性质,求出解析式是解(1)的关键;设出坐标,将动点问题转换成求解一元二次方程的问题是(2)的解题关键.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动的速度为 cm/s; (2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.【答案】(1)AC=8cm,点Q 运动的速度为5÷5=1cm/s;(2)当t=4时,函数S的最大值S=48 5(3) t=40 13或t=167【解析】【分析】(1)由勾股定理求得AC的长,再利用APQ∆的面积为9,得92AQ CP⨯=,即可解题;(2)过点P作PH⊥AC 于H,证明△AHP∽△ACB得AP ABPH BC=,求出边长表示S△APQ=2AQ PH⨯=68t?52t-,整理成顶点式即可解题;(3)分两种情况讨论当∠PQA=90°时,当∠QPA=90°时,见详解.【详解】解:(1)∵动点P以2cm/s的速度运动了5秒到B点, 如下图,∴AB=10cm,∵90ACB∠=︒,6BC=cm,∴AC=8cm(勾股定理)由图2可知当时间为5秒时,APQ∆的面积为9,即92AQ CP⨯=,∵BC=CP=6,∴AQ=3,CQ=8-3=5,∴点Q运动的速度为5÷5=1cm/s;(2)如下图,过点P作PH⊥AC于H,易证△AHP∽△ACB,∴AP ABPH BC=,∴2106tPH=,解得:PH=65t∵CQ=t,∴AQ=8-t,∴S △APQ=2AQ PH ⨯=68t?52t -=()2232434845555t t t -+=--+ ∴当t=4时,函数S 的最大值S=485(3)分两种情况,当∠PQA=90°时,如下图, △AQP ∽△ACB, ∴AP AB AQ AC =,21088t t =-,解得:t=4013;当∠QPA=90°时,如下图, △AQP ∽△ABC, ∴AP AC AQ AB =,28810t t =-,解得:t=167;综上, t=4013或t=167时以A 、P 、Q 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的综合性质,动点与相似三角形的性质,二次函数与动点问题,难度大,综合性强,熟悉相似三角形的判定与性质,建立边长之间的关系, 用代数式表示出边长是解题关键.。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
天津市滨海区2022年九年级上学期《数学》期末试题与参考答案

天津市滨海新区2022年九年级上学期《数学》期末试卷及答案一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一元二次方程化成一般形式后,它的二次项系数和一次项系数分别是()A. B. C. D. 【答案】A【详解】一元二次方程化成一般形式为:它的二次项系数和一次项系数分别是5,-4故选:A .2. 抛物线的开口方向、对称轴分别是( )A. 向上,轴B. 向上,轴C. 向下,轴D. 向下,轴【答案】B【详解】 ,所以抛物线开口向上,,所以对称轴为 ,对称轴为轴.故选:B .2514x x -=54-,45-,51-,1-4,2514x x -=25410x x --=∴213y x =x y x y 13a = 0b = 02bx a =-=y3. 下列语句描述的事件为随机事件的是()A. 通常加热到时,水沸腾B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是D. 从三张扑克牌J ,Q ,K 中取出一张是A【答案】B 【详解】A. 通常加热到时,水沸腾是必然事件,不符合题意;B. 经过有交通信号灯的路口,遇到红灯是随机事件,符合题意;C. 任意画一个三角形,其内角和是是不可能事件,不符合题意;D. 从三张扑克牌J ,Q ,K 中取出一张是A 是不可能事件,不符合题意.故选:B .4. 下列标志既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【详解】A .此图案是轴对称图形,不是中心对称图形,不符合题意;B .此图案仅是中心对称图形,不符合题意;C .此图案既是轴对称图形,又是中心对称图形,符合题意;D .此图案既不是轴对称图形,又不是中心对称图形,不符合题意;故选:C.100C ︒360︒100C ︒360︒5. 抛物线y=2(x+3)2+5的顶点坐标是( )A. (3,5)B. (﹣3,5)C. (3,﹣5)D. (﹣3,﹣5)【答案】B【详解】抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B .6. 下列各点中与点关于原点对称的是()A. B. C. D. 【答案】B【详解】与点关于原点对称的点的坐标是:.故选:B .7. 不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出个球,摸出红球的概率是()A. B. C. D.【答案】D【详解】红球数量为5个,总的球数量为8个,∴从中随机摸出一球为红球的概率是.故选:D .(2,1)A -(2,1)(2,1)-(2,1)--(1,2)-(2,1)A -(2,1)-185833858588. 如图,在中,,,则的度数是( )A. B. C. D. 【答案】A【详解】在中,,故选:A .9. 如图,在中,,,则的度数是()A. B. C. D. 【答案】DO e »»=A B A C 75C ∠=︒A ∠30°40︒50︒60︒O e »»=A B A C 75C ∠=︒75B C ∴∠=∠=︒180A B C ∠+∠+∠=︒ 18030A B C ∴∠=︒-∠-∠=︒O e OA BC ⊥50AOC ∠=︒ADB ∠50︒30°20︒25︒【详解】连接OB,,,,故选:D .10. 如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A. 1米B. 2米C. 3米D. 4米【答案】C 【详解】设道路的宽为x,根据题意得20x+33x−x 2=20×33−510整理得x 2−53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.OA BC ⊥ 50AOC ∠=︒50AOB ∴∠=︒1252ADB AOB ∴∠=∠=︒11. 如图,在△中,,,点是的内心,则的度数是( )A. B. C. D. 【答案】A 【详解】∵点是的内心,∴BO 平分,CO 平分,∴,,∴.故选A .12. 如图,二次函数的图象经过点,且与轴交点的横坐标为,其中,.下列结论:①,②,③中,正确的结论有()ABC 60ABC ∠=︒50∠=°ACB O ABC V BOC ∠125︒120︒130︒135︒O ABC V ABC ∠ACB ∠1230C CBO AB ∠=∠=︒1225B BCO AC ∠=∠=︒012518CBO BCO BOC ∠=︒-∠=∠-︒20y ax bx c a =++≠()(1,2)-x 12x x ,121x --<<201x <<420a b c -+<20a b -<284b a ac +>A. 0个B. 1个C. 2个D. 3个【答案】D【详解】根据题意得:当x=-2时,y <0,∴,故①正确;∵二次函数的图象与轴交点的横坐标为,其中,.开口向下,∴抛物线的对称轴,a <0,∴,∴,故②正确;∵二次函数的图象经过点,且对称轴在直线x=-1的右侧,∴抛物线的顶点的纵坐标大于2,∴,∵a<0,∴,∴,故③正确;∴正确的有①②③,共3个.故选:D420a b c -+<20y ax bx c a =++≠()x 12x x ,121x --<<201x <<12bx a =->-2b a >20a b -<20y ax bx c a =++≠()(1,2)-2424ac b a ->248ac b a -<284b a ac +>二、填空题本大题共6小题,每小题3分,共18分.13. 抛物线可以由抛物线先向左平移个单位,再向下平移___________个单位得到的.【答案】3【详解】抛物线向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:.故答案为:3.14. 在数学考试中,单项选择题(每个题目只有4个备选答案)是试卷的重要组成部分,当你遇到完全不会做的选择题时,如果你随便选择一个答案,那么你答对的概率为_________.【答案】【详解】根据题意得:答对的概率为.故答案为:15. 关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.【答案】【详解】∵一元二次方程有两个不相等的实数根,∴∆,解得<2.故答案为:k<2.()223y x =+-2y x =22y x =()223y x =+-141414x 22230x x k ++-=k 2k <()224230k =-->k16. 中,,则的内切圆的半径长是_________.【答案】2【详解】设△ABC 的内切圆为⊙O,内切圆的半径为r ,∵AB=13,AC =5,BC =12,∴AB 2=AC 2+ BC 2,根据勾股定理的逆定理得△ABC 是直角三角形,∠C=90°,∴,根据三角形的面积公式可得:,∴15r=30,即r=2,故答案为:2.17. 当或()时,代数式的值相等,则时,代数式的值为_________.【答案】3【详解】由抛物线,∴抛物线的对称轴为直线x=2,∵当或()时,代数式的值相等,∴当或()时,抛物线的函数值相等,∴以a 、b 为横坐标的点关于直线x=2对称,∴,ABC V 13,5,12AB AC BC ===ABC V 1302ABC S AC BC =⋅=V 1115131215222ABC AOC AOB BOC S S S S r r r r =++=⨯+⨯+⨯=V V V V x a =x b =a b ¹243x x -+x a b =+243x x -+()224321y x x x =-+=--x a =x b =a b ¹243x x -+x a =x b =a b ¹243y x x =-+22a b +=∴a+b=4,∵,∴x=4,当x=4时,,即时,代数式的值为3.故答案为:318. 如图,为边长为的等边三角形,点分别为和的中点,点为内部一点,且,连接,将线段绕点按逆时针方向旋转得到,连接.(1)当三点共线时,线段的长度为_________;(2)在旋转过程中,线段的最小值为_________.【答案】①. ②. 1【详解】(1)是等边三角形,边长为,,为的中点,x a b =+244433y =-⨯+=x a b =+243x x -+ABC V 6DE ,AC BCF ABC V 2DF =BF BF B 60︒BG EG B F D 、、BFEG 2ABC ∆ 66AB AC ∴==D Q AC,,,,点、、三点共线,,,线段的长度为;(2)如图,作线段的中点,连接,作,连接,将线段绕点按逆时针方向旋转得到,连接,此时的值最小,是等边三角形,边长为,, ,点为的中点,点为的中点,点为的中点,,,,,,,132AD CD AC ∴===BD AC ⊥90ADB ∴∠=︒BD ∴=== B F D 2DF =2BF BD DF ∴=-=-∴BF 2-AB H DH 2DF =BF BF B 60︒BG EG EG ABC ∆ 66AB AC ∴==60ABC ∠=︒ D AC E BC H AB BD AC ∴⊥132BE BC ==132BH AB ==90ADB ∴∠=︒BH BE =132DH AB ∴==,,由旋转可知: ,,,,在和中,,,,在旋转过程中,线段的最小值为1.三、解答题本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程.19. (1)因式分解法解方程:;(2)配方法解方程:.【答案】(1);(2)【详解】(1),解:提公因式,得,于是得,.2DF = 321HF DH DF ∴=-=-=BF BG =60FBC ∠=︒60ABC FBG ∴∠=∠=︒HBF EBG ∴∠=∠BHF ∆BEG ∆BH BEHBF EBGBF BG=⎧⎪∠=∠⎨⎪=⎩()BHF BEG SAS ∴∆≅∆1HF EG ∴==∴EG 220x x -=21090x x ++=121=02x x =,12=9=1x x --,220x x -=2-10x x =()02-10x x ==或121=02x x =,(2),解:移项,得,配方,得,,由此可得,.20. 如图,在半径为的中,弦的长为.(1)求的度数;(2)求点到的距离.【答案】(1) (2)到的距离为【小问1详解】解:在,,∵,∴为等边三角形,∴;【小问2详解】过点 作于点,21090x x ++=210=9x x +﹣22210+5=-95x x ++25=16x +()54x +=±12=9=1x x --,4O e AB 4AOB ∠O AB 60AOB ∠=︒OAB O e 4OA OB ==4AB =OAB V 60AOB ∠=︒O OC AB ⊥C在,于点,∴,∵ ,∴,在中,,,∴,∴到的距离为21. 甲口袋中装有个相同的小球,它们分别写有数字和,乙口袋中装有个相同的小球,它们分别写有数字,和.从两个口袋中各随机取一个小球.请用画树状图或列表的方法求:(1)取出的个小球上的数字之和是奇数的概率是多少?(2)取出的个小球上的数字全是偶数的概率是多少?【答案】(1) (2)【小问1详解】解:根据题意,可以画出如下的树状图O e OC AB ⊥C 12AC AB =4AB =2AC =Rt OAC △4AO =2AC =OC ==O AB 2123345221216所有可能出现的结果共有种等可能结果,取出个小球上的数字之和是奇数有种,∴取出的个小球上的数字之和是奇数的概率是;【小问2详解】解:取出个小球上的数字全是偶数有种,∴取出的个小球上的数字全是偶数的概率是.【点睛】本题主要考查了利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.22. 已知:内接于,.(1)如图①,点在上,若,求和的大小;(2)如图②,点在外,是的直径,与⊙相切于点,若,求的大小.【答案】(1) (2)62323162=21216ABD △O e »»AB AD =C e O 60BCD ∠=︒ABD ∠ADB ∠C e O BD e O BC O B 50BCD ∠=︒CDA ∠30ABD ADB ∠=∠=︒85CDA ∠=︒【小问1详解】解:∵四边形内接于,,∴,∵,∴,∴;【小问2详解】解:∵与相切于点,∴,∴∵在中,,∴∵是的直径,∴,∵,∴,,∴.23. 某村种的水稻2018年平均每公顷产8000kg ,2020年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.ABCD O e 60BCD ∠=︒180120BAD BCD ∠=︒-∠=︒»»=AB AD AB AD =1(180)302ABD ADB BAD ∠=∠=︒-∠=︒BC O e B BD BC ⊥90CBD ∠=︒Rt BCD ∆50BCD ∠=︒9040BDC BCD ∠=︒-∠=︒BD O e 90BAD ∠=︒»»=AB AD AB AD =190452ABD ADB ∴∠=∠=⨯︒=︒454085CDA ADB BDC ∠=∠+∠=︒+︒=︒解题方案:设该村水稻每公顷产量的年平均增长率为x .(1)用含的代数式表示:①2019年种的水稻平均每公顷的产量为_________kg ;②2020年种的水稻平均每公顷的产量为_________kg ;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.【答案】(1),(2)(3)(4)当x =-2.1时,不合题意,故舍去(5)10【小问1详解】解:根据题意,①2019年种的水稻平均每公顷的产量为kg ;②2020年种的水稻平均每公顷的产量为kg ;故答案为:;;【小问2详解】解:由题意,可列出方程:;x ()80001x +()280001x +()2800019680x +=120.1 2.1x x ==-,()80001x +()280001x +()80001x +()280001x +()2800019680x +=故答案为:;【小问3详解】解:,解得:;故答案为:;【小问4详解】解:检验:当x =-2.1时,不合题意,故舍去;故答案为:当x =-2.1时,不合题意,故舍去;【小问5详解】解:该村水稻每公顷产量的年平均增长率为;故答案为:10;24. 四边形和四边形均为正方形,正方形绕点A 顺时针旋转.(1)正方形绕点A 顺时针旋转到如图①位置时,且三点在同一直线上,则和的数量关系是_________;和的位置关系是_________;(2)正方形绕点A 顺时针旋转到如图②位置时,且点落在线段上.①求证:;②若,求的长;的()2800019680x +=()2800019680x +=120.1 2.1x x ==-,120.1 2.1x x ==-,0.110%x ==ABCD AEFG AEFG AEFG D A E 、、DG BE DG BE AEFG F DG ABE ADG V V ≌10,2AB DF ==BF(3)如图③,若,,正方形绕点A 顺时针旋转过程中,取的中点,连接,记的面积为S ,求S 的取值范围(直接写出结果即可).【答案】(1),(2)①见解析;②(3)【小问1详解】根据题意,得:∵四边形和四边形均为正方形∴,,和中∴∴,如图,延长DG ,交BE 于点K∵10AB =6AG =AEFG DG M CM CDM V DG BE =DG BE ⊥14BF =1040S ≤≤90DAB BAE ∠=∠=︒ABCD AEFG AD AB =AG AE =90BAE ∠=︒DAG △BAE V 90AD ABDAB BAE AG AE=⎧⎪∠=∠=︒⎨⎪=⎩()DAG BAE SAS V V ≌DG BE =ADG ABE ∠=∠90BAE ∠=︒∴∴∴故答案为:,【小问2详解】①∵四边形和均为正方形,∴∴,即在和中∴;②∵∴,∵∴点三点在一条直线上设正方形边长为,则,在中,由勾股定理得,即,整理得:,解得:.90ABE AEB ∠+∠=︒()18090DKE ABE AEB ∠=︒-∠+∠=︒DG BE⊥DG BE =DG BE⊥ABCD AEFG =90AB AD AE AG BAD EAG ===,,∠∠BAD EAD EAG EAD ∠-∠=∠-∠BAE DAG∠=∠ABE △ADG V =AB ADBAE DAGAE AG=⎧⎪∠∠⎨⎪=⎩()ABE ADG SAS V V ≌ABE ADGV V ≌90AEB AGD ∠=∠=︒90AEF ∠=︒,,B E F AEFG x 2DG BE x ==+Rt ADG V 222AD AG DG =+()22210=2x x ++22480x x +-=()1268x x ==-,舍∴;【小问3详解】如图,过点G 作,交延长线于点Q ,过点M 作∴∵点为的中点∴为的中位线∴∵,,正方形形∴,∵∴∴当点G 在直线AB 左侧时,∴当点G 在直线AB 右侧时,∴8614BF BE EF =+=+=GQ DA ⊥DA MP DA ⊥//MP GQ M DG MP DQG V 12DP DQ =10AB =6AG =ABCDcos 6cos AQ AG GAQ GAQ =⨯∠=⨯∠10DA CD AB ===0GAQ ∠≥0cos 1GAQ ≤∠≤06AQ ≤≤10DQ DA AQ AQ=-=-410DQ ≤≤10DQ DA AQ AQ=+=+1016DQ ≤≤综上,∴∵ ∴.25. 在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,连接,点是第一象限的抛物线上一动点.(1)求抛物线的解析式;(2)过点作于点.①若,求点坐标;②过点作轴于点,交于点,连接,当的周长取得最大值时,抛物线上是否存在一点,使,如果存在,请求出点的坐标,如果不存在,请说明理由.【答案】(1)(2)①点D 的坐标为(2,3);②存在,点P 的坐标为,,【小问1详解】解:把两点代入抛物线则,416DQ ≤≤28DP ≤≤152S CD DP DP =⨯=1040S ≤≤23y ax bx =++x ()3,0A ()1,0B -y C AC D D DE AC ⊥E DE CE =D D DH x ⊥H AC F 、DC DA DEF V P PAC ACD S S =△△P 2y x 2x 3=-++315,24⎛⎫ ⎪⎝⎭()()3,01,0A B -,23y ax bx =++933030a b a b ++=⎧⎨-+=⎩解得.∴抛物线的解析式为;【小问2详解】解:①连接CD ,当x =0时,y =3,即OC =3,∵OC=OA =3,∠AOC=90°,∴△AOC 为等腰直角三角形,∠CAO=45°.∵DE⊥AC,DE =CE ,∴△CDE 为等腰直角三角形,∠DCE=45°,∴∠DCE=∠OAC=45°,即CD∥OA.∴点C 和D 的纵坐标都等于3.把y =3代入抛物线解析式得,,解得(舍去),,∴点D 的坐标为(2,3).12a b =-⎧⎨=⎩2y x 2x 3=-++2y x 2x 3=-++2233x x -++=10x =22x =②∵DF⊥x 轴,∴DH⊥OA,∵∠CAO=45°,∴∠AFH=45°,∵DE⊥AC,∠DFE=∠AFH=45°,∴△DEF 为等腰直角三角形,∴则△DEF 的周长等于.∵,∴直线AC 的解析式为y =-x +3.设点D 的坐标为,,则.∴当时,DF 取得最大值,此时△DEF 的周长取得最大值.点D 的坐标为.∵,∴点P 和D 到直线AC 的距离相等.容易得知点P 和D 重合时符合题意,此时P 的坐标为.作直线l 和k 都和直线AC 平行,且到直线AC 的距离都相等,则直线l 的解析式为DE EF DF=)1DE EF DF DF ++=+()()3,00,3A C ,()2,23m m m -++(),3F m m -+()22239233324DF m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭32m =315,24⎛⎫⎪⎝⎭PAC ACD S S =△△315,24⎛⎫⎪⎝⎭,直线k 的解析式为.联立直线与抛物线得,解得,则点P 的坐标为,.综上所述:符合题意得点P 的坐标为,,.214y x=-+34y x =-+34y x =-+2y x 2x 3=-++23922x ⎛⎫-= ⎪⎝⎭12x x ==315,24⎛⎫ ⎪⎝⎭。
九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.对于抛物线2-1y x =+,下列判断正确的是()A .顶点坐标为(-1,1)B .开口向下C .与x 轴无交点D .有最小值12.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是()A .2cos55o 海里B .2sin 55︒海里C .2sin55∘海里D .2cos55︒海里3.如图,二次函数2-3y ax bx =+图象的对称轴为直线x=1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程2-3ax bx =的根是()A .123x x ==B .1213x x ==,C .121-3x x ==,D .12-13x x ==,4.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水面AB 的宽度是()cm.A .6B .C .D .5.如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为()A .BD ABB .CD OCC .AE ADD .BE OB6.如图,在 ABCD 中,AB=3,AD=5,AE 平分∠BAD ,交BC 于F ,交DC 延长线于E ,则AEEF的值为()A .53B .52C .32D .27.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.在平面直角坐标系中,A (-30),,B (30),,C (34),,点P 为任意一点,已知PA ⊥PB ,则线段PC 的最大值为()A .3B .5C .8D .109.在△ABC 中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A .1B .132C .132D .1410.如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为()A .8B .12C .D .二、填空题11.锐角α满足cosα=0.5,则α=__________;12.双曲线(0)k y k x=≠经过点(m ,2)、(5,n ),则m n =__________;13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________14.已知:在Rt △ABC 中,∠C=90°,∠A=30°,则tanA=__.15.如图,在△ABC 中,AB=AC ,AH ⊥BC ,垂足为点H ,如果AH=BC ,那么tan ∠BAH 的值是_____.三、解答题16.已知抛物线2-2y ax x c =+与x 轴的一个交点为30A (,),与y 轴的交点为0-3B(,).(1)求抛物线的解析式;(2)求顶点C 的坐标.17.如图,在方格网中已知格点△ABC 和点O .(1)以点O 为位似中心,在△ABC 同侧画出放大的位似△A 1B 1C 1,△ABC 与△A 1B 1C 1的相似比为1∶2;(2)以O 为旋转中心,将△ABC 逆时针旋转90°得到△A 2B 2C 2.18.已知关于x 的二次函数2-(-2)y x k x k =++.(1)试判断该函数的图象与x 轴的交点的个数;(2)当3k =时,求该函数图象与x 轴的两个交点之间的距离.19.从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)20.如图,在△ABC 中,D 为BC 上一点,已知AD 平分∠BAC ,AD=DC .(1)求证:△ABC ∽△DBA ;(2)S △ABD =6,S △ADC =10,求CDAC.21.如图,在平面直角坐标系xOy 中,函数-5y x =+的图象与函数(0)ky k x=<的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC=2:3.(1)求k 的值;(2)求点D 的坐标;(3)根据图象,直接写出当0x <时不等式5kx x+>的x 的解集.22.如图,已知AB 为⊙O 的直径,CD 切⊙O 于C 点,弦CF ⊥AB 于E 点,连结AC.(1)求证:∠ACD=∠ACF ;(2)当AD ⊥CD ,BE=2cm ,CF=8cm ,求AD 的长.23.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x 天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量m (千克)40-m x=销售单价n (元/千克)当115x ≤≤时,1202n x =+当1630x ≤≤时,30010n x=+设第x 天的利润w 元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量24.如图,设D 为锐角△ABC 内一点,∠ADB=∠ACB+90°,过点B 作BE ⊥BD ,BE=BD ,连接EC .(1)求∠CAD+∠CBD 的度数;(2)若••AC BD AD BC ,①求证:△ACD ∽△BCE ;②求••AB CDAC BD的值.参考答案1.B 【详解】根据二次函数图像的特点进行解答即可.解:A.顶点坐标为(0,1),故不正确;B.∵-1<0,∴开口向下,故正确;C.∵∆=4>0,∴与x 轴有两个交点,故不正确;D.有最大值1,故不正确;故答案为B.【点睛】本题考查了二次函数图像的特点,即对于二次函数y=ax 2+bx+c (a≠0),a 的正负决定了开口方向;b 2-4ac 决定了是否与x 轴有交点;函数的顶点决定了函数的最值.2.A 【分析】由题意得∠NPA=55°,AP=2海里,∠ABP=90°,再由AB//NP ,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt △ABP ,得出AB=APcos ∠A=2cos55°海里.【详解】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=APcos ∠A=2cos55°海里.故选A .【点睛】本题考查了解直角三角形的应用一方向角问题,掌握平行线的性质、三角函数的定义、方向角的定义是解答本题的关键.3.D 【分析】由二次函数2-3y ax bx =+图像的对称轴为直线x=1且函数图像与x 轴的一个交点为B(3,0),可求另一交点坐标为(-1,0),则可求方程23ax bx =-的解.【详解】解:二次函数2-3y ax bx =+图象的对称轴为直线x=1,与轴交于A 、B 两点,且点B 坐标为(3,0),则点A 的坐标为(-1,0),∴方程23ax bx =-的根是x 1=-1,x 2=3.故答案为D.【点睛】本题考查了二次函数图像与一元二次方程的联系,即理解二次函数图像与x 轴的交点的横坐标为对应一元二次方程的解.4.C 【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴=∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.5.C 【分析】先根据正弦的概念进行判断,然后根据余角的定义找与∠A 相等的角再结合正弦定义解答即可.【详解】解:∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sinA=BD ECAB AC=,故A正确;∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sinA=sin∠COD=CDOC,故B正确;∵∠BOE=∠COD,∴∠A=∠BOE,∴sinA=sin∠BOE=BEBO.故D正确故答案为C.【点睛】本题考查了正弦的定义以及根据直角三角形的性质寻找相等的角,其中根据直角三角形的性质寻找与∠A相等的角是解答本题的关键.6.B【分析】由平行四边形的性质可得AB//DE,AD//BC,进而得到∠BAE=∠E,再结合∠EAD=∠BAE 得到∠E=∠EAD,即AD=DE=5;再由线段的和差可得CE=2;然后根据BC//AD得到△AED∽△FEC,最后运用相似三角形的性质解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB//DE,AD//BC,∴∠BAE=∠E,∵AE平分∠BAD,∴∠EAD=∠BAE,∴∠E=∠EAD,∴AD=DE=5,∴CE=DE-CD=5-3=2,∵BC//AD,∴△AED∽△FEC∴25 EF EC AE DE==∴52AEEF .故答案为B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及相似三角形的判定和性质,其中掌握相似三角形的判定和性质是解答本题的关键.7.D【解析】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x1<0,3<x2<4,∴点A(x1,y1)到直线x=2的距离比点B(x2,y2)到直线x=2的距离要大,而抛物线的开口向下,∴y1<y2.故选D.考点:二次函数图象上点的坐标特征.8.C【分析】连接OC、OP、PC由PA⊥PB可得点P在以O为圆心,AB长为直径的圆上;再根据三角形的三边关系可得CP≤OP+OC,则当当点P,O,C在同一直线上,CP的最大值为OP+OC 的长,然后进行计算即可.【详解】解:如图所示,连接OC、OP、PC∵PA⊥PB,∴点P在以O为圆心,AB长为直径的圆上,∵△COP∴CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,又∵A(-3,0),B(3,0),C(3,4),∴AB=6,OC=5,OP=12AB=3,∴线段PC的最大值为OP+OC=3+5=8,故答案为C.【点睛】本题考查了90°所对的弦为圆的直径、三角形的三边关系以及最短路径问题,其中确定最短路径是解答本题的关键.9.A【分析】根据特殊角三角函数值,可得答案.【详解】在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=12+12=1,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB=ACAB=0.5,∴AB=2AC,∵AC=6,∴AB=12,∴=故选C.本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长.11.60【分析】根据特殊角的三角函数值即可完成解答.【详解】解:∵cosA=0.5=12,∠A 为锐角,∴∠A=60°,故答案为60;【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解答本题的关键.12.52【分析】将(m ,2)、(5,n )代入k y x =得到一个方程组,然后解方程组即可.【详解】解:∵曲线(0)k y k x=≠经过点(m,2)、(5,n),∴25k m n m ⎧=⎪⎪⎨⎪=⎪⎩解得m=2k ,n=5k ,∴5225k m k n ==;故答案为52;【点睛】本题考查了反比例函数图像上的点的性质,即理解函数图像上的点满足函数解析式是解答本题的关键.13.13根据解直角三角形,由tan 3a A b==,即可得到tanB.【详解】解:在Rt ABC ∆中,∠C=90°,∴tan 3a A b ==,∴1tan 3b B a ==.故答案为13.【点睛】本题考查了解直角三角形,解题的关键是掌握正切值等于对边比邻边.14【分析】直接利用特殊角的三角函数值计算得出答案.【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15.12【分析】设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,然后得出tan ∠BAH 的值.【详解】解:设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x ,∴tan ∠BAH=BH x 1AH 2x 2==,故答案为:12【点睛】本题考查了解直角三角形、等腰三角形的性质、锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=12BC=x 是解题的关键.16.(1)223y x x =--;(2)(1,-4)【分析】(1)根据与坐标轴的两个交点,使用待定系数法进行解答即可;(2)将(1)求得的解析式,化成顶点式即可完成解答。
人教版九年级上学期数学《期末考试试卷》含答案

对称轴与直线 重合或者位于直线 的左侧.
即:
故答案为
点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.
当 时, 随 的增大而增大,可知对称轴与直线 重合或者位于直线 的左侧.根据对称轴为 ,即可求出 的取值范围.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
答案与解析
一、选择题
1.下列所给图形是中心对称图形但不是轴对称图形的是()
A. B. C. D.
[答案]D
[解析]
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
[答案]50°
[解析]
由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
解:∵CC/∥AB,
∴∠C/CA=∠CAB=65°,
∵由旋转的性质可知:AC=AC/,
∴∠ACC/=∠AC/C=65°.
二、填空题
8.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.
9.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′ 位置,使得CC′∥AB,则∠B′AB等于_____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
27.如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.
2.二次函数 的顶点坐标是()
A.(-2,3)B.(-2,-3)C.(2,3)D.(2,-3)
【答案】B
【解析】
【分析】
直接根据二次函数的顶点式进行解答即可.
【详解】解:∵二次函数的顶点式为y=-2(x+2)2−3,
∴其顶点坐标为:(−2,−3).
故选:B.
【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点坐标特征是解答此题的关键.
【答案】D
【解析】
【分析】
根据抛物线 与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知 ,故C错误;根据图象经过点 两点,即可得出对称轴为直线 .
【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;
B、由图可知,抛物线与x轴有两个交点,则 ,故B错误;
A.1:4B.4:9C.9:4D.2:3
8.关于反比例函数 ,下列说法不正确的是( )
A. y随x的增大而减小B.图象位于第一、三象限
C.图象关于直线 对称D.图象经过点(-1,-5)
9.如图,二次函数 的图象经过点 ,下列说法正确的是()
A. B. C. D. 图象的对称轴是直线
10.如图,矩形 的对角线交于点O,已知 则下列结论错误的是( )
7.如图,在平行四边形ABCD中,点E在DC边上,连接AE,交BD于点F,若DE:EC=2:1,则△DEF的面积与△BAF的面积之比为()
A.1:4B.4:9C.9:4D.2:3
【答案】B
【解析】
【分析】
先判断△DEF∽△BAF,根据相似三角形的面积比等于相似比的平方计算即可.
【详解】解:∵四边形ABCD是平行四边形,
25.在平面直角坐标系xoy中,直线 (k为常数)与抛物线 交于A,B两点,且A点在 轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为____;(2)当 时, =_______
二.解答题
26.某商店购进一批成本为每件40元 商品,经调查发现,该商品每天的销售量 (件 与销售单价 (元 之间满足一次函数关系,其图象如图所示.
3.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()
A. B. C. D.
4.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是( )
A.4B.5C.6D.7
5.把二次函数 化成 的形式是下列中的( )
【答案】C
【解析】
【分析】
根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.
【详解】选项A,∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,
∴AO=OB=CO=DO,
∴∠DBC=∠ACB,
C、由图象可知,当x=1时,图象在x轴的下方,则 ,故C错误;
D、因为图象经过点 两点,所以抛物线的对称轴为直线 ,故D正确;
故选:D.
【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.
10.如图,矩形 的对角线交于点O,已知 则下列结论错误的是( )
A. B.
C. D.
14.如图所示:点A是反比例函数 ,图像上的点,AB⊥x轴于点B,AC⊥y轴于点C, ,则k=______.
三.解答题
15.(1)计算:
(2)解方程):
16.关于x的方程x2-4x+2m+2=0有实数根,且m为正整数,求m的值及此时方程的根.
17.小寇随机调查了若干租用共享单车市民的骑车时间t(单位:分),将获得的据分成四组(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),绘制了如下统计图,根据图中信息,解答下列问题:
A. B.
C. D.
6.如图,以点O为位似中心,把△ABC放大为原来的2倍,得到△A´B´C´,以下说法错误的是()
A. B.△ABC∽△A´B´C´
C. ∥A´B´D.点 ,点 ,点 三点共线
7.如图,在平行四边形ABCD中,点E在DC边上,连接AE,交BD于点F,若DE:EC=2:1,则△DEF的面积与△BAF的面积之比为()
答案与解析
一、选择题:
1.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
A.1B.2C.﹣1D.﹣2
【答案】B
【解析】
【分析】
根据一元二次方程的解的定义,把x=2代入 得4-6+k=0,然后解关于k的方程即可.
【详解】把x=2代入 得,4-6+k=0,
解得k=2.
故答案为B.
【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
(1)如图1,DN交AB 延长线于点F.求证: ;
(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于 ,若 ,求对角线BD的长;
(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.
28.如图,在平面直角坐标系xoy中,直线 与 轴, 轴分别交于点A和点B.抛物线 经过A,B两点,且对称轴为直线 ,抛物线与 轴的另一交点为点C.
(1)求抛物线的函数表达式;
(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S;
抛物线上是否还存在其它点M,使△ABM的面积等于中的最大值S,若存在,求出满足条件的点M的坐标;若不存在,说明理由;
(3)若点F为线段OB上一动点,直接写出 的最小值.
∴DC∥AB,DC=AB,
∴△DEF∽△BAF,
∴ .
又∵DE:EC=2:1,
∴ ,
∴ .
故选B.
【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.
8.关于反比例函数 ,下列说法不正确的是( )
A. y随x的增大而减小B.图象位于第一、三象限
C.图象关于直线 对称D.图象经过点(-1,-5)
∴口袋中黑球的个数可能是10×60%=6个.
故选:C.
【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
5.把二次函数 化成 的形式是下列中的( )
A. B.
C. D.
【答案】C
【解析】
【分析】
先提取二次项系数,然后再进行配方即可.
(1)小寇调查的总人数是人;
(2)表示C组的扇形统计图的圆心角的度数是°;
(3)如果小寇想从D组的甲、乙、丙、丁四人中随机选择两人进一步了解平时租用共享单车情况,请用列表或画树状图的方法求出丁被选中的概率.
18.知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60°方向行驶至B地,再沿北偏东53°方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)
2020-2021学年第一学期期末测试
九年级数学试题
学校________班级________姓名________成绩________
一、选择题:
1.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
A.1B.2C.﹣1D.﹣2
2.二次函数 的顶点坐标是()
A.(-2,3)B.(-2,-3)C.(2,3)D.(2,-3)
23.如图,矩形 的对角线 、 相交于点 ,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、 交于点 ,连接AE,则tan∠DAE的值为___________.(不取近似值)
24.如图,直线 分别交 轴, 轴于点A和点B,点C是反比例函数 的图象上位于直线下方的一点,CD∥ 轴交AB于点D,CE∥ 轴交AB于点E, ,则 的值为______
【答案】A
【解析】
【分析】
根据反比例函数的图像及性质逐个分析即可.
【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;
选项B: ,故图像经过第一、三象限,所以选项B正确;
选项C:反比例函数关于直线 对称,故选项C正确;
选项D:将(-1,-5)代入反比例函数 中,等号两边相等,故选项D正确.
(参考数据 )
19.如图,在平面直角坐标系 中,已知一次函数 图象与反比例函数 图象交于点 , 两点.
(1)求一次函数的表达式及点 的坐标;
(2)点 是第四象限内反比例函数图象上一点,过点 作 轴 平行线,交直线 于点 ,连接 ,若 ,求点 的坐标.
20.如图,在 中 ,连接 ,点 , 分别是 的点(点 不与点 重合), , 相交于点 .
【分析】
直接利用位似图形的性质进而分别分析得出答案.
【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,
∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,OB´:BO=2:1,故选项A错误,符合题意.