重庆市【小升初】小升初数学复习重点归纳整理
(完整版)小升初数学复习重点知识点归纳

小升初数学复习重点知识点归纳体积和表面积三角形的面积=底×高÷2公式: S= a×h÷2正方形的面积=边长×边长公式: S= a2长方形的面积=长×宽公式: S= a×b平行四边形的面积=底×高公式: S= a×h梯形的面积=(上底+下底)×高÷2公式: S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a2长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a3圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小升初数学总复习知识梳理数的整除(附答案)

小升初总复习数与代数第一单元数的认识第2节数的整除知识梳理典例精讲【例1】把自然数A和B分解质因数后分别是A=2×3×11×m,B=2×3×7×m。
A、B两数的最大公因数是78,这两个数的最小公倍数是多少?【分析】这里要明白最大公因数和最小公倍数的意义,A、B两数的最大公因数就是这两个数的全部公有的质因数的积,也就是2×3×m;A、B两数的最小公倍数就是这两个数的全部公有质因数及各自独有质因数的积,也就是2×3×m×11×7.根据两个数的最大公因数是78,求出m的值,本题便迎刃而解。
【解】因为2×3×m=78,所以m=78÷2×3=13,因此2×3×m×11×7=78×11×7=155。
答:这两个数的最小公倍数是155.即时演练1.25和30的最大公因数是(),最小公倍数是()。
2. 把自然数A和B分解质因数后分别是A=2×3×m,B=2×7×m。
A、B两数的最大公因数是22,这两个数的最小公倍数是多少?3.两个数的最小公倍数是150,最大公因数是15.这两个数分别是()和()。
【例2】有一些糖果,如果把6个装一包少1个;如果8个装一包也少一个;如果把5个装一包还是少一个。
这些糖果至少有多少个?【分析】这些糖果,把6个装一包少1个说明糖果的总个数比6的倍数少1个;8个装一包也少一个说明糖果总个数比8的倍数少1个;把5个装一包还是少一个说明糖果的总个数比5的倍数少1个。
所以这些糖果的总个数比5、6、8的公倍数少1,这里求至少有糖果多少个,就是求比5、6、8的最小公倍数少1的数。
【解】5、6、8的最小公倍数是120.120-1=119(个)答:这些糖果至少有119个。
小升初数学复习重点知识点归纳

小升初数学复习重点知识点归纳
小升初数学复习的重点知识点包括以下内容:
1. 数的整数性质:正整数、负整数、零、相反数、绝对值等。
2. 数的四则运算:加法、减法、乘法、除法的运算法则,以及实际问题的运算。
3. 分数和小数:分数的基本概念和性质,分数的四则运算,分数与小数的相互转化。
4. 计算方法:口算技巧,如列竖式计算、连加连减、倍数关系等。
5. 算式的解法:方程的概念和解法,如一元一次方程、两个未知数的方程等。
6. 图形的认识:平行线、垂直线、等腰三角形、直角三角形、平行四边形、正方形、长方形等的性质和计算。
7. 线段的计算:线段的长短比较和计算,线段的延长与截取等。
8. 角的认识:平角、直角、锐角、钝角等的性质和计算。
9. 时间和钟表:时间的基本概念和表示方法,钟表的读取和计算。
10. 数据的统计:数据的收集和整理,频数和频率的计算,平均数和中位数的计算。
以上是小升初数学复习的一些重点知识点,希望对你有帮助。
你还有其他问题吗?。
重庆市【小升初】小升初数学复习重点知识点归纳

重庆市【小升初】小升初数学复习重点知识点归纳小升初数学复习重点知识点归纳体积和表面积三角形的面积=底×高÷2公式: S= a×h÷2正方形的面积=边长×边长公式: S= a2长方形的面积=长×宽公式: S= a×b平行四边形的面积=底×高公式: S= a×h梯形的面积=(上底+下底)×高÷2公式: S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a2长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a3圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
【小升初考试】数学必考6大重点题型整理汇总

17.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab
解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24
答:该两位数为24。
15.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
答案为121
解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种 综合两步,就有24×32=768种。
20.若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种 B 36种 C 59种 D 48种
解:全排列5*4*3*2*1=120 有两个l所以120/2=60
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
【小升初】数学总复习知识点全套整理

小升初数学总复习知识整理一、数的认识 1.数的分类提示:按不同的标准划分,数的分类也会不同。
例如:按正、负数分,数分为正数、0、负数;按整数与分数分,数分为整数、分数(小数)等。
(1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的.........,.没有最小的整数.......,.也没有最大的整数。
.........(2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。
一个物体也没有,用0表示,0.也是自然数。
自然数的个数是无限的................,.最小..数的自然数是.....0,..没有最大的自然数。
自然数是整数的一部分...................,.正整数和....0.都是自然数。
......提示:0表示一个物体也没有;0是正、负数的分界点;0表示起点(如0刻度);计数时,0起占位作用。
(3)分数:把单位“....1.”平均分成若干份........,.表示这样的一份或者几份...........的数叫做分数......,.表示这样一份的数就是这个分数的分数单位。
....................一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。
注意:带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。
(4)百分数:表示一个数是另一个数百分之几的数叫做百分数.....................,.也.叫百分率或百分比。
百分数的计数单位是..................1%..。
.百分数是一种特殊的分数,通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。
(5)分数和百分数的关系:分数既可以表示一个数..........,.也可以表示两......个数的比....;.而百分数只表示一个数占另一个数的百分比...................,.不能用来表示......具体的数。
小升初数学总复习资料知识点归纳整理

小升初数学总复习资料知识点归纳整理常用的数量关系式常用的数量关系式包括每份数乘以每份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数等等。
此外还有倍数之间的关系,速度、时间和路程之间的关系,单价、数量和总价之间的关系,工作效率、工作时间和工作总量之间的关系,相遇问题中速度和、相遇路程和相遇时间之间的关系,以及浓度问题中溶质重量、溶剂重量、溶液重量和浓度之间的关系。
在利润和折扣问题中,利润等于售出价减去成本,利润率等于利润除以成本乘以100%,涨跌金额等于本金乘以涨跌百分比,利息等于本金乘以利率乘以时间,税后利息等于本金乘以利率乘以时间再乘以(1减去20%)。
还有甲是乙的几分之几和发芽率、小麦出粉率、合格率、出勤率、含盐率、及格率和成活率等问题。
基本概念整数包括自然数和负整数。
自然数是用来表示物体个数的数,包括1、2、3等等。
计数单位包括一、十、百、千、万、十万、百万、千万、亿等,每相邻两个计数单位之间的进率都是10.整除是指整数a除以整数b(b不等于0),除得的商是整数而没有余数,此时我们就说a能被b整除,或者说b能整除a。
偶数是能被2整除的数,奇数是不能被2整除的数。
质数(或素数)是一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),而合数是一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1既不是质数也不是合数。
质因数是指将一个合数分解成几个质数相乘的形式,其中每个质数都是这个合数的因数,被称为这个合数的质因数。
互质数是指只有1为公约数的两个数,1和任何自然数都是互质数。
小数是将整数1平均分成10份、100份、1000份等等,得到的十分之几、百分之几、千分之几等等,可以用小数表示。
在小数中,每相邻两个计数单位之间的进率都是10.纯小数是指整数部分为0的小数,而带小数则是指整数部分不为0的小数。
有限小数是指小数部分的数位是有限的小数,而无限小数则是指小数部分的数位是无限的小数。
小升初的数学知识点总结归纳

小升初的数学知识点总结归纳小升初的数学知识点总结归纳关于小升初数学知识点总结,算术是数学学习的基础内容,需要大家牢牢掌握,为以后的数学学习打好基础。
下面由小编为您整理出的相关内容,一起来看看吧。
一、算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b=b + a3、乘法交换律:a × b=b × a4、乘法结合律:a × b ×c=a ×(b × c)5、乘法分配律:a × b + a × c=a × b + c6、除法的性质:a ÷ b ÷ c=a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数二、方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。
如:3x=ab+c三、分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学复习重点归纳整理一、整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.整数和小数都是按照十进制计数法写出的数。
5.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
6.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二、数的整除1.因数和倍数:20÷4=5,20是4和5的倍数,4和5是20的因数。
2.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。
3.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
4.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。
质数都有2个因数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数至少有3个因数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有“4、6、8、9、10、12、14、15、16、185.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
6.公约因数、公倍数:几个数公有的因数,叫做这几个数的因数;其中最大的一个,叫做这几个数的最大公因数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数叫做互质数。
三、四则运算1.一个加数=和-另一个加数被减数=差+减数减数=被减数-差一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:(1)加法交换律:a+b=b+a两个数相加,交换加数的位置,它们的和不变。
乘法交换律:a×b=b×a两个数相乘,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
乘法结合律:(a×b)×c=a×(b×c)三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c)从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
除法的性质:a÷b÷c=a÷(b×c)一个数连续除以两个数,等于这个数除以两个除数的积。
四、关系式1.行程问题:速度×时间=路程路程÷时间=速度路程÷速度=时间2.工作分配问题:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率3.价格问题:单价×数量=总价总价÷数量=单价总价÷单价=数量五、方程方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
解方程:求方程解的过程叫做解方程。
六、分数和百分数1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
2.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
3.分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
4.分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
5.分数的分类:分数可以分为真分数和假分数。
真分数:分子小于分母的分数叫做真分数。
真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或者百分比。
百分数通常用“%”来表示。
七、量的计量1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率:面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率:体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率:。
质量单位有:吨、千克、克,写出它们之间的进率:。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率:。
2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。
小月有:4、6、9、11月,共4个,每月30天。
二月平年是28天,闰年是29天。
左拳记月法3.一年有4个季度(春、夏、秋、冬),每个季度3个月。
4.平年闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
如4千克复名数:带有两个或两个以上单位名称的叫做复名数。
如4千克250克6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
八、几何初步知识1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。
射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边张开的大小,张开的越大,角越大。
计量角的大小的单位:度,用符号“°”表示。
小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。
角的两边在一条直线上的角叫做平角。
平角180°。
4.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
(画图说明)5.平行线:在同一平面内不相交的两条直线叫做平行线。
也可以说这两条直线互相平行。
6.(画图说明)平行线之间垂直线段的长度都相等。
7.三角形:有三条线段围成的图形叫做三角形。
8.三角形的分类:(1)按角分:锐角三角形(3个角都是锐角)、钝角三角形(有1个角是钝角)、直角三角形(有1个角是直角)。
(2)按边分:一般三角形、等腰三角形(2条边长度相等)、等边三角形(3条边长度相等)。
9.三角形三个内角和是180°。
三角形任意两边之和大于第三边。
10.四边形:由四条线段围成的图形。
11.圆是一种曲线图形。
圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
12.圆的半径、直径都有无数条。
在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
13.轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
14.学过的图形中的轴对称图形有:圆(无数条)、等腰三角形(1条)、等边三角形(3条)、长方形(2条)、正方形(4条)、等腰梯形(1条)15.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
16.表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:物体所占空间的大小叫做物体的体积。
17.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
18.圆柱的三个特点:(1)上下一样粗细;(2)侧面是曲面;(3)两个底面是相同的圆。
19.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。
圆柱的高有无数条,这些高都平行且相等。
20.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
21.圆周率π是一个无限不循环小数。
π=3.141592653……22.把圆等份成若干份,拼成的图形接近于长方形。
这个长方形的长相当于圆周长的一半,宽就是圆的半径。
23.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
24.等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。
九、比和比例1.比的意义:两个数相除又叫做两个数的比。
2.求比值:比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
4.应用比的基本性质可以化简比;5.用字母表示比与除法和分数的关系。
a:b=a÷b=(b≠0)6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺实际距离=图上距离÷比例尺图上距离=实际距离×比例尺8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示x:y=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线。
十、简单的统计1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。
(2)用直条的长短来表示数量的多少。
作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。
(2)用折线的起伏来表示数量的增减变化。