多元正态分布的检验
多元正态分布

p 2
12
1 1 exp ( x ) ( x ) 2
1
( 这里Σ=AA′,
1 1 1 ( AA ) ( A ) A )
§2.2 多元正态分布的定义
定义2.2.4 若 p 维随机向量X=(X1,X2…Xp)′的联合密 度函数为
⑤ 写出X=AU+μ的密度函数: 1 1 f X ( x) exp u u J (u x) p 2 (2 ) 2 1 1 2 1 1 1 exp [ A ( x )][ A ( x )] p 2 (2 ) 2
§2.2 多元正态分布的定义
1. 多元正态分布的定义
2. 多元正态分布的性质
§2.2 多元正态分布的定义
在一元统计中,若U~N(0,1),则U的任意线性变 换X=σU+μ~N(μ,σ2)。利用这一性质,可以从标准 正态分布来定义一般正态分布: 若U~N(0,1),则称X =σU+μ的分布为一般正态分 布,记为X ~N(μ, σ2 )。 此定义中,不必要求σ>0,当σ退化为0时仍有意 义。把这种新的定义方式推广到多元情况,可得 出多元正态分布的第一种定义。
故 X2 0 2 0 1 Y X 3 ~ N ( 0 , 0 3 0 ). 2 1 0 1 X1
§2.2 多元正态分布的性质
(3) 设Z=2 X1-X2+3X3,试求随机变量Z的分布. Z=2 X1-X2+3X3 =(2,-1,3)X=CX 2 故有: z C x (2,1,3) 0 4 0 2 z C xC 1 1 0 2 2 (2,1,3) 1 2 0 1 1,0,9 1 0 0 3 3 3 29 所以 Z ~ N(4,29).
多元统计分析:第二章 多元正态分布及

第二章 多元正态分布及参数的估计
§2.1 随 机 向
x11 x X 21 x n1
def
x12 x22 xn 2
x1 p X (1) def x2 p X (2) X xnp (n)
(d表示两边的随机向量服从相同的分布.) d
其中U=(U1,…,Uq),且U1,…,Uq 相互独 立同分布及参数的估计
§2.2 多元正态分布的性质2
Z=BX+d = B(AU+μ)+d = (BA)U+(Bμ+d) 由定义2.2.1可知 Z ~Ns(Bμ+d, (BA)(BA)), Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
X2 0 2 X ~ N 2 ( 0 , 0 3 0 ) 3
26
则有(1) X1 ~ N(2,1),
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
X 2 0 1 0 X 1 令 Y X 3 0 0 1 X 2 BX , 1 0 0 X 3 X1
性质1的证明
根据随机向量特征函数的定义和性质,经计算即可 得出X的特征函数为 ΦX(t)= E(eitX)= E(eit (AU+μ) ) it AU 令t′A=s′=(s ,…s ) q 1
exp(it ) E(e ) i ( s1U1 s qU q ) exp( it ) E (e ) isqU q is1U1 exp( it ) E (e e )
du
e
e
多元正态分布

(
xi1
x1)(xip
x
p
)
n (xi2 x1)(xi1 x2)
i1
(
xip
xp )(xi1
x1)
(xi2 x2)2
(xip xp )(x2 x2)
(xi2 x1)(xip xp )
(xip xp )2
组内组间水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响水平内误差组内方差水平间误差组间误差总的误差其他随机因素的影响随机性影响某因素不同水平的影响系统性影响如果原假设成立
第一章多元正态分布及其参数估计
多元正态分布的重要性: (1)多元统计分析中很多重要的理论和方法都是直接或间接
地建立在正态分布 基础上的,许多统计量的极限分布往往和 正态分布有关。 (2)许多实际问题涉及的随机向量服从多元正态分布或近似 服从正态分布。因此多元正态分布是多元统计分析的基础。
一、多元正态分布的定义 定义1:若p维随机向量 X (X1,X p) 的密度函数为:
(1 0,2 0, 1)
为X1和X2的相关系数。
当 0 时X1与X2不相关,对于正态分布来说不相关和独立
等价。因为:
X1, X 2
第二章 多元正态分布及参数的估计

27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
多元统计分析-第三章 多元正态分布

第三章 多元正态分布多元正态分布是一元正态分布在多元情形下的直接推广,一元正态分布在统计学理论和应用方面有着十分重要的地位,同样,多元正态分布在多元统计学中也占有相当重要的地位。
多元分析中的许多理论都是建立在多元正态分布基础上的,要学好多元统计分析,首先要熟悉多元正态分布及其性质。
第一节 一元统计分析中的有关概念多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵,学习多元统计分析,首先要对随机向量和随机矩阵有所把握,为了学习的方便,先对一元统计分析中的有关概念和性质加以复习,并在此基础上推广给出多元统计分析中相应的概念和性质。
一、随机变量及概率分布函数 (一)随机变量随机变量是随机事件的数量表现,可用X 、Y 等表示。
随机变量X 有两个特点:一是取值的随机性,即事先不能够确定X 取哪个数值;二是取值的统计规律性,即完全可以确定X 取某个值或X 在某个区间取值的概率。
(二)随机变量的概率分布函数随机变量X 的概率分布函数,简称为分布函数,其定义为:)()(x X P x F ≤=随机变量有离散型随机变量和连续型随机变量,相对应的概率分布就有离散型概率分布和连续型概率分布。
1、离散型随机变量的概率分布若随机变量X 在有限个或可列个值上取值,则称X 为离散型随机变量。
设X 为离散型随机变量,可能取值为1x ,2x ,…,取这些值的概率分别为1p ,2p ,…,记为k k p x X P ==)((Λ,2,1=k )称k k p x XP ==)((Λ,2,1=k )为离散型随机变量X 的概率分布。
离散型随机变量的概率分布具有两个性质: (1)0≥k p ,Λ,2,1=k(2)11=∑∞=k k p2、连续型随机变量的概率分布若随机变量X 的分布函数可以表示为dt t f x F x⎰∞-=)()(对一切R x ∈都成立,则称X 为连续型随机变量,称)(x f 为X 的概率分布密度函数,简称为概率密度或密度函数。
多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。
然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。
下面将介绍一些常用的多元线性回归模型的检验方法。
首先是模型的整体显著性检验。
在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。
常见的整体显著性检验方法有F检验和显著性检查表。
F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。
若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。
通常,临界值是根据置信水平和自由度来确定的。
显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。
通过查找显著性检查表,我们可以评估模型的显著性。
其次是模型的参数估计检验。
在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。
通常使用t检验来对模型的参数估计进行检验。
t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。
与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。
通常,临界值可以通过t分布表或计算机软件来获取。
另外,我们还可以使用相关系数来评估模型的拟合程度。
相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。
Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。
取值范围为-1到1,绝对值越接近1表示关系越强。
Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。
取值范围也是-1到1,绝对值越接近1表示关系越强。
最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。
多元正态分布均值向量和协差阵的检验

而
Y n(X 0) ~ Np (0,)
故 T02 n(X 0)T 1(X 0) ~ 2( p)
(2)协差阵未知时,均值向量的检验
H0:=(0 0为已知向量),H1: 1
假设H
成立,检验统计量为
0
F (n 1) p 1T 2 ~ F ( p, n p) (n 1) p
第三章 多元正态分布均值向量和
协差阵的检验
一、均值向量的检验
二、协差阵的检验
一、均值向量 •的假设检验
1、霍特林(Hotelling)T 2分布
定义1:设X ~ N p (, ),S ~ Wp (n, ),且X与S相互独立,n p,
则称统计量 T 2 nX T S 1X的分布为非中心霍特林T 2分布,
X (i) ~ N4 (1, ), i 1,2,,10; Y(i) ~ N4 (2 , ), i 1,2,,10
且两组样本相互独立,有共同未知协方差阵 0
假设检验 H0 : 1 2 , H1 : 1 2
构造统计量
F
(n+m 2) (n+m
p 2) p
X
~N
p
(0,
2
n
)
,
在一元统计中,若 t ~ t(n 1) 分布, 则 t2 ~ F (1, n 1) 分布,即把t分布转化为F分 布来处理,在多元统计分析中统计量也有类 似的性质。
定理1:设X ~ N p (0, ), S ~ Wp (n, ),且X与S相互独立, 令 T 2 nX T S 1 X 则 n p 1T 2 ~ F ( p, n p 1)
再由样本值计算出统计量T02,比较
若T02
多元统计分析多元正态分布

因子分析可以用于数据的降维、分类和解释变量之间的复杂关系。
03
04
多元正态分布的聚类分析
K-means聚类
一种无监督的机器学习算法,通过迭代过程将数据划分为K个集群,使得每个数据点与其所在集群的中心点之间的平方距离之和最小。
总结词
K-means聚类是一种常见的聚类分析方法,其基本思想是:通过迭代过程将数据划分为K个集群,使得每个数据点与其所在集群的中心点之间的平方距离之和最小。具体步骤包括:随机选择K个中心点,将每个数据点分配给最近的中心点所在的集群,然后重新计算每个集群的中心点,并重复此过程直到中心点不再发生变化或达到预设的迭代次数。
定义与性质
性质
定义
均值向量
描述多元正态分布的期望值,表示分布的中心位置。
协方差矩阵
描述多元正态分布的各变量之间的方差和协方差,表示分布的散布程度和变量间的相关性。
维数
描述多元正态分布中随机变量的个数,不同维数的多元正态分布具有不同的形态和性质。
多元正态分布的参数
统计分析
多元正态分布在统计分析中广泛应用,如回归分析、因子分析、聚类分析等。
KNN分类
06
多元正态分布的可视化技术
总结词
主成分分析(PCA)是一种常用的多元统计分析方法,用于降维和数据可视化。
总结词
PCA可视化能够揭示数据中的模式和趋势,帮助我们理解数据的内在结构和关系。
详细描述
通过将数据投影到主成分上,我们可以将高维数据可视化为一组二维或三维图形,从而更直观地观察数据的分布、中心、离群值和聚类等特征。
逻辑回归分类
VS
支持向量机(SVM)是一种有监督学习算法,用于解决分类问题。在多元正态分布的背景下,支持向量机通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
x1
x2
1 6 9
2 10 6
3 8 3
2 试对 0 (9,5)计算 T 的值。
多元正态总体均值的置信域
置信域和T2置信区间的关系(续)
一元正态总体均值的置信区间
Hale Waihona Puke 多元正态总体均值的T2置信区间
置信域和T2置信区间的关系
置信域和T2置信区间的关系(续)
n
15 25 50 100
K=p
2 0.88 0.90 0.91 0.91 0.91 4 0.69 0.75 0.78 0.80 0.81 10 0.29 0.48 0.58 0.62 0.66
联合置信区间与单一置信区间的比较
§2.2 两个正态总体均值 的成组比较
一元情形的回顾
两个多元正态总体均值成组比较
均值差的T2置信区间
§2.1 单个正态总体均值的检 验及置信区间
一元正态总体均值检验的回顾
(1)
2 已知时
( 2)
未知时
2
单个多元正态总体均值的检验
(1) 已知时
马氏距离 的 n倍
( X ) 1 ( X )
( 2)
未知时
例题:
设一个容量为 n 3的 随 机 样 本 取 自 二 维 态 正总 体 , 其样本数据为
州卫生实验室 y1i(BOD) y2i(SS)
25 28 36 35 15 44 42 54 34 29 39 15 13 22 29 31 64 30 64 56 20 21
-19 -22 -18 -27 -4 -10 -14 17 12 10 42 15 -1 11 -4
9 4 -19
60 -2 10 -7
问两种工艺制造的肥皂是否一致? F0.05 (2,97) 3.1 (认为两总体协方差矩阵相等)
练习:
用两种工艺各生产50块肥皂,测量两个指标 X1=泡沫量,X2=舒适度。由两种工艺生产的肥 皂的汇总统计数字为
8.3 X1 4.1 , 10.2 X2 3.9
2 1 S1 1 6
2 1 S2 1 4
均值差的Bonferroni置信区间
§2.3 两个正态总体均值 的成对比较
两个一元正态总体均值的成对比较
两个多元正态总体均值的成对比较
样品 商业实验室 i x1i(BOD) x2i(SS)
1 2 3 4 5 6 7 8 9 10 11 6 6 18 8 11 34 28 71 43 33 20 27 23 64 44 30 75 26 124 54 30 14