正态性检验的一般方法汇总
如何检验数据是否服从正态分布

如何检验数据是否服从正态分布正态分布是概率论和统计学中的一个重要分布,也称为高斯分布。
在很多实际问题中,需要确定一个数据集是否服从正态分布。
本文将介绍几种常用的方法来检验数据是否服从正态分布。
1.直方图检验法:直方图是用来表示数据频数分布的常用图形方法。
通过绘制数据集的直方图,我们可以观察数据的分布情况。
对于服从正态分布的数据,其直方图应该是呈现出一座钟形曲线的形状。
如果数据集的直方图呈现出钟形曲线的形状,那么可以初步判断数据服从正态分布。
但这种方法仅适用于大样本量和精确的直方图。
2.正态概率图法:正态概率图(Probability Plot)是另一种判断数据是否服从正态分布的方法。
正态概率图是将数据按照大小排序后,将每个数据点的累积分布函数的值(即标准正态分布分位数)在纵坐标上绘制,而横坐标则表示数据点的实际值。
如果数据集的正态概率图上的点大致沿着一条直线排列,则可以认为数据服从正态分布。
4.统计检验法:统计检验是通过计算统计量来得出结论的方法。
常用的统计检验方法有Kolmogorov-Smirnov检验、Shapiro-Wilk检验和Anderson-Darling检验。
- Kolmogorov-Smirnov检验:该检验利用累积分布函数(CDF)来判断观测样本与理论分布之间的差异,若与理论分布没有显著差异,则可认为服从正态分布。
- Shapiro-Wilk检验:该检验是一种适用于小样本量的检验方法,利用观察数据与正态分布之间的相关系数来判断数据是否服从正态分布。
- Anderson-Darling检验:该检验适用于中等样本量,通过计算观察数据与理论分布之间的差异来判断数据服从的分布类型。
总结:。
SPSS软件与应用知到章节答案智慧树2023年潍坊医学院

SPSS软件与应用知到章节测试答案智慧树2023年最新潍坊医学院第一章测试1.下列属于SPSS运行窗口的是()。
参考答案:脚本窗口;数据窗口;结果窗口2.SPSS处理实际问题的一般步骤包括()。
参考答案:结果的解释和表达;数据的加工整理;数据的统计分析;数据的准备3.进行数据编码的过程中,需要考虑变量的()。
参考答案:赋值;个数;名称;类型4.在某调查问卷中,有这样一个问题:“请问您来自哪个省?”从问题类型来看,这个问题属于()。
一般字符型问题5.在某调查问卷中,有这样一个问题:“在淘宝、拼多多、京东、网易严选中,请问您最经常使用的购物网站是什么?(限选2项)”要对这个问题进行编码,需要设置()个变量。
参考答案:26.对于量表中反向计分的题目,其赋值最常通过()完成。
参考答案:变量重新编码7.学习了SPSS软件,就可以不必学习统计学方法了。
()参考答案:错8.数据视图中,一行代表一个个案,即一个研究对象的全部资料都体现在这一行之中。
()参考答案:对9.字符型变量也可以进行算术和比较运算。
()错10.SPSS数据文件的纵向合并就是添加个案的过程。
()参考答案:对第二章测试1.下列可用于计数资料的描述性分析的是()。
参考答案:条形图;饼图2.下列属于计量资料离散趋势指标的是()。
参考答案:方差;标准差;变异系数3.已知某小学二年级共有500名学生,现已完成对其身高的测量。
若要按某个区间标准绘制其分组频数分布表和分组频数分布图,可能需要用到()主菜单。
参考答案:转换;分析4.要描述对数正态分布资料的集中趋势,应选择()。
参考答案:几何均数5.对于多项选择题的描述分析,可通过()完成。
参考答案:多重响应6.在对统计分组后的数据资料进行集中趋势描述时,可使用加权平均数。
()参考答案:对7.在一组观测值中,众数可能不止一个,也可能不存在。
()参考答案:对8.“交叉频数分布表”可通过“分析”——“描述统计”——“频率”完成。
16种统计分析方法

16种常用的数据分析方法汇总2015-11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
正态性检验的几种方法

正态性检验的几种方法一、引言正态分布是自然界中一种最常见的也是最重要的分布。
因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。
目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。
二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。
三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。
而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。
二、正态分布2.1 正态分布的概念定义1若随机变量X 的密度函数为()()()+∞∞-∈=--,,21222x e x f x σμπσ其中μ和σ为参数,且()0,,>+∞∞-∈σμ则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。
另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ϕ和()x Φ表示。
引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()⎪⎭⎫⎝⎛-Φ=σμx x F由引理可知,任何正态分布都可以通过标准正态分布表示。
2.2 正态分布的数字特征引理2 若()2,~σμN X ,则()()2,σμ==x D x E 引理3 若()2,~σμN X ,则X 的n 阶中心距为()()N k kn k k n kn ∈⎩⎨⎧=-+==2,!!1212,02σμ定义2 若随机变量的分布函数()x F 可表示为:()()()()x F x F x F 211εε+-= ()10<≤ε其中()x F 1为正态分布()21,σμN 的分布函数,()x F 2为正态分布()22,σμN 的分布函数,则称X 的分布为混合正态分布。
正态性分析的方法总结

四、直方图
直方图,是一种二维统计图表,它的两个坐标分别是统 计样本和该样本对应的某个属性的度量。当直方图为钟 型分布时,则可判断其正态。
五、箱线图
箱形图又称为盒须图、盒式图或箱线图,是一种用作显 示一组数据分散情况资料的统计图。因型状如箱子而得 名。在各种领域也经常被使用,常见于品质管理。在箱 线图中,观察矩形位置和中位数,若矩形位于中间位置, 且中位数位于矩形的中间位置,则分布为正态或近似正 态,对称的;g2>3是分布的峰度比正态分布 的峰度低阔;g2<3时,表面分布的峰度比正态分布的峰 度高狭。当N>1000时,g2值才比较可靠
假设检验方法
一、Kolmogorov-Smirno(KS)检验(基于经验分布函数(ECDF)的检验)
Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定分布。比如检 验一组数据是否为正态分布。它的检验方法是以样本数Kolmogorov-Smirnov 检验法是检验单一样本是否来自某一特定分布。比如检验一组数据是否为正 态分布。它的检验方法是以样本数。 即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布; H1:样本所来自的总体分布不服从某特定分布。
三、Q-Q图
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由 标准正态分布的分位数为横坐标,样本值为纵坐标的散 点图。要利用QQ图鉴别样本数据是否近似于正态分布, 只需看QQ图上的点是否近似地在一条直线附近,而且该 直线的斜率为标准差,截距为均值。 用QQ图还可获得样 本偏度和峰度的粗略信息。
五、Anderson-Darling检验
是一种最小距离估计方式,也是估计偏离正态性的最有 效的统计量之一,对于样本量小于等于25很有效,大样 本可能被拒绝正态性,样本量大于等于200一般都会通过 Anderson-Darling检验.该检验对与偏态的尾部分布较敏 感。
正态性检验的几种常用的方法

作者简介 : 周洪伟 (9 8 ) 男 , 17 一 , 江苏南京 人 , 士 , 师 , 究方 向 : 硕 讲 研 概率 统计 , 金融 数学 , 复杂 网络. m i h zo 12 E a :w hu 2 @ l
y ho c m . n a o. o c
一
1 — 3
12 正 态 分 布 的 数 字 特 征 .
:
/ x 4
() 6
引理 4 若 X~ g, r) 则 = , N( o , 0 卢 =3 定义 4 若 随机变量 的分 布 函数 F ) ( 可表示 为 :
F )=( ) 1 ( 1一 F ( )+ ( ) ( ≤ <1 0 )
() 7
() 8
其中F( 为正态分布N g, ) . ) ( 的分布函数,: ) F ( 为正态分布 N g o ) ( ,r 的分布函数, ; 则称 的分布
引 理l若,~ (,。,( 为X 分 函 则F ) f 1 X Nt o)F ) 的 布 数, ( = xr
、 u ,
() 2
由引理可知 , 任何正态分布都可以通过标准正态分布表示.
收 稿 日期 :0 1— 0— 8 2 1 1 0 修 回 日期 :02— 3— 0 2 1 0 2
定义 2 把 三 阶 中心 矩除 以标准 差 的立 方得 到 的标准化 的三阶 中心矩称 为 随机变 量 的偏 度 , 为 , 记
即 卢= () 以方 差 的平方 得到 的标 准化 的四 阶中心矩 称为 随机 变量 的峰度 , 为 , 记 即
21 0 2年 5月
南 京 晓 庄 学 院 学 报
J RNAL OF N OU ANJNG AO HU I XI Z ANG VER IY UNI ST
参考范围的确定方法

参考范围的确定方法1980年美国医学检验杂志(AmJMedTechnol)发表了一篇文章,题为“参考值(正常范围)”:对实验室工作者的挑战。
文章一开头就提出,没有适当的参考资料,要解释实验室数据是不可能的。
参考资料主要来自实验室,应该受到象对待个别病人结果一样的仔细研究。
说明参考资料的重要性及存在的问题。
确定参考范围是医学科研和卫生工作的重要课题,是医学试验评价的重要内容之一,也是检验工作者需要掌握和解决的问题。
参考范围有个体参考范围与群体参考范围两种,个体参考范围代表生物个体内变异,而群体参考范围反映生物个体间变异。
群体参考范围可以来源于文献报告,但采用文献报告要慎重,仪器厂商与商品试剂盒提供的参考范围更不可轻易引用。
一般来说,引进一种新方法,应该首先进行小样本量的参考值调查,如果结果与文献或厂家提供的数据相一致,就可以不再调查,否则应做进一步的调查,确定本实验室的参考范围。
下面就确定参考范围的做法和要求、常用统计方法、正态性检验及值得注意的几个问题作一简单介绍。
一、确定参考范围的通常做法和要求确定参考范围通常的做法是:选定足够数量的“健康”人(参考个体)作为调查的对象,根据实际测定条件进行统一而准确的测定,然后进行统计学处理。
在调查中应尽可能注意下列内容:1、参考人群的特点及其选择:性别、年龄、职业、身高、体重、习惯、遗传、种族与地理位置,调查人数及调查对象的征集方法,从集体中排除或包括的指标。
2、取标本时的环境与生理条件:紧张、运动、姿势、饮食(包括酒与饮料)、空腹时间、吸烟、住院或非住院、内分泌及生殖状况(月经、妊娠、口服避孕药)及药物。
3、标本的收集与贮存:动脉血、毛细管血或静脉血,有无用止血带,收集时间、抗凝剂、抽血与分离血浆(清)的间隔时间,标本运输、分析前贮存的温度及时间,冰冻、融化、溶血。
尿的一部分或24小时总量、防腐剂。
4、所用分析方法的可靠性:准确度、精密度,质量控制情况等。
正态性检验的两种D检验方法比较

方 面感 到 困惑 ,这不 利 于数 据 统 计 分 析工 作 的顺 利进 行 ,不利 于通 过使用 统 计 分析 方 法 揭 示 客观 事 物 规律 的科 研 工作顺 利开 展 ,因此 有 必要 加 以分 析探 讨 。本
文对 正态 性检 验 的这 两种 D检验 方法 进行 探讨 。
1 Agostino D检验
应的概率 ;反之 ,若 D值在某个概率 对应 的界值 范围 之外 ,则 P值小于相应的概率。此外 ,该 界值含有 四 位 小数 ,因此 在计算 检验 统计 量 D值 时不 要少 于 四位
重要 。在 统计 分析 中常用 正态性 检验 判断 总体分 布类 小 数 。
型是否为正态分布。正态性检验方法有 多种 ,如 P—P
式 为 ’:
∑[ 一(n+1)/2]置
…
√n [∑ 。一(∑ ) /n] 式中,/Z是样本含量 ,i是将测量值从小到大排列后所
[(n+1)/2一i儿 X 州)一置 ]
D : 。_—— 二二==二二==二==二二==二=_—一
√ 。[∑X2一(∑ ) / ]
(2)
检验方 法 步骤如下 :
DOI:10.3969/j.issn.1006-5253.2015.04.013 作者单位 :l 264003 滨州 医学 院 山东省烟台市
2 烟 台毓 璜 顶 医 院麻 醉 科 通信作者 :罗文海 ,Email:byluowh@163.tom
中 国 医 院统 计 2015年 8月 第 22卷 第 4期
【关键词】 正态性检验 Agostino D检验 Kolmogorov.Smirnov检验 注意问题
正态分 布是 许多 统计分 析方 法 的基 础 和前提 ,如 t 若 D值在 某个 概率 对应 的界 值 范 围内 ,则 P值大 于相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正态性检验的一般方法
姓名:蓝何忠
学号:1101200203
班号:1012201
正态性检验的一般方法
【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个
问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,
【引言】一般实际获得的数据,其分布往往未知。
在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。
几种正态性检验方法的比较。
2?一、拟合优度检验:
(1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。
H0: 总体X的分布列为p{X=}=,i=1,2,……
H1:总体 X.
的分布不为
构造统计量
为真时H0发生的理为为样本中发生的实际频数,其中论频数。
2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。
2?观察频数与期望频数越接近,则值越小。
2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。
2?若值过大,则怀疑原假设。
2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。
二、Kolmogorov-Smirnov正态性检验:
Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的
检验方法是以样本数比如检验一组数据是否为正态分布。
分布。
.
据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。
即对于假设检验问题:
H0:样本所来自的总体分布服从某特定分布
H1:样本所来自的总体分布不服从某特定分布
统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。
#}n1,2,,x{x?,i?i?)F(x n n
: x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a.
a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35
检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1:
计算过程如表:
结论:上表中的理论值(x)是根据标准化值z查表得到,实际上
(x)|=0.1754<D=max |Fn(x)-查D值表,故不能拒绝H0即健康成年男人血糖浓度服从正态分布,当样本容量n大时可以用Dα,n=1.36/求得结果,如上述D0.55,
35=1.36/=0.2299=0.23
结论:当实际观测D>Dn,则接受H1,反之则不拒绝H0假设。
2?拟合优度检验与K-S正态检验的比较:
2?拟合优度检验与K-S正态检验都采用实际频数与期望频数进而后者主它们之间最大的不同在于前者主要用于类别数据,行检验。
.
要用于有计量单位的连续和定量数据,拟合优度检验虽然也可以用于定量数据,但必须先将数据分组得到实际观测频数,并要求多变量之
间独立,而K-S正态检验法可以不分组直接把原始数据的n个观测值进行检验,所以它对数据的利用较完整。
三、Lilliefor正态分布检验
该检验是对Kolmogorov-Smirnov检验的修正,当总体均值和方差未知时,Lilliefor提出用样本均值和标准差代替总体的期望和标准差,然后使用Kolmogorov-Smirnov正态性检验法,它定义了一个D统计量;
参数未知,由计算得x)|x Fn()- Fo(D=max到统计量,查表得Lilliefor检验的临界值,确定拒绝域,得出结论。
四、偏度峰度检验法:
(一)偏度检验:
,为X X 设随机变量的具有数学期望和方差偏度,所谓偏度检验就是检验如下假设:
=0 :接受原则可以认为样本不是来自正态总体。
,拒绝原假设注意到,假设,并不等价于接受原假设“样本来自正态总体”。
这是因为任一对称分布的偏度都为0,无法排除样本来自非正态的对称分布的可能。
因此,偏度检验只能检验数据分布的对称性。
由于总体分布未知,无法直接得到总体的偏度,故可以利用样本偏度作为检验上述假设的检验统计量,记
定义1 设为随机变量X的n个相互独立的样本,偏度检
验的检验统计量为 (*)
常被用于双尾检验,因为非正态分布可能出现左偏,也可能出
,在显著性水平现右偏。
在原假设成立时,下取定
,则拒绝原假设。
事实上的分布是对分位点,,若称的,因此采取双尾检验的做法是合理的。
式中定义的偏度检验统计量,则渐进服从均设为(*)定理1
的正态分布,即6,方差为 0值为
样本容量有限的情形,使用渐进情形下的结论就会导致较高的出错率,这也是偏度检验的一个缺陷。
需要指出的是,只有在确定对称性是唯一影响分布的形态时,偏度检验才是合适的选择,否则应该避免使用偏度检验。
(二)峰度检验
,为 X 设随机变量 X 具有数学期望的峰和方差度,所谓峰度检验,实际上是将正态性检验转化为检验如下假设:
如同偏度检验一样,峰度为 3 的非正态分布也是存在的。
所以,
接受原假设并不能表明 X 一定服从正态分布,这一事实也导致对
数据的正态性检验会有一定的出错率。
定义2 设为随机变量X的n个相互独立的样本,峰度检
验的检验统计量为 (*2)
(*2) 2定理式中定义的峰度统计量,则设为
.
,同偏度统计量一样的收敛速度也是比较慢的 W检验五、小样本场合(3<n<50)的时,样本是否符合正态分布的n ≤50w检验是检验样本容量一种方法。
其检验步骤如下:①将数据按数值大小重新排列,使x1≤x2≤…≤xn;n②计算?2)?X(X i1i?-(ni=n/2;n为奇数时,i=式中:当③计算 n为偶数时,值可查表得出;1)/2;④计算检验统计量2][n?2)]X?X[a()ii)(i1(n??1?i?W n?2)X?X(i1?i按表上行(可通过查表求得),⑤若W值小于判断界限值Wα接受正态性假,W若Wα写明的显著性水平舍弃正态性假设;>α设。
.
六、大样本场合(50<n<100)的D检验
检验统计量:
?)(i?X(i)21?i?D n?32Xn)((?X))(i1i?再令
n n?1
时,拒绝域为。
其中则在显著性水平
Y分别为和的分位数。
总结
2?检在各种正态性检验方法中,一般通用的方法有K检验以及偏度检验对非对称、长尾分布较敏感;峰度验,但检验精度较低。
检验对
各种分布(特别对非对称分布)都检验对对称分布较敏感;W
正态检Lilliefor很敏感。
当总体均值和方差未知且无先验信息时用检验是比较好的检验方法。
但我们要知道,检验D.验大样本情况下方法的功效性都是随着样本量的增大而增大的。
.。