绝对值经典题型

合集下载

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

绝对值的八种题型

绝对值的八种题型

以下是关于绝对值的八种题型:
1. 已知一个数,求其绝对值。

例如:求-5的绝对值。

解:绝对值是一个数到原点的距离,所以|-5|=5。

2. 已知一个数的绝对值,求这个数。

例如:若|x|=3,求x的值。

解:绝对值等于3的数有两个,即x=3或x=-3。

3. 绝对值范围内的整数问题。

例如:求绝对值小于3的非负整数。

解:非负整数就是正整数或0,所以绝对值小于3的非负整数有0、1、2。

4. 含有绝对值的方程求解。

例如:求解方程|x-2|=3。

解:将绝对值拆开,得到两个方程x-2=3和x-2=-3,解得x=5或x=-1。

5. 含有绝对值的不等式求解。

例如:求解不等式|x-1|>2。

解:将绝对值拆开,得到两个不等式x-1>2和x-1<-2,解得x>3或x<-1。

6. 绝对值的最小值问题。

例如:求几个绝对值和的最小值。

解:根据绝对值的性质,求最小值只需记住口诀:奇点求中间,偶点求中段。

7. 绝对值的最大值问题。

例如:求几个绝对值和的最大值。

解:先确定零点,画出数轴,标出零点,分三种情况讨论比较大小即可。

8. 绝对值的应用题。

例如:在数轴上,已知点A的坐标为3,点B的坐标为-5,求线段AB的长度。

解:线段AB的长度就是点A和点B之间的距离,即|3-(-5)|=8。

通过掌握这八种题型,可以帮助我们更好地理解和解决与绝对值相关的问题。

绝对值函数题型 -完整获奖版

绝对值函数题型 -完整获奖版

绝对函数绝对值的基本性质 1.,a x a a x ≤≤-⇒≤ a x a x ≥-⇒≥或a x -≤2. ()()()()(),x g x f x g x g x f ≤≤-⇒≤ ()()()()x g x f x g x f ≥⇒≥或()()x g x f -≤3.三角不等式 b a b a b a +≤±≤- (注意等号成立的条件)4.n n a a a a a a a a +⋅⋅⋅+++≤+⋅⋅⋅+++321321一、值域问题例1、求函数12++-=x x y 的值域.例2、求函数12+--=x x y 的值域.例3、求函数122-+-=x x y 的值域.例4、求函数122++-=x x y 的值域.例5、求函数a x x y ++-=2的值域.例6、求函数a x x y +--=2的值域.例7、若函数a x x y +++=21的若最小值为3,求a 的值.例8、若函数a x x y ++-=22的若最小值为3,求a 的值.二、恒成立问题例9、已知31≥-++a x x 恒成立,求a 的取值范围.例10、已知a a x x 231-≥--+恒成立,求a 的取值范围.例11、已知322≥++-a x x 恒成立,求a 的取值范围.例12、若不等式[]1,0,23∈->-x x x a 恒成立,求a 的取值范围.例13、已知[]1,1,422-∈-≥-x x x a 恒成立,求a 的取值范围.例14、若关于x 关于的不等式a x x <-++12的解集为φ,则a 的取值范围是 .例15、设实数a 使得不等式2232a a x a x ≥-+-恒成立,则a 的取值范围是 .三、解集探索问题(两种方法)例16、解不等式51≤+x .例17、解不等式52>-x .例19、解不等式x x 252->-.例20、解不等式4212>-++x x .例21、解不等式423>--+x x .例22、解不等式412-<-++x x x .四、含参数不等式解集问题(一)绝对值内不含参数(数形结合思想)例23、解不等式a x x <--322.例25、解不等式a x x <-2.例26、解不等式a xx <+2.(二)绝对值内含参数(分离参数或部分分离参数)例27、解不等式12<-+a x x .例28、解不等式22<--a x x .五、求参数范围问题例29、已知函数()()R a xa x x f ∈+-=4. (1) 若,0=a 求不等式()0≥x f 的解集;(2) 当方程()2=x f 恰有两个实数根时,求a 的值;(3) 若对于一切()+∞∈,0x ,不等式()1≥x f 恒成立,求a 的求取值范围.例30、已知函数(),2xa x x f +-=若对于任意的[]()2,3,1≥∈x f x 恒成立,求实数a 的求取值范围.六、综合问题例31、设函数()()211a x x f --=的定义域为D ,其中.1<a(1) 当3-=a 时,写出函数()x f 的单调区间(不要求证明);(2) 若对于任意的[]D x ⋂∈2,0均有()2kx x f ≥成立,求实数k 的取值范围.例32、已知函数()()R a ax a x x f ∈-+-=13.(1)若,1=a 写出函数()x f 的单调区间;(2)若函数()x f 是偶函数,求实数a 的值;(3)若对于任意的实数[]3,0∈x ,不等式()a x x x f -≥3恒成立,求a 的求取值范围.。

七年级数学上册经典题型及解题思路绝对值

七年级数学上册经典题型及解题思路绝对值

七年级数学上册经典题型及解题思路绝对值一、绝对值的基本概念绝对值就是一个数在数轴上所对应点到原点的距离,用“ ”来表示。

比如说, 5 = 5,因为5这个点到原点的距离就是5; -3 = 3, -3到原点的距离是3。

这就像是我们在一个大操场上,以原点为起点,某个点离起点的距离就是这个数的绝对值。

二、经典题型及解题思路1. 简单求值题题型:已知a = -2,求 a 的值。

解题思路:根据绝对值的定义,一个负数的绝对值是它的相反数。

因为a=-2是负数,所以 a =-(-2)=2。

2. 含有字母的绝对值化简题题型:化简 x - 3 ,其中x<3。

解题思路:当x<3时,x - 3是负数。

根据绝对值的性质,负数的绝对值是它的相反数。

所以 x - 3 =-(x - 3)=3 - x。

就好像你欠别人钱,欠的钱数是x - 3,但是从绝对值的角度看,就相当于你要还的钱数是它的相反数3 - x。

3. 多个绝对值相加的求值题题型:已知 x + y = 0,求x和y的值。

解题思路:因为绝对值是非负的,两个非负的数相加等于0,只有当这两个数都为0的时候才成立。

所以 x = 0,x = 0; y = 0,y = 0。

这就好比两个口袋里装的东西都是正数或者0,要让两个口袋里东西的总数是0,那每个口袋里只能是0啦。

4. 绝对值方程题题型:解方程 x+1 = 3。

解题思路:根据绝对值的定义,x+1的值可以是3或者 - 3。

当x+1 = 3时,x = 2;当x+1=-3时,x=-4。

这就像是有两条路可以走,一条路让你得到3这个结果,另一条路让你得到 - 3这个结果。

5. 绝对值不等式题题型:解不等式 x - 2 <1。

解题思路:根据绝对值不等式的解法, x - 2 <1等价于 - 1<x - 2<1。

先解左边的不等式x - 2>-1,得到x>1;再解右边的不等式x - 2<1,得到x<3。

绝对值的八种题型

绝对值的八种题型

绝对值的八种题型绝对值是数学中常见的概念之一,用来表示一个数到0的距离。

在解决绝对值相关题目时,需要掌握不同类型的题型和相应的解题方法。

本文将介绍绝对值的八种常见题型及解题思路。

1. 绝对值的定义题型这种题型要求直接根据绝对值的定义来求解,即将绝对值内的数分别取正负值,求得结果。

例如,求解|3x+1|=7,可以得到两个方程3x+1=7和3x+1=-7,解方程得到x=2和x=-2。

2. 绝对值的不等式题型这种题型要求解不等式中包含绝对值的问题。

通常的解题思路是,先去掉绝对值,得到一个二次不等式,然后根据不等式的性质求解。

例如,求解|2x-3|>5,可以得到两个不等式2x-3>5和2x-3<-5,解方程得到x>4和x<-1。

3. 绝对值的加减法题型这种题型要求计算带有绝对值的加减式。

解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。

例如,计算|2+3|+|4-5|,可以将绝对值内的数分别取正负值,得到5+1=6。

4. 绝对值的乘法题型这种题型要求计算带有绝对值的乘法式。

解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。

例如,计算|2x-1|*|3x+2|,可以将绝对值内的数分别取正负值,得到(2x-1)*(3x+2)和(2x-1)*(-3x-2)。

5. 绝对值的除法题型这种题型要求计算带有绝对值的除法式。

解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后进行计算。

例如,计算|2x-1|/|3x+2|,可以将绝对值内的数分别取正负值,得到(2x-1)/(3x+2)和(2x-1)/(-3x-2)。

6. 绝对值的方程题型这种题型要求求解带有绝对值的方程。

解题的关键是根据绝对值的性质,将绝对值内的数分别取正负值,然后解方程。

例如,求解|2x-1|=5,可以得到两个方程2x-1=5和2x-1=-5,解方程得到x=3和x=-2。

绝对值的八大题型

绝对值的八大题型

绝对值的八大题型
绝对值是数学中的一个重要概念,涉及到多种题型。

以下是“绝对值的八大题型”及其相应的解题技巧和示例:
一、绝对值的基本概念题
这类题型主要考查对绝对值基本概念的理解。

解题关键是掌握绝对值的定义,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

例1:判断下列说法是否正确:
(1)|5| = 5 (2)|-5| = 5 (3)|0| = 0 (4)|-0.1| = 0.1
解:(1)|5| = 5 (2)|-5| = 5 (3)|0| = 0 (4)|-0.1| = 0.1
二、求一个数的绝对值
这类题型要求根据绝对值的定义求出一个数的绝对值。

解题关键是掌握绝对值的定义,根据数的符号确定其绝对值。

例2:求下列各数的绝对值:
(1)12 (2)- 15 (3)0.2 (4)- 6.7
解:(1)|12| = 12 (2)|-15| = 15 (3)|0.2| = 0.2 (4)|-6.7| = 6.7
三、比较两个数的绝对值
这类题型要求比较两个数的绝对值的大小。

解题关键是掌握绝对值的定义,根据数的符号确定其绝对值。

例3:比较下列各组数的绝对值的大小:
(1)|2| 和|3| (2)|-4| 和|-3| (3)|0| 和|-5|
解:(1)因为|2| < |3|,所以|2| < |3|。

(2)因为|-4| = |-3|,所以|-4| = |-3|。

(3)因为|0| < |-5|,所以|0| < |-5|。

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)

绝对值的性质与几何意义、数轴上动点问题(6种常考题型)题型一利用绝对值的性质化简题型二绝对值非负性的应用题型三利用绝对值的性质求最值题型四绝对值几何意义题型五数轴上两点之间的距离题型六数轴上动点问题一.利用绝对值的性质化简(共15小题)1.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A .2-B .1-C .0D .22.若0ab ≠,那么a ab b+的取值不可能是()A .2-B .0C .1D .23.已知有理数a ,b 在数轴上的位置如图所示,则化简1a b a +--的结果为()A .21a b -+B .1b -+C .1b --D .21a b ---4.0a <,则化简a a aa aa++-的结果为()A .2-B .1-C .0D .25.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是()A .22a b +B .22a b c+-C .c-D .2b c--6.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是.7.已知数a b c 、、位置如图所示,化简a b a c --+=.8.a 、b 、c 三个数在数轴上的位置如图所示,则化简||2||a b a c --+的结果是.9.若12x <<,求代数式2121x x x x xx---+=--.10.若0a >,||a a=;若0a <,||a a =;①若0||||a b a b +=,则||ab ab=-;②若0abc <,则||||||a b ca b c ++=.11.有理数0a >,0b >,0c <,且a c b <<.(1)在数轴上将a ,b ,c 三个数在数轴上表示出来如图所示;(2)化简:2b c a b a c +--+-.12.已知有理数a b c d 、、、在数轴上对应的点的位置如图所示,化简:a c b d c b++---13.a ,b 在数轴上的位置如图,化简b a a a b --++.14.已知有理数a 、b 、c 在数轴上位置如图所示,化简:|1|||||a c b a b c +---++.15.有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.二.绝对值非负性的应用(共11小题)1.如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-2.若()23a +与1b -互为相反数,则().A .3,1a b =-=-B .3,1a b =-=C .3,1a b ==D .3,1a b ==-3.若320x y -++=,则x y +的值是().A .5B .1C .2D .04.如果有理数x 、y 满足10x x y -++=,那么xy 的值是()A .1-B .1±C .1D .25.若()22430||a b ++--=,则b =;a =.6.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.7.已知2(3)|24|0x y x +++-=,则y =.8.已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.9.已知230x y -++=.(1)求x y +的值.(2)求x y -的值.10.若|21||3|0x y -++=,求x 、y 的值.11.若201503b a --+=,求a ,b 的值.三.利用绝对值的性质求最值(共9小题)1.设n 个有理数12,,,n x x x ⋅⋅⋅满足1(1,2,,)i x i n <= ,且12x x +++ 1219n n x x x x =++++ ,则n 的最小值是()A .19B .20C .21D .222.如果x 为有理数,式子20232x -+存在最大值,这个最大值是()A .2025B .2024C .2023D .20223.若a 是有理数,则|1|2a -+的最小值是()A .0B .1C .2D .34.(1)若6m -有最小值,则当m =时,取最小值,最小值为.(2)若260m n -+-=,则m =,n =.(3)5m -有最(填“大”或“小”)值,这个最(大)小值是.5.已知a 为有理数,则24a -+的最小值为.6.如果x 为有理数,式子20213x --存在最大值,那么这个式子有最值是,此x =7.已知,数轴上A ,B ,C 三点对应的有理数分别为a ,b ,c .其中点A 在点B 左侧,A ,B 两点间的距离为4,且a ,b ,c 满足()220240a b c ++-=,则(1)c 的值为.(2)数轴上任意一点P ,点P 对应的数为x ,若存在x 使x a x b x c -+-+-的值最小,则x 的值为.8.阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求:(1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.9.阅读下面的材料:点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为AB .当A B ,两点中有一点在原点时,不妨设点A 在原点,如图①所示,AB OB b a b ===-;当A B ,两点都不在原点时,a .如图②所示,点A B ,都在原点的右边,AB OB OA b a b a a b =-=-=-=-;b .如图③所示,点A B ,都在原点的左边,()AB OB OA b a b a a b =-=-=---=-;c .如图④所示,点A B ,在原点的两边,()AB OA OB a b a b a b =+=+=+-=-.综上,数轴上A B ,两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2-和5-的两点之间的距离是,数轴上表示1和3-的两点之间的距离是;(2)数轴上表示x 和1-的两点A 和B 之间的距离是,如果2AB =,那么x 为;(3)当47x y ++-取最小值时,x =,y =.四.绝对值几何意义(共6小题)1.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是()A .12x ≤≤B .1x ≤-或2x ≥C .12x -≤≤D .12x ≤≤-2.在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是.3.阅读理解:对于有理数a 、b ,a 的几何意义为:数轴上表示数a 的点到原点的距离;|a -b |的几何意义为:数轴上表示数a 的点与表示数b 的点之间的距离.如:2x -的几何意义即数轴表示数x 的点与表示数2的点之间的距离,请根据你的理解解答下列问题:(1)根据2x +的几何意义,若23x +=,那么x 的值是.(2)画数轴分析23x x +++的几何意义,并求出23x x +++的最小值是.(3)11232023x x x x x x +++-+-+-+⋯+-的最小值是多少?4.阅读下面的材料:根据绝对值的几何意义,我们知道53-表示5、3在数轴上对应的两点间的距离;535(3)+=--,所以53+表示5、3-在数轴上对应的两点之间的距离;550=-,所以5表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 两点之间的距离可以表示为AB a b =-.回答下列问题:(1)数轴上表示6与9-的两点之间的距离是_________;数轴上表示x 与2的两点之间的距离是_______.(2)若33x -=,则x =_______.(3)满足235x x ++-=的整数x 有_______个.(4)当a =_______时,代数式12x a x ++-的最小值是3.5.阅读下列材料:经过有理数运算的学习,我们知道53-可以表示5与3之差的绝对值,同时也可以理解为5与3两个数在数轴上所对应的两点之间的距离,我们可以把这称之为绝对值的几何意义.同理,()52--可以表示5与2-之差的绝对值,也可以表示5与2-两个数在数轴上所对应的两点之间的距离.试探究:(1)5x -表示数轴上有理数x 所对应的点到________所对应的点之间的距离;2x +表示数轴上有理数x 所对应的点到________所对应的点之间的距离.若25x +=,则x =________.(2)利用绝对值的几何意义,请找出所有符合条件的整数x ,使得257x x ++-=.这样的整数x 有________________.(写出所有的整数x )(3)利用绝对值的几何意义,求出123x x x -+++-的最小值,并说明理由.6.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且19AB =.(1)直接写出数轴上点B 表示的数;(2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 3的点之间的距离,试探索:①若82x -=,则x =(直接写出);②118x x ++-的最小值为(直接写出);(3)请直接写出所有满足37329a a ++-=的整数a 的值.五.数轴上两点之间的距离(共15小题)1.已A B 、两点在数轴上表示的数分别是3-和6-,若在数轴上找一点C ,使得A 和C 之间的距离是4,使得B D 、之的距离是1,则C D 、之间的距离不可能是()A .0B .6C .2D .42.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14-,10,现以点C 为折点,将数轴向右对折,若点A 落在射线C 上且到点B 的距离为6,则C 点表示的数是()A .1B .3-C .1或5-D .1或4-3.如图,已知A ,(B B 在A 的左侧)是数轴上的两点,点A 对应的数为12,且18AB =,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为(0)t t >秒,则下列结论中正确的有()①B 对应的数是6-;②点P 到达点B 时,9t =;③2BP =时,6t =;④在点P 的运动过程中,线段MN 的长度会发生变化.A .1个B .2个C .3个D .4个4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移2个单位长度,得到点C .若点C 到A 、B 两个点的距离相等,则a 的值为()A .0B .1-C .2-D .15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是().A .1-B .0C .1D .26.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB ,则线段AB 盖住的整点的个数是()A .2011或2012B .2012或2013C .2013或2014D .2014或20157.在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a ,b ,c ,d 表示的点是这些点中的4个,且在数轴上的位置如图所示.已知343a b =-,则代数式5c d -的值是.8.如图,在数轴上,点A 表示的数是10,点B 表示的数为50,点P 是数轴上的动点.点P 沿数轴的负方向运动,在运动过程中,当点P 到点A 的距离与点P 到点B 的距离比是2:3时,点P 表示的数是.9.一把刻度尺的部分在数轴上的位置摆放如图所示,若刻度尺上的刻度“4cm ”和“1cm ”分别对应数轴上的0和2,现将该刻度尺沿数轴向右平移3个单位,则刻度尺上6.1cm 对应数轴上的数为.10.如图,边长为3的正方形ABCD 的边AB 在数轴上,数轴上的点A 表示的数为4-,将正方形ABCD 在数轴上水平移动,移动后的正方形记为A B C D '''',点、、A B C 、D 的对应点分别为A B C D ''''、、、,点E 是线段AA '的中点,当BEC '△面积为9时,点A '表示的数为.11.如图,A ,B ,C 为数轴上的点,4AC =,点B 为AC 的中点,点P 为数轴上的任意一点,则2PA PB PC ++的最小值为.12.如图所示,观察数轴,请回答:(1)点C 与点D 的距离为,点B 与点D 的距离为;(2)点B 与点E 的距离为,点A 与点C 的距离为;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN =(用m ,n 表示)13.同学们都知道,()73--表示7与3-之差的绝对值,实际上也可理解为数轴上分别表示7与3-的两点之间的距离.试探索:(1)()73--=________;(2)找出所有符合条件的整数x ,使得415x x ++-=;(3)对于任何有理数x ,36x x -+-是否有最小值?若有,请求出最小值;若没有,请说明理由;(4)若169x x ++-=时,求x 的值.14.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与1-表示的点重合,则2-表示的点与数表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A 、B 两点之间的距离为2023(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?15.如图所示,在一条不完整的数轴上从左到右有三点、、A B C ,其中2AB =,1BC =,设点、、A B C 所对应的数的和是m .(1)若B 为原点.则A 点对应的数是__________;点C 对应的数是__________,m =__________.(2)若原点O 在图中数轴上点C 的右边,且6CO =.求m .六.数轴上动点问题(共12小题)1.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为1-和0,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2019次后,数轴上数2019所对应的点是()A .点AB .点BC .点CD .点D2.一个电子跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点()个单位长度.A.0B.100C.50D.-503.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为8个单位长度.4.如图,动点A,B,C分别从数轴-30,10,18的位置沿数轴正方向运动,速度分别为2个单位长度/秒,4个单位长度/秒,8个单位长度/秒,线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,若⋅-为常数,则k为.k PM MN5.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.-,点N所表示的数为2如图2,M,N为数轴上两点,点M所表示的数为7(1)点E,F,G表示的数分别是3-,6.5,11,其中是【M,N】美好点的是_;写出【N,M】美好点H所表示的数是_.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?6.若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;-,点B所表示的数为40.现有一只电子蚂蚁P从点(2)如图3,A、B为数轴上两点,点A所表示的数为20B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?、两点表示的数是互为相反数;7.如图,数轴上的单位长度为1,A B(1)点A表示的数是______,点B表示的数______.(2)数轴上一个动点P先向左移动2个单位长度,再向右移动5个单位到达点M,若点M表示的数是1,则点P所表示的数是______.(3)在数轴上,点O 为坐标原点,若点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度向右运动,当两点同时运动时,设运动时间为t 秒()0t >.①点A 表示的数为______;点B 表示的数为______.(用含t 的式子表示)②当t 为何值时,点A 、点B 、点O 三点之间恰好有一个点到其他两个点的距离相等?8.如图,已知点A 、B 、C 是数轴上三点,O 为原点.点C 对应的数为3,2BC =,6AB =.(1)则点A 对应的数是,点B 对应的数是;(2)动点P 、Q 分别同时从A 、C 出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP 上,且AM MP =,N 在线段CQ 上,且14CN CQ =,设运动时间为()0t t >.①求点M 、N 对应的数(用含t 的式子表示)②猜想MQ 的长度是否与t 的大小有关?如果有关请你写出用t 表示的代数式;如果无关请你求出MQ 的长度.9.阅读下面的材料:如图1,在数轴上A 点所示的数为a ,B 点表示的数为b ,则点A 到点B 的距离记为AB ,线段AB 的长可以用右边的数减去左边的数表示,即AB b a =-.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置:(2)点C到点A的距离CA=______cm;若数轴上有一点D,且5AD=,则点D表示的数为_________;x,则移动后的点表示的数为_____;(用代数式表示)(3)若将点A向右移动cm(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动,设移动时间-的值是否会随着t的变化而改变?请说明理由.为t秒,试探索:AC AB-、10,动点P从A出发,以每秒1个单位10.已知数轴上有A、B、C三个点,分别表示有理数24-、10长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C的距离,试回答以下问题.(1)当点P运动10秒时,PA=______,PB=______,PC=______;(2)当点P运动了t秒时,请用含t的代数式表示P到点A、点B、点C的距离:PA=______,PB=______,PC=______;(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请直接写出点P表示的数;如果不能,请说明理由.11.定义:数轴上A 、B 两点的距离为a 个单位记作AB a =,根据定义完成下列各题.两个长方形ABCD 和EFGH 的宽都是3个单位长度,长方形ABCD 的长AD 是6个单位长度,长方形EFGH 的长EH 是10个单位长度,其中点A 、D 、E 、H 在数轴上(如图),点E 在数轴上表示的数是5,且E 、D 两点之间的距离为14,原点记为0.(1)求数轴上点H 、A 所表示的数?(2)若长方形ABCD 以4个单位长度/秒的速度向右匀速运动,同时长方形EFGH 以3个单位长度/秒的速度向左匀速运动,数轴上有M 、N 两点,其中点M 在A 、D 两点之间,且12AM AD =,其中点N 在E 、H 两点之间,且15EN EH =,设运动时间为x 秒.①经过x 秒后,M 点表示的数是,N 点表示的数是(用含x 的式子表示,结果需化简).②求MN (用含x 的式子表示,结果需化简).(3)若长方形ABCD 以2个单位长度/秒的速度向右匀速运动,长方形EFGH 固定不动,设长方形ABCD 运动的时间为()0t t >秒,两个长方形重叠部分的面积为S ,当12S =时,求此时t 的值.12.阅读下面材料:若点A B 、在数轴上分别表示实数a b 、,则A B 、两点之间的距离表示为AB ,且AB a b =-;回答下列问题:(1)①数轴上表示x 和2的两点A 和B 之间的距离是;②在①的情况下,如果3AB =,那么x 为;(2)代数式12x x ++-取最小值时,相应的x 的取值范围是.(3)若点、、A B C 在数轴上分别表示数a b c 、、,a 是最大的负整数,且2(5)0-++=c a b ,①直接写出a b c 、、的值.A B C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分②点、、别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.。

七年级绝对值压轴题

七年级绝对值压轴题

七年级绝对值压轴题一、绝对值压轴题。

1. 已知| a - 2|+| b + 3| = 0,求a + b的值。

- 解析:因为绝对值一定是非负的,要使两个非负的数相加等于0,则每一项都必须为0。

- 即| a - 2|=0,解得a = 2;| b+3| = 0,解得b=-3。

- 所以a + b=2+( - 3)=-1。

2. 若| x|=3,| y| = 5,且x>y,求x + y的值。

- 解析:- 因为| x| = 3,所以x=±3;因为| y|=5,所以y = ±5。

- 又因为x>y,当x = 3时,y=-5,此时x + y=3+( - 5)=-2;当x=-3时,y=-5,此时x + y=-3+( - 5)=-8。

3. 化简| x - 1|-| x - 3|,(x<1)- 解析:- 当x<1时,x - 1<0,x - 3<0。

- 则| x - 1|=1 - x,| x - 3|=3 - x。

- 所以| x - 1|-| x - 3|=(1 - x)-(3 - x)=1 - x - 3+x=-2。

4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(| a +b|)/(2m^2+1)+4m - 3cd的值。

- 解析:- 因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。

- 当m = 2时,(| a + b|)/(2m^2+1)+4m-3cd=(0)/(2×2^2 + 1)+4×2-3×1=0 + 8 -3=5;- 当m=-2时,(| a + b|)/(2m^2+1)+4m - 3cd=(0)/(2×(-2)^2+1)+4×(-2)-3×1=0-8 - 3=-11。

5. 若| a|=5,| b| = 3,且| a - b|=b - a,求a + b的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一:定义考察正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|-3|的相反数是.【解析】:|-3|的绝对值为3,3的相反数是-3.例2.绝对值大于2小于5的所有整数有.【解析】:绝对值大于2小于5的整数有-4、-3、3、4.例3.已知|X|= 4,则X= ; 已知|-X|= 5,则X= ;【解析】:(1)绝对值等于4的数有±4;(2)虽然|-X|有个“-”,但带有绝对值,这个“-”可以直接去掉,可以同(1)一样,绝对值等于5的数有±5.例4.已知|X-5|=2,则X= .【解析】:解法1:可以把绝对值里面的数当作一个整体,(X-5)的绝对值为2,则X-5=±2解得X=7或X=3解法2:利用绝对值的几何意义来解题:|X-5|=2,一个数到5的距离为2,则这个数为3或者7例5.下列语句:○1一个数的绝对值一定是正数;○2-a 一定是一个负数;○3没有绝对值为-3 的数;○4若|a| =a,则a 是一个正数;○5在原点左边离原点越远的数就越小.正确的有( )个A.0B.3C.2D.4【解析】:○1一个数的绝对值的绝对值可能是正数也肯是负数;○2一个字母前面带“-”,不能确认这个字母是正是负还是0,所以带上“-”后也不能确定是正是负还是0;○3一个数的绝对值只可能≥0○4一个数的绝对值等于它本身,这是数可能是正数也有可能是0○5在原点左边离原点越远的数就越小,在原点右边离原点越远数就越大例6.若|a| = -a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【解析】:一个数的绝对值等于它的相反数,它可能是负数也可能是0题型二:非负性一个数的绝对值≥0例1.已知|a+3|+|c-2|=0,则a+c= .【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a+3=0,c-2=0 → a=-3,c=2,∴a+c=-1例2.若|x+3|+(y-1)2 = 0,求xy的值.【解析】:一个数的绝对值≥0,一个数的平方也是≥0,两个≥0的数相加等于0,只可能是它们分别为0,即: x+3=0,y-1=0,∴x=-3,y=1;∴xy=-3例3.若|2x-4|与|y-3|互为相反数,求3x-y的值.【解析】:一个数的绝对值≥0,两个绝对值互为相反数,只有可能两者都为0,因为0的相反数仍为0∴2x-4=0,y-3=0;∴x=2,y=3;∴3x-y=9例4.已知|a-3|+|b -5|=0,x,y互为相反数,求3(x+y) -a+2b的值.【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a-3=0,b-5=0,a=3,b=5;∵x,y互为相反数,∴x+y=0所以3(x+y) -a+2b=7题型三:去绝对值正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|3-π|+|π-4|= .【解析】:要想去绝对值,得先搞清楚绝对值里面的正负,这样我们才能正确把绝对值去掉.因为3-π<0,π-4<0,所以|3-π|=π-3,|π- 4|=4 -π所以|3-π|+|π-4|=1例2.如图所示,则|a-b|-|2c+b|+|a+c|= .【解析】:从图中可知c < b < c,|c|>|a|>|b|a-b>0,2c+b<0,a+c<0|a-b|=a-b,|2c+b|=-(2c+b),|a+c|=-(a+c)所以|a-b|-|2c+b|+|a+c|=a - b --(2c+b)-(a+c)=a-b+2c+b-a-c=c> 0,化简|a|-|b|+|a+b|+|ab|.例3.若a<-b,ab【解析】:因为a> 0,所以○1a>0,b>0;○2a<0,b<0b○1当a>0,b>0时,与a<-b矛盾,所以这种情况不存在○2当a<0,b<0时,|a|-|b|+|a+b|+|ab|=-a+b-(a+b)+ab=-2a+ab 例4.若1<a<5,则|1-a|+|5-a|= .【解析】:因为1<a<5,所以1-a<0,5-a>0所以|1-a|+|5-a|= -(1-a)+(5-a)=4例5.若|m-n|=n-m,且|m|=4,|n|=4,则m-n= .熟记:|a|=a,则a≥0,|a|=-a,则a≤0切记别把“0”漏掉【解析】:因为|m-n|=n-m,所以m-n≤0○1第一种情况:m-n=0;○2第二种情况:m-n<0;又因为|m|=4,|n|=4所以m=-4,n=4即:m-n=-8例6.若x<-2,则y=|1-|1+x||等于.提示:多个绝对的情况,由内到外依次去绝对值【解析】:∵x<-2,∴1+x<0原式=|1-[-(1+x)]=|1+1+x|=|2+x|=-(2+x)题型四:分类讨论例1.若|a|=5,|b|=7,且|a+b|=a+b,则a-b= . 【解析】:∵|a+b|=a+b∴a+b≥0又∵|a|=5,|b|=7∴a=±5,b=7(负舍)∴a-b=-2或a-b=-12例2.若a>0,则|a|a = ,若a<0,则|a|a= .【解析】:○1∵a>0,∴|a|=a,∴|a|a = aa= 1;○2∵a<0,∴|a|=-a,∴|a|a = −aa= -1;例3.已知abc≠0,求|a|a + |b|b+ |c|c=【解析】:○1当a、b、c没有负数时,则原式=3○2当a、b、c有一个负数时,则原式=-1+1+1=1○3当a、b、c有两个负数时,则原式=-1-1+1=-1○4当a、b、c有全是负数时,则原式=-1-1-1=-3例4.若|ab|ab =1,则|a|a+ |b|b=【解析】:∵|ab|ab=1,∴a,b同号∴○1当a,b大于0时,原式=2○2当a,b小于0时,原式=-2题型5:零点分段零点:令绝对值等于0的x值,称为该绝对值的零点.步骤:○1找出每一个绝对值的零点;○2根据零点值给x分段;○3在每一段所属范围内,化简绝对值.例1.化简|x-1|+|x-4|【解析】:零点分别为1和4.○1当x <1时,原式=1-x+4-x=5-2x○2当1≤x≤4时,原式=x-1+4-x=3○3当x >4时,原式=x-1+x-4=2x-55-2x(x <1)|x-1|+|x-4|= 3 (1≤x≤4)2x-5(x >4)题型六:绝对值方程常用公式:若|a|=|b|,则a=b或a=-b步骤:○1根据绝时位内的正员分类,并去绝对值○2解出每一类对应的程○3检验方程的解是符合分类的范围要求例1.解方程:|2x-1|=|x+2|解:2x-1=±(x+2)○1当2x-1=x+2x=3○2当2x-1= -(x+2)2x-1=-x-23x=-1x= -13例2.解方程:|x-1|=2x-5解:x-1=±(2x-5)○1当x-1=2x-5x=4○2当x-1=-(2x-5)x-1= -2x+5X=2题型七:最值问题几何意义:|a-b|表示数轴上,a到b的距离Eg.|x-2|表示数轴上x到2的距离|x+3|表示数轴上x到-3的距离例1.当x在什么范围内|x-1|+|x-3|有最小值,最小值又是多少?【解析】:几何意义x到1的距离与与到3的距离之和○1当x<1时,|x-1|+|x-3|=d1+d2>2○2当1≤x≤3时,|x-1|+|x-3|=d1+d2 = 2○3当x>3时,|x-1|+|x-3|=d1+d2>2总结:|x-a|+|x-b|在a,b之间最小为|a-b|例2.求|x+1|+|x-5|+|x-2|的最小值【解析】:几何意义x到-1,5,2的距离之和当x=2时,最小值为6例3.求|x+2|+|x-1|+|x+4|+|x-7|的最小值.当-2≤x≤1时,最小值为14总结:奇为中间点,偶取中间段题型八:定值问题解题思路:让未知数之间相互抵消,则结果就是一个定值.例1. 若|x -1|+|x -2|+ … +|x -2022|的值为定值,求x 的范围.【解析】:偶数个绝对值相加,要想原式为定值,则一半的式子为x ,后一半式子-x ,这样未知数就都抵消了,所得结果为定值.(x -1)+(x -2)+ … +(x -1011)+(-x+1012)+ … +(-x+2022)这样正好将x 都消掉 解:当20222≤x ≤20222 + 1,即1011≤x ≤1012时,原式为定值例2. 若2a+|4-5a|+|1-3a|的值是一个定值,求a 的取值范围.【解析】:要想原式为定值,就要把a 都给抵消掉原式=2a+4-5a+3a -1解: 4-5a ≥0,1-3a ≤0,即:13≤x ≤45 原式=2a+4-5a+3a -1=3。

相关文档
最新文档