绝对值的十一种常见题型
七年级数学绝对值的十一种常见题型

绝对值的十一种常见题型一、绝对值的意义绝对值的定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.题型一:已知一个数,求该数的绝对值例1、(1)-3.5的绝对值是__;75-的绝对值是_________. (2)=-3 -437-=(3)若4<a ,则=-4a(4)=-π14.3【解】(1)3.5,75;(2)3,437-;(3)a -4(4)14.3-π 例2、计算11111134451920-+-+⋅⋅⋅+-【解】原式6017201-31201-19151-4141-31==+⋯++=题型二:已知一个数的绝对值,求这个数例3、(1)在数轴上距原点4个单位长度的点表示的数是______.(2)若2=a ,则a = .(3)若b a =,且a =-0.5,则b= .(4)绝对值不大于5的的所有整数为 .(5)若)10(--=-m ,则m = .(6)若06=-x ,则x= .(7)若21=-y ,则y= .【解】(1)4±(2)2±(3)5.0±(4)0,5,4,3,2,1±±±±±(5)10±(6)6=x (7)3或-1题型三:已知绝对值的式子,求字母的取值范围例4、(1)若a =a ,则a 是 .(2)若a =-a ,则a 是 .(3)若0≥a ,则a 是 .(4)若0≤a ,则a 是 .(5)若x x -=-44,则x 的取值范围是 .(6)若44-=-y y ,则y 的取值范围是 .【解】(1)非负数(2)非正数(3)全体有理数(4)0 (5)4<x (6)4>y题型四:利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.例5、比较下面各对数的大小(1)-15____-7;(2)-π____-3.14.【解】(1)< (2)<题型五:求字母的值例6、(1)已知2=a ,3=b ,且b a π,求a,b 的值(2)已知4=m ,9=n ,且0φn m +,求m-n 的值【解】(1)因为2=a ,3=b ,所以3,2±=±=b a又因为b a π,所以3,2=-=b a 或者3,2==b a(2)因为4=m ,9=n ,所以9,4±=±=n m又因为0φn m +,所以9,4==n m 或者9,4=-=n m那么13-5或者-=-n m题型六:求数轴上表示两个数的点之间的距离用两个数的差的绝对值表示数轴上表示两个数的点之间的距离 例7、(1)在数轴上表示-3.5和2的点之间的距离是 .(2)在数轴上到表示-1的点的距离是3的数是 .【解】(1)5.5 (2)-4或者2二、绝对值的非负性任何一个数的绝对值都是正数或0,绝对值最小的数是0. 题型七:求最值例8、(1)当a= 时,23+-a 的最小值是(2)当x= 时,x -5的最大值是(3)当m= 时,101-+m 有 (最小值或最大值),是【解】(1)3,2 (2)0,5 (3)-1,最小值,-10题型八:若几个非负数的和为0,则这几个数均为0.例9、(1)已知032=-++b a ,求a,b 的值.(2)若3-x 与2)1(+y 互为相反数,求x,y 的值【解】(1)因为03,02≥-≥+b a ,所以03,02=-=+b a那么3,2=-=b a(2)由题意得()0132=++-y x ,因为()01,032≥+≥-y x 所以1,3-==y x题型九:化简含绝对值符号的式子例10、若z y x <<<0,则化简=--+-z y x 0【解】z y x --例11、已知a 、b 、c 均不为零,求ab c abc a b c abc +++的值.【解】(1)当a 、b 、c 均为正数时,11114;a b c abc a b c abc +++=+++=(2)当a 、b 、c 中,有两个正数,一个负数时,不妨设a 、b 为正,c 为负.11(1)(1)0;a b c abc a b c abc +++=++-+-=(3)当a 、b 、c 中,有一个正数,两个负数时,不妨设a 为正, b 、c 为负.1(1)(1)10;a b c abc a b c abc +++=+-+-+=(4)当a 、b 、c 均为负数时,(1)(1)(1)(1) 4.a b c abc a b c abc +++=-+-+-+-=-因此,原式的值为-4,0,4 .题型十:绝对值的实际应用例12、中学生校园足球争霸赛中,裁判组随机抽取了5个比赛用球进行检验,将超过规定质量的克数记作正数,不足规定质量的克数记作负数,检验结果如下:-10,-7,+8,-2,+5(1)哪一个足球的质量最好?(2)请你用学过的知识进行解释.【解】(1)第四个足球质量最好;(2)绝对值分别是:10,7,8,2,5绝对值越小,误差越小,足球的质量越好.所以第四个足球质量最好,第一个足球质量最次.例13、某煤炭码头将运进煤炭记为正,运出煤炭记为负.某天的记录如下:(单位:t)+100,-80,+300,+160,-200,-180,+80,-160.(1)当天煤炭库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t 的大卡车运送煤炭,每次运费100元,问这一天共需运费多少元?【解】(1)100+(-80)+300+160+(-200)+(-180)+80+(-160)=20t 答:当天煤炭库存增加了20吨.(2)(|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20×100=6300元.题型十一:相反数、绝对值、数轴的综合应用例14、已知a>0,b<0,且b>a,试比较a、a-、b、b-的大小.【解】根据题意画出数轴,如图在数轴上表示a-、b-的点.根据“数轴上的点表示的数,右边的总比左边的大”,可得 b<-a<a<-b。
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)(解析版)

1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)类型一、绝对值的有关概念1.(23-24·吉林延边·阶段练习)在下列数中,绝对值最大的数是()A.0B.1-C.2-D.1【答案】C【分析】本题考查的是绝对值与有理数的大小比较,熟练掌握上述知识点是解题的关键.先计算出各选项的绝对值,再进行大小比较即可.=-=-==,【详解】解:∵|0|0,|1|1,|2|2,|1|1而210>>,∴->-=>,|2||1||1|0故选:C.-,那么a=.2.(23-24七年级上·甘肃定西·阶段练习)如果a的相反数是0.74【答案】0.74【分析】本题主要考查了绝对值和相反数的知识,根据“只有符号不相同的两个数互为相反数;互为相反数3.(23-24七年级上·全国·课后作业)化简下列各数:(1)34--;(2)()0.5-+-⎡⎤⎣⎦;(3)6217⎡⎤⎛⎫-++ ⎪⎢⎥⎝⎭⎣⎦;(4)()2-+.4.(2024·辽宁抚顺·三模)下列各数在数轴上表示的点距离原点最远的是()A .2-B .1-C .3D .05.(23-24七年级上·四川宜宾·期中)若有理数m 在数轴上的位置如图所示,则化简3m m ++结果是.6.(23-24七年级上·四川成都·阶段练习)已知|2||1|6a a ++-=,则=a ;7.(23-24七年级下·河南南阳·期末)已知3535x x -=-,则x 的取值范围是.8.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是()A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数9.(23-24·黑龙江哈尔滨·期中)已知a 为有理数,则24a -+的最小值为.10.(24-25七年级上·全国·随堂练习)比较大小:76-65--.11.(24-25七年级上·全国·假期作业)比较下列各对数的大小:①1-与0.01-;②2--与0;③0.3-与13-;12.(23-24七年级上·湖南怀化·期末)已知下列各数,按要求完成各题:4.5+,142--,0, 2.5-,6,5-,()3+-.(1)负数集合:{......};(2)用“<”把它们连接起来是;(3)画出数轴,并把已知各数表示在数轴上.大于负数,两个负数比较大小绝对值越大其值越小进行求解即可;13.(23-24七年级上·海南省直辖县级单位·期末)如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-14.(23-24·黑龙江哈尔滨·开学考试)已知|3||5|0x y -++=,求||x y +的值.15.(21-22七年级上·陕西·期中)已知(a +2)2+|b ﹣3|=0,c 是最大的负整数,求a 3+a 2bc ﹣12a 的值.二、填空题16.(23-24七年级上·四川南充·阶段练习)若12x <<,求代数式2121x x xx x x---+=.17.(23-24·上海杨浦·期末)12345x x x x x -+-+-+-+-的最小值为.18.(2024七年级下·北京·专题练习)已知112x -<<,化简|||2|3x x ---=.三、解答题19.(24-25七年级上·全国·随堂练习)在数轴上,a ,b ,c 对应的数如图所示,b c =.(1)确定符号:a ______0,b ______0,c _____0,b c +_____0,a c -______0;(2)化简:a c b +-;(3)化简:a a c --.20.(23-24·北京海淀·期中)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.【答案】(1)>,<,>(2)322a c --21.(23-24七年级下·河南周口·阶段练习)求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论的思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了.比如,求解方程:32x -=.解:当30x -≥时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =,所以原方程的解是5x =或1x =.请你依据上面的方法,求解方程:3270x --=,得到的解为.22.(23-24七年级下·甘肃天水·期中)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1:解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2:解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;故答案为:8x =或2x =.(2)2219x ++<(3)123x x -++=,表示到1的点与到2-的点距离和为3,故答案为:21x -£<.23.(24-25七年级上·全国·假期作业)数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示x 和3-的两点之间的距离表示为.(2)若34x +=,则x =.(3)32x x --+最大值为,最小值为.24.(23-24七年级上·四川南充·阶段练习)我们知道,a 可以理解为0a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A ,B ,分别用数a ,b 表示,那么A ,B 两点之间的距离为AB a b =-,反过来,式子a b -的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是_________.(2)数轴上点A 用数a 表示,则①若35a -=,那么a 的值是_________.②36a a -++有最小值,最小值是_________;③求123202*********a a a a a a ++++++++++++ 的最小值.25.(23-24·黑龙江哈尔滨·期中)出租车司机李师傅某日上午一直在某市区一条东西方向的公路上营运,共连续运载八批乘客,若按规定向东为正,李师傅营运八批乘客里程数记录如下(单位:千米):8+,6-,3+,4-,8+,4-,5+,3-.(1)将最后一批乘客送到目的地后,李师傅位于第一批乘客出发地多少千米?(2)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元,不超过5千米则收取起步价,求李师傅在这期间一共收入多少元?26.(23-24·黑龙江哈尔滨·阶段练习)刚刚闭幕的第33届“哈洽会”,于2024年5月16日至21日在哈尔滨市举办,中外宾客齐聚冰城.为确保全市道路交通安全有序,哈尔滨市公安交通管理局在开幕式当日对会展中心周边区域,以及部分道路进行交通管制和诱导分流.萧萧作为哈市青年当日也贡献了自己的一份力量.如图是某一条东西方向直线上的公交线路的部分路段,西起A 站,东至L 站,途中共设12个上下车站点,“哈洽会”开幕式当日,萧萧参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5,3,4,5,8,2,1,3,4,1+-+-+-+--+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次萧萧志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若萧萧开始志愿服务活动时该汽车油量占油箱总量的1170,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?一、单选题1.(22-23七年级上·云南保山·期末)有理数a ,b ,c 在数轴上的位置如图所示,在下列结论中:①0a b ->;②0ab <;③a b a b +=--;④()0b a c ->,正确的个数有()A .4个B .3个C .2个D .1个2.(23-24七年级上·浙江台州·期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0ab >B .4b a ->C .2a b a b +=D .()()230a b +-<3.(23-24七年级上·山东德州·期末)有理数a 、b 、c 在数轴上的位置如图所示,则b a b c a c --+--的化简结果为()A .2c-B .2a C .2b D .22b c+4.(18-19七年级上·北京海淀·期末)如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A .a b +B .a b -C .abD .a b -5.(23-24七年级上·江西抚州·期末)适合|5||3|8a a ++-=的整数a 的值有()A .5个B .7个C .8个D .9个二、填空题6.(23-24七年级上·浙江绍兴·阶段练习)已知a 、b 为整数,202320a b +--=,且b a <,则a 的最小值为.7.(23-24七年级上·湖北省直辖县级单位·阶段练习)若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;8.(23-24七年级上·河南南阳·阶段练习)已知x a b ,,为互不相等的三个有理数,且a b >,若式子||||x a x b -+-的最小值为2,则2023a b +-的值为.三、解答题9.(23-24七年级上·江苏南京·阶段练习)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)15+,3-,13+,11-,10+,12-,4+,15-,16+,19-(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由.10.(23-24七年级下·四川资阳·期末)(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:“2a <”可理解为:;我们定义:形如“x m ≤,≥x m ,x m <,x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.例如:315x x -≤+我们将x 作为一个整体,整理得:315x x -≤+3x ≤再根据绝对值的几何意义:表示数x 在数轴上的对应点到原点的距离不大于3,可得:解集为33x -≤≤仿照上述方法,解下列绝对值不等式:①254x x -<-②1312313x x -+<-.11.(23-24六年级下·黑龙江绥化·期中)数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|3-=;数轴上表示数3和1-的两点距离为|3(1)|4--=;由此可知|63|+的意义可理解为数轴上表示数6和3-这两点的距离;|4|x +的意义可理解为数轴上表示数x 和4-这两点的距离;(1)如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A 的距离与P 到B 的距离之和最小?(2)如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C ,,三点的距离之和最小?(3)如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C D ,,,四点的距离之和最小?(4)①|3||4|x x ++-的最小值是_________,此时x 的范围是_________;②|6||3||2|x x x ++++-的最小值是_________,此时x 的值为_________;③|7||4||2||5|x x x x ++++-+-的最小值是_________,此时x 的范围是_________.(3)①根据(1)的结论即可得出答案;②根据(2)的结论即可得出答案;③根据(3)的结论即可得出答案.【详解】(1)解:当点P 在点A 左边时,2PA PB PA PA AB PA AB +=++=+,当点P 在A 、B 之间时,PA PB AB +=,当点P 点点B 的右边时,2PA PB AB PB PB AB PB +=++=+,∴当点P 在A 、B 之间时,才能使P 到A 的距离与P 到B 的距离之和最小;(2)解:当点P 在点A 左边时,2PA PB PC PA PA AC PB PA PB AC ++=+++=++,当点P 在A 、B 之间时,PA PB PC PB AC ++=+,当点P 在B 点时,PA PB PC AC ++=,当点P 在B C 、之间时,PA PB PC PB AC ++=+,当点P 在点C 的右边时,2PA PB PC PC PB AC ++=++,∴当点P 在B 点时,才能使P 到A B C ,,三点的距离之和最小(3)解:当点P 在点A 左边时,42PA PB PC PD PA AB CB AD +++=+++,当点P 在A 、B 之间时,2PA PB PC PD PB CB AD +++=++,当点P 在B C 、之间时,PA PB PC PD BC AD +++=+,当点P 在C D 、之间时,2PA PB PC PD BC AD PC +++=++,当点P 在点D 的右边时,24PA PB PC PD BC AD DC PD +++=+++,∴当点P 在B C 、之间时,才能使P 到A B C D ,,,四点的距离之和最小;(4)解:①由(1)可得:当34x -≤≤时,有最小值,最小值为()437--=,∴|3||4|x x ++-的最小值7,此时x 的范围是34x -≤≤;②由(2)可得:这是在求点x 到6-,3-,2三点的最小距离,∴当3x =-时,有最小值,最小值为|6||3||2||36||33||32|8x x x ++++-=-++-++--=;③由(3)可得:这是在求点x 到7-,4-,2,5四点的最小距离,∴当42x -≤≤时,由最小值,最小值为|7||4||2||5|742518x x x x x x x x ++++-+-=++++-+-=.12.(23-24七年级上·安徽安庆·期中)有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.13.(23-24七年级上·江西上饶·期中)如图所示,数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2021,点B 、点C 两点间的距离BC 的长是1000.(1)若以点C 为原点,直接写出点A ,B 所对应的数;(2)若原点O 在A ,B 两点之间,求a b b c ++-的值;(3)若O 是原点,且18OB =,求a b c +-的值.【答案】(1)点A 所对应的数a 为3021-,点B 所对应的数b 为1000-(2)3021(3)a b c +-的值为3003-或3039-【分析】本题考查了数轴与绝对值的意义,理解绝对值的意义是解答本题的关键.(1)根据题意先求解AC 的长,结合数轴的定义可求解点A ,B 所对应的数;(2)根据数轴上点的特征可得a<0,0b >,0c >,0b c -<,结合绝对值的性质化简可求解;,14.(22-23七年级上·北京·期中)已知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是______;此时x 的取值范围是______.。
绝对值题型归纳总结

...... .绝对值题型归纳总结一、知识梳理模块一绝对值的基本概念模块二零点分段法(目的:去无围限定的绝对值题型)模块三几何意义...z例题分析题型一 绝对值代数意义及化简【例1】 ⑴ 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =- ⑵ 如果2a >2b ,则 ( )A .a b >B .a >bC .a b <D a <b ⑶ 下列式子中正确的是 ( )A .a a >-B .a a <-C .a a ≤-D .a a ≥- ⑷ 对于1m -,下列结论正确的是 ( )A .1||m m -≥B .1||m m -≤C .1||1m m --≥D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值围.【解析】 ⑴ 选择D .⑵ 选择B .. ..... ... .z⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D .⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤.【变1】 已知:⑴52a b ==,,且a b <;⑵()2120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,,因为22b b ==±,,又因为a b <,所以22a b =-=±,即52a b =-=,或52a b =-=-,⑵由非负性可知12a b =-=,【例2】 设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-=故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2=【例3】 (1)已知1999x =,则2245942237x x x x x -+-++++= .(2)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( )A . 0ab <B . 0ab >C . 0a b +>D . 0a b +<(3)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---. a-ba+b【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>,所以 224594223710819982x x x x x x -+-++++=-+=- 这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想. (2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,从平方的非负性我们知道0ab ≥,且0ab ≠,所以0ab >,则答案A 一定不满足. (3)由图可知01a b <-<,1a b +<-,两式相加可得:20a <,0a <进而可判断出0b <,此时20a b +<,70b -<, 所以227a b a b +---(2)2()(7)7a b a b =-+--+-=-.【变2】 若1998m =-,则22119992299920m m m m +--+++= . 【解析】211999(11)999199819879990m m m m +-=+-=⨯->, 222999(22)999199819769990m m m m ++=+-=⨯+>,故22(11999)(22999)2020000m m m m +--+++=.【变3】 若0.239x =-,求131********x x x x x x -+-++-------的值.【解析】 法1:∵0.239x =-,则原式(1)(3)(1997)(2)(1996)x x x x x x =-------+++++-135199721996x x x x x x x =-+-+-+--+++-++-1(32)(54)(19971996)=+-+-++-111999=+++=法2:由x a b <≤,可得x b x a b a ---=-,则 原式(1)(32)(19971996)x x x x x x =--+---++---111999=+++=【点评】解法二的这种思维方法叫做构造法.这种方法对于显示题目中的关系,简化解题步骤有着重要作用.【例4】 已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y 的最小值为 【解析】 ()()20202040y x b x x b x b x b x =-+--+---=--++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =,y 的最小值为20【例5】 若24513a a a +-+-的值是一个定值,求a 的取值围.【解析】 要想使24513a a a +-+-的值是一个定值,就必须使得450a -≥,且130a -≤,. ..... ... .z原式245(13)3a a a =+---=,即1435a ≤≤时,原式的值永远为3.【例6】 abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 .【解析】 当a b c d e <<<≤时,a b b c c d d e e a -+-+-+-=-,当9e =,1a =时取最大值8当a b c d <<<,且a e >时,2a b b c c d d e d a e -+-+-+-=--,当9d =,1a =,0e =时取得最大值17.所以a b b c c d d e -+-+-+-的最大值是17.【例7】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-. 【解析】 0a a +=,a a =-,0a ≤;ab ab =,0ab ≥;0c c -=,c c =,0c ≥所以可以得到0a <,0b <,0c >;()()()b a b c b a c b a b c b a c b -+--+-=-++----=.【变4】 已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--. 【解析】 ∵a a =-,∴0a ≤,又∵0b <,∴240a b +<,∴24(24)2(2)a b a b a b +=-+=-+,∴22242(2)2(2)(2)2a b a b a b a b a b+-+-==+++又∵20a b +<,∴4442(2)2a b a b a b-=-=+-++ 又∵230a -<,∴2222143(23)242424323b a a b a b a b b a -=-=-==++-++++--∴原式24132222a b a b a b a b=-++=++++ 题型二 关于a a的探讨应用【例8】 已知a 是非零有理数,求2323a a a a a a++的值.【解析】 若0a >,那么23231113a a a a a a ++=++=;若0a <,那么23231111a a a a a a++=-+-=-.【例9】 已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值 【解析】 因为a b c ,,是非零有理数,且0a b c ++=,所以a b c ,,中必有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abca b c abc=+++=+-+-+=-- 【解析】【变5】 三个数a ,b ,c 的积为负数,和为正数,且ab ac bc a b c x a b c ab ac bc=+++++, 求321ax bx cx +++的值.【解析】 a ,b ,c 中必为一负两正,不妨设0a <,则0,0b c >>; 1111110ab ac bca b c x a b c ab ac bc=+++++=-++--+=,所以原式=1.【变6】 a ,b ,c 为非零有理数,且0a b c ++=,则a b b c c a a bb cc a++的值等于多少?【解析】 由0a b c ++=可知a ,b ,c 里存在两正一负或者一正两负;a b b c c a b c aa b c a bb cc aa b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a ⋅+⋅+⋅=--=-. 综上所得1a b b c c a a bb cc a++=-.【变7】 如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭值等于( )A .1B .1-C .0D .3【解析】 易知200220022002111a b c a b c ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,,,所以原式1=,故选择A【例10】 如果20a b +=,求12a ab b-+-的值. 【解析】 由20a b +=得2b a =-,进而有1222a a a a b a a a ===⋅--⋅,122a a ab a a==-⋅-. ..... .. . .z若0a >,则111212322a a b b -+-=-+--=, 若0a <,则111212322a ab b -+-=--+-=.【例11】 设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b cx a b c =++,111111()()()y a b c b c a c a b=+++++,那么代数式23x y xy ++的值为______.【解析】 由0a b c ++=及0abc >,知实数a ,b ,c 中必有两个负数,一个正数,从而有1x =-.又111111()()()y a b c b c a c a b =+++++=3a b ca b c ---++=-,则231692x y xy ++=--+=.【例12】 有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式20042007x x -+的值为多少?【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b c x b c a c a b=-++=-+++,所以1x =,所以原式2004=【变8】 有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式19992000x x -+的值为多少?【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b cx b c a c a b=-++=-+++,所以当1x =时,原式1902= 当1x =-时,原式2098=【变9】 已知a 、b 、c 互不相等,求()()()()()()()()()()()()a b b c b c c a c a a b a b b c b c c a c a a b ------++------的值.【解析】 由题意可得()()()0a b b c c a ---≠且()()()0a b b c c a -+-+-=,把a b -,b c -,c a-当成整体分类讨论:① 两正一负,原式值为1-;② 两负一正,原式值为1-.【例13】 若有理数m 、n 、p 满足1m n p mnp++=,求23mnpmnp的值. 【解析】 由1m n p mnp++=可得:有理数m 、n 、p 中两正一负,所以0mnp <,所以1mnpmnp=-,222333mnp mnp mnp mnp =⋅=-.【变10】 有理数a ,b ,c ,d 满足1abcd abcd=-,求a b c d a b c d+++的值.【解析】由1abcd abcd=-知0abcd <,所以a ,b ,c ,d 里含有1个负数或3个负数:若含有1个负数,则2a b c d a b c d+++=;若含有3个负数,则2a b c d a b c d+++=-.题型三 零点分段讨论法【例14】 化简523x x ++-.【解析】 先找零点.50x +=,5x =- ; 32302x x -==,,零点可以将数轴分成三段. 当32x ≥,50x +>,230x -≥,52332x x x ++-=+;当352x -<≤,50x +≥,230x -<,5238x x x ++-=-; 当5x <-,50x +<,230x -<,52332x x x ++-=--.【变11】 化简:121x x --++.【解析】 先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.. ..... .. . .z【变12】 求12m m m +-+-的值.【解析】 先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+;当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.【例15】 已知2x ≤,求32x x --+的最大值与最小值.【解析】 法1:根据几何意义可以得到,当2x ≤-时,取最大值为5;当2x =时,取最小值为3-.法2:找到零点3、2-,结合2x ≤可以分为以下两段进行分析: 当22x -≤≤时,323212x x x x x --+=---=-,有最值3-和5;当2x <-时,32325x x x x --+=-++=;综上可得最小值为3-,最大值为5. 【变13】 已知04a ≤≤,那么23a a -+-的最大值等于 . 【解析】 (法1):我们可以利用零点,将a 的围分为3段,分类讨论(先将此分类讨论的方法,而后讲几何意义的方法,让学生体会几何方法的优越性) (1)当02a ≤≤时,2352a a a -+-=-,当0a =时达到最大值5; (2)当23a <≤时,231a a -+-=(3)当34a <≤时,2325a a a -+-=-,当4a =时,达到最大值3 综合可知,在04a ≤≤上,23a a -+-的最大值为5(法2):我们可以利用零点,将a 的围分为3段,利用绝对值得几何意义分类讨论,很容易发现答案:当0a =时达到最大值5.【变14】 如果122y x x x =+-+-,且12x -≤≤,求y 的最大值和最小值 【解析】 当10x -<≤时,有12223y x x x x =+-+-=+,所以13y <≤;当02x ≤≤时,有12232y x x x x =+-+-=-,所以13y -≤≤综上所述,y 的最大值为3,最小值为1-题型四绝对值非负性【例16】 若7322102m n p ++-+-=,则23_______p n m +=+. 【解析】 3m =-,72n =,12p =,3232p n m +=-+. 【变15】 已知a 、b 、c 都是负数,并且0x a y b z c -+-+-=,则 0xyz . 【解析】 根据绝对值的非负性可知x a =,x b =,z c =,所以0xyz abc =<. 【变16】 已知非零实数a 、b 、c 满足a b c ++()2420a b c +-+=,那么a bb c+=- 【解析】 由非负性可得到0a b c ++=①,且420a b c -+=②,①+②得到530a c +=,所以35a c =-,代入①可得到:25b c =-.所以32555275c ca b b c c c --+==---. 【例17】 已知a为实数,且满足200a a -=,求2200a -的值【解析】 由题意可知:201a ≥,所以可得200a a -,即200=,所以2201200a -=,所以原式的值为201【变17】a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = . 【解析】 因为|1|1b b ++≥,而完全平方式非负,所以20a b -=,且1b +非负.又因为|3|0a b +-=,所以30a b +-=,观察可知2a =,1b =,所以2ab =.【例18】 若a 、b 、c 为整数,且19951a bc a-+-=,求c a a b b c -+-+-的值.【解析】 法一:根据题意:19a b -,95c a -为非负整数, 分类讨论:①若0a b -=,1c a -=,则1b c a c -=-=,此时原式=2; ②若1a b -=,0c a -=,则1b c b a -=-=,此时原式=2.法二:从总体考虑,a b -、c a -一个为0,一个为1,也就是a 、b 、c 有两个相同,另一个和他们相差1.故三者两两取差的绝对值应该有2个1和1个0,所以2c a a b b c -+-+-=.. ..... ... .z【例19】 求满足1ab a b ++=的所有整数对()a b ,【解析】 因为1ab a b ++=,且00ab a b +≥,≥,a b ,均为整数所以可得01ab a b ⎧=⎪⎨+=⎪⎩⑴或者10ab a b ⎧=⎪⎨+=⎪⎩⑵,由⑴可得01ab a b =⎧⎨+=⎩或01ab a b =⎧⎨+=-⎩又因为a b ,均为整数,所以3124123400111010a a a a b b b b ====-⎧⎧⎧⎧⎨⎨⎨⎨===-=⎩⎩⎩⎩,,, 由⑵得10ab a b =⎧⎨+=⎩或10ab a b =-⎧⎨+=⎩,所以56561111a a b b ==-⎧⎧⎨⎨=-=⎩⎩, 综上可得:共有6对,分别是:()()()()()()011001101111----,,,,,,,,,,,【变18】 若,,x y z 为整数,且20032003||||1x y z x -+-=,则||||||z x x y y z -+-+-的值是多少?【解析】 2003||0,||0x y x y -≥-≥,同理2003||0z x -≥,所以一个为0,一个为1,也就是说,,x y z 有两个相同,另一个和他们相差1.故三者两两取差的绝对值应该有2个1和1个0,所以||||||z x x y y z -+-+-=2. 当然也可以分类讨论,更利于学生接受.【例20】 设a 、b 是有理数,则9a b ++有最小值还是最大值?其值是多少? 【解析】 根据绝对值的非负性可以知道0a b +≥,则99a b ++≥,有最小值9.教师可在此多多拓展形式!【变19】 代数式24()a b -+最大值为 ,取最大值时,a 与b 的关系是____________ 【解析】 4,互为相反数; 【例21】 已知210ab a +++=,求()()()()()()111...112219941994a b a b a b +++-+-+-+的值【解析】 由210ab a +++=得12a b =-=,所以()()()()()()111...112219941994a b a b a b +++-+-+-+111 (233419951996)=----⨯⨯⨯9971996=-【例22】 若3x y -+与1999x y +-互为相反数,求2x yx y+-的值 【解析】 根据相反数的意义,我们可以知道:319990x y x y -+++-=所以必然有30x y -+=且19990x y +-=, 解方程组可得: 19991001x y y +==,所以原式21999100110003x y x y y x y x y ++++====---- 利用绝对值几何意义求两点间距离a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例23】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴x 的几何意义是数轴上表示 的点与 之间的距离;->,=,<); ⑵21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;⑶3x -几何意义是数轴上表示 的点与表示 的点之间距离,若31x -=,则x = .⑷2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x =⑸当1x =-时,则22x x -++= .:【解析】 ⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,2-,0或4-;⑸4【变20】 (1)如图表示数轴上四个点的位置关系,且它们表示的数分别为p ,q ,r ,s .若10p r -=,12p s -=,9q s -=,sr qp. ..... .. . .z则q r -= .(2)不相等的有理数,,a b c 在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么点A ,B ,C 在数轴上的位置关系是( )A .点A 在点B ,C 之间 B .点B 在点A ,C 之间 C .点C 在点A ,B 之间D .以上三种情况均有可能【解析】 (1)7;(2)B【变21】 (1)阅读下面材料:点A 、B 在数轴上分别表示的数是a 、b ,A 、B 两点之间的距离表示为AB ,特别地,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如 图1,则0AB OB b a b ==-=-;当A 、B 两点都不在原点时:如图2,点A 、B 都 在原点的右边,AB OB OA b a b a a b =-=-=-=-;如图3,点A 、B 都在原点 的左边,()AB OB OA b a b a a b a b =-=-=---=-=-.如图4,点A 、B 在原点 的两边,AB OA OB a b a b a b =+=+=-=-。
绝对值的题型归类

绝对值的题型归类摘要:1.绝对值的概念与性质2.绝对值的题型分类3.绝对值题型的解题方法与技巧正文:绝对值是数学中一个非常重要的概念,它表示一个数到0 的距离,因此绝对值永远是非负的。
在数学题目中,绝对值常常出现在各种题型中,下面我们来详细探讨一下绝对值的题型归类。
首先,我们来了解一下绝对值的概念与性质。
绝对值表示一个数到0 的距离,因此,对于任意实数x,其绝对值表示为|x|,可以表示为x(当x≥0 时),或者-x(当x<0 时)。
绝对值的性质包括:|x|≥0,|-x|=|x|,|x+y|=|x|+|y|,|x-y|=|x|+|y|等等。
接下来,我们来看一下绝对值的题型分类。
根据题目的难度和考察方向,我们可以将绝对值题型大致分为以下几类:1.求绝对值:这类题目要求我们计算一个数的绝对值,通常比较简单,直接根据绝对值的定义计算即可。
2.解绝对值方程:这类题目要求我们解包含绝对值的方程,需要根据绝对值的性质进行转化,通常会涉及到分段讨论。
3.绝对值不等式:这类题目要求我们解包含绝对值的不等式,也需要根据绝对值的性质进行转化,可能会涉及到分段讨论和绝对值三角不等式。
4.绝对值与函数:这类题目将绝对值与函数结合起来,要求我们求解包含绝对值的函数的性质,如单调性、最值等,需要运用到函数的性质和绝对值的性质。
针对以上各类题型,我们需要掌握不同的解题方法与技巧。
对于求绝对值和解绝对值方程,我们需要熟悉绝对值的定义和性质,直接计算或者转化即可。
对于绝对值不等式,我们需要掌握绝对值三角不等式,进行分段讨论,注意不等式的方向。
对于绝对值与函数,我们需要将绝对值函数转化为分段函数,然后运用函数的性质进行求解。
绝对值题型分类专项

绝对值一、绝对值意义1.a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则a2>b2D.若a2>b2,则a>b2.下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数3.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或﹣4D.x=﹣34.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.15.下列说法中,正确的是()A.若a>|b|,则a>b B.若a≠b,则a2≠b2C.若|a|=|b|,则a=b D.若|a|>|b|,则a>b6.下列有理数中,比0小的数是()A.﹣2B.1C.2D.37.|﹣3|的值是()A.±3B.﹣3C.3D.8.在0,﹣,﹣,0.05这四个数中,最大的数是()A.0B.﹣C.﹣D.0.059.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|10.在数轴上表示下列四个数中,在0和﹣1之间的数是()A.﹣1B.﹣C.D.111.下列各数中最大的负数是()A.﹣B.﹣C.﹣1D.﹣312.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.113.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和114.下列结论成立的是()A.若|a|=a,则a>0B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0D.若|a|>|b|,则a>b.15.大于﹣1且小于等于2的正数有个.16.比较大小:﹣﹣.17.用“<”或“>”填空:31082144.18.写出一个比﹣2小的有理数:.19.比较大小:﹣﹣3(填“>”“<”或“=”)20..已知|x|=3,|y|=7,且xy<0,则x+y的值等于.21..若|m|=m+1,则(4m+1)2019=.22..数轴上顺次有不重合的A,B,C三点,若A,B,C三点对应的数分别为a,﹣1,b,试比较大小:(a+1)(b+1)0(填“>”或“<”或“=”)23..如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.24.若|﹣m|=2018,则m=.二、绝对值的非负性1.数﹣是()A.正数B.负数C.负数或零D.正数或零2.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.13.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|4.已知实数a、b、c满足a+b+c=0,abc<0,x=++,则x2019的值为()A.1B.﹣1C.32019D.﹣320195.若|﹣x|=4,则x═;若|x﹣3|=0,则x=;若|x﹣3|=1,则x=.6.|﹣2020|=.7.下列四组有理数的比较大小:①﹣1<﹣2,②﹣(﹣1)>﹣(﹣2),③+(﹣)<﹣|﹣|,④|﹣|<|﹣|,正确的序号是.8.3的相反数与﹣2的绝对值的和为.9.已知|x|=3,|y|=7,且xy<0,则x+y的值等于.10.若|﹣m|=2018,则m=.11.若|a|=﹣a,则a的取值范围是.12.若|m|=3,|n|=2且m>n,则2m﹣n=.13.若x>0,y<0,且|x|<|y|,用“<”把x,﹣x,y,﹣y连接起来:.14.已知|a﹣1|=5,|b|=4,且a+b=|a|+|b|,则a﹣b=.15.已知整数a,b满足|a﹣3|﹣|b﹣8|=0,则|a+b|的值为.16.若|m|=m+1,则(4m+1)2019=.17.已知a,m,n均为有理数,且满足|a﹣m|=6,|n﹣a|=4,那么|m﹣n|的最大值为.18.若|﹣a|=3,则a的相反数是.19.若|x|=5,|y|=9,则x+y=,x﹣y=.三、化简问题1.如果|a|=4,|b|=2,且|a+b|=a+b,则a﹣b的值是.2.有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.3.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=.4.化简|π﹣4|+|3﹣π|=.5.如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为.6.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.7.如图所示,化简|a﹣c|+|a﹣b|+|c|=.8.若|a|=|﹣2|,那么a=.9.当y满足时,|y﹣3|=3﹣y成立.10.已知|﹣x|=|﹣8|,x=.11.写出一个x值,使|x﹣2|=x﹣2,你写出的x值为.12.如果a•b<0,那么=.13.若|a|=﹣a,则a是;若|x|=|﹣5|,则x=.14.若有理数a、b满足ab>0,则+=.15.若m,n都是不为零的有理数,那么+的值是.16.若a,b都是不为零的有理数,那么+的值是.四、数轴动点问题1.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.2.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M 对应的数.3.已知A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为﹣1,点B表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点;(2)如图2,若数轴上M、N两点表示的数分别为﹣2和4,①若(M,N)的奇异点K在M、N两点之间,则K点表示的数是;②若(M,N)的奇异点K在点N的右侧,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为﹣20和40,现有一点P从点B出发,向左运动.若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?4.如图所示,在数轴上点A表示的有理数为﹣6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)当点P表示的有理数与原点的距离是a个单位长度时(其中0<a<4),直接写出所有满足条件的t值(用含a的代数式表示).5.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?6.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是.7.已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?8.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣2x+1(1)求3*2的值;(2)对于任意两个有理数x,y,是否都有x*y=y*x成立?如果成立,请证明,如果不成立,请举反例说明;(3)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是1*(﹣9),点C在数轴上表示的数是(﹣8)*.若线段AB以6个单位长度每秒的速度向右匀速运动,同时线段CD以2个单位长度每秒的速度向左匀速运动.问运动多少秒时,BC=8(单位长度)?此时点B在数轴上表示的数是多少.9.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.10.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.。
绝对值专项练习60题(有答案)8页

绝对值专项练习60题(有答案)8页1.正确的说法是:C。
整数分数统称有理数。
2.点所表示的数是1,因为距离-2有3个单位长度的点只有-5和1.3.| -4 | =4.4.x的值是-3,y的值可以是5或-5,所以x+y的值可以是2或-8.5.a的取值范围是a ≤ 0.6.点A到原点的距离是|a|。
7.这四个数中,负数的个数是2个,因为- a和-a + |a|是负数。
8.在-2,-| -7 |,-| +3 |中,负数有2个。
9.点B表示的数是-1,因为A和C表示的数的绝对值相等,所以它们的距离原点的距离相等,B表示的数是它们的中点,即-1.10.任何一个有理数的绝对值在数轴上的位置是整个数轴。
11.|a| ≥ |b|。
12.在数轴上表示x的点与原点的距离是3,所以它可以是3或-3.13.数a在数轴上的点应是在原点或原点的左侧,因为|a| = -a。
14.下列判断错误的是B。
一个负数的绝对值一定是正数,因为一个负数的绝对值是它的相反数,即正数。
15.下列判断正确的是B。
|a|一定是正数。
16.a>|a-b|>b。
17.a-b的值可以是3或-13,因为a和b的值不确定。
18.正确的说法是C和D,即若|a|=|b|,则a与b互为相反数;若一个数小于它的绝对值,则这个数为负数。
19.正确的选项是C,即非负数。
20.正确的选项是D,即3或-1.21.正确的选项是B,即1+a>a>1-b。
22.正确的选项是B,即负数。
23.正确的选项是A,即a>0.24.正确的选项是C,即6或-4.25.正确的选项是A,即若|a|=|b|,则a=b。
26.正确的选项是D,即2或4.27.化简结果为B,即-1.28.有无穷多个绝对值等于它本身的数。
29.正确的图形是B。
30.正确的选项是B,即b同号或其中至少一个为零。
31.正确的选项是D,即-7或1.32.正确的选项是A,即1.33.正确的选项是C,XXXm<n<0,则|m|>|n|。
七年级绝对值压轴题

七年级绝对值压轴题一、绝对值压轴题。
1. 已知| a - 2|+| b + 3| = 0,求a + b的值。
- 解析:因为绝对值一定是非负的,要使两个非负的数相加等于0,则每一项都必须为0。
- 即| a - 2|=0,解得a = 2;| b+3| = 0,解得b=-3。
- 所以a + b=2+( - 3)=-1。
2. 若| x|=3,| y| = 5,且x>y,求x + y的值。
- 解析:- 因为| x| = 3,所以x=±3;因为| y|=5,所以y = ±5。
- 又因为x>y,当x = 3时,y=-5,此时x + y=3+( - 5)=-2;当x=-3时,y=-5,此时x + y=-3+( - 5)=-8。
3. 化简| x - 1|-| x - 3|,(x<1)- 解析:- 当x<1时,x - 1<0,x - 3<0。
- 则| x - 1|=1 - x,| x - 3|=3 - x。
- 所以| x - 1|-| x - 3|=(1 - x)-(3 - x)=1 - x - 3+x=-2。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(| a +b|)/(2m^2+1)+4m - 3cd的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。
- 当m = 2时,(| a + b|)/(2m^2+1)+4m-3cd=(0)/(2×2^2 + 1)+4×2-3×1=0 + 8 -3=5;- 当m=-2时,(| a + b|)/(2m^2+1)+4m - 3cd=(0)/(2×(-2)^2+1)+4×(-2)-3×1=0-8 - 3=-11。
5. 若| a|=5,| b| = 3,且| a - b|=b - a,求a + b的值。
初一第一章的《绝对值》的几个难题(答案)

初一第一章的《绝对值》的几个难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
2、若a 、b 为整数,且200820081a b c a -+-=;试求:c a a b b c -+-+-的值。
3、解方程:2218x x -+-=。
4、已知:关于x 的方程1x ax -=,同时有一个正根和一个负根,求整数a 的值。
5、已知:a 、b 、c 是非零有理数,且a +b +c =0;求:a b c abc a b c abc+++。
6、设abcde 是一个五位数,其中a 、b 、c 、d 、e 是阿拉伯数字,且a <b 〈c 〈d ,试求y a b b c c d d e =-+-+-+-的最大值。
7、求关于x 的方程21(01)x a a --=<<所有解的和.8、若1x 、2x 都满足条件:21234x x -++=且12x x <,则12x x -的取值范围是 .9、已知:(12)(21)(31)36x x y y z z ++--++-++=;求:x +2y +3z 的最大值和最小值。
10、解方程: ①314x x -+=; ②311x x x +--=+; ③134x x ++-=。
初一第一章的《绝对值》的几个难题(的解答):知识点:1、绝对值的定义:表示一个数的点到原点的距离就叫做这个数的绝对值。
2、绝对值的代数意义:(0)(0)a a a a a ≥⎧=⎨-<⎩ 3、绝对值的基本性质: ①非负性:0a ≥; ②ab a b =; ③(0)a a b b b =≠; ④22a a =; ⑤a b a b a b -≤+≤+; ⑥a b a b a b -≤-≤+。
难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的十一种常见题型
一、绝对值的意义
绝对值的定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
题型一:已知一个数,求该数的绝对值
例1、(1) -3.5的绝对值是 ;-
75的绝对值是 。
(2)|-3|= -|4
37-|= (3)若a<4,则|a-4|= (4)|3.14-π|=
例2、计算|4131-|+|5141-|+…+|20
1191-|
题型二:已知一个数的绝对值,求这个数
例2、(1)在数轴上距原点4个单位长度的点表示的数是 ;
(2)若|a |=2,则a= ;
(3)若|a |=b ,且a=-0.5,则b= ;
(4)绝对值不大于5的的所有整数为 ;
(5)若|-m |=-(-10),则m=
(6)若|x-6|=0,则x= ;
(7)若|y-1|=2,则y= 。
题型三:已知绝对值的式子,求字母的取值范围
例4、(1)若|a |=a ,则a 是 ;
(2)若|a |=-a ,则a 是 ;
(3)若|a |≥0,则a 是 ;
(4)若|a |≤0,则a 是 ;
(5)若|x-4|=4-x ,则x 的取值范围是 ;
(6)若|y-4|=y-4,则y 的取值范围是 。
题型四:利用绝对值比较两个负数的大小
两个负数比较大小,绝对值大的反而小.
例5、比较下面各对数的大小
(1)-15 -7;
(2)-π -3.14.
题型五:求字母的值
例6、(1)已知|a |=2,|b |=3,且a<b ,求a,b 的值。
(2)已知|m |=4,|n |=9,且m+n>0,求m-n 的值。
题型六:求数轴上表示两个数的点之间的距离
用两个数的差的绝对值表示数轴上表示两个数的点之间的距离。
例7、(1)在数轴上表示-3.5和2的点之间的距离是 ;
(2)在数轴上到表示-1的点的距离是3的数是 ;
二、绝对值的非负性
任何一个数的绝对值都是正数或0,绝对值最小的数是0.
题型七:求最值
例8、(1)当a=__时,|a-3|+2的最小值是 ;
(2) 当x= 时,5-|x |的最大值是 ;
(3) 当m=__时,|m+1|-10有 (最小值或最大值),是 。
题型八:若几个非负数的和为0,则这几个数均为0.
例9、(1)已知|a +2|+|b-3|=0,求a,b 的值。
(2)若|x-3|与(y+1)2互为相反数,求x,y 的值。
题型九:化简含绝对值符号的式子
例10、若x<y<0<z ,则化简-|x |+|y |-|0|-|z |= 。
例11、已知a 、b 、c 均不为零,求
abc abc c c b b a a +++的值.
题型十:绝对值的实际应用
例12、中学生校园足球争霸赛中,裁判组随机抽取了5个比赛用球进行检验,将超过规定质量的克数记作正数,不足规定质量的克数记作负数,检验结果如下:-10,-7,+8,-2,+5
(1)哪一个足球的质量最好?
(2)请你用学过的知识进行解释。
例13、某煤炭码头将运进煤炭记为正,运出煤炭记为负。
某天的记录如下:(单位:t)+100,-80,+300,+160,-200,-180,+80,-160。
(1)当天煤炭库存是增加了还是减少了?增加或减少了多少吨?
(2)码头用载重量为20 t 的大卡车运送煤炭,每次运费100元,问这一天共需运费多少元? 题型十一:相反数、绝对值、数轴的综合应用
例14、已知a>0,b<0,且b>a ,试比较a 、-a 、b 、-b 的大小。