(情绪管理方法)压力容器的开孔与补强
压力容器开孔补强设计

内径Di≤1500mm时,开孔最大直径d≤
,且d≤520mm;
内径Di>1500mm时,开孔最大直径d≤
,且d≤1000mm。
*
中心处的锥壳内直径。
b. 凸形封头或球壳上开孔最大直径d≤
。
c. 锥壳(或锥形封头)上开孔最大直径d≤
,Di为开孔
d. 在椭圆形或碟形封头过渡部分开孔时,其孔的中心线宜垂直 于封头表面。
4.3.5 开孔和开孔补强设计
4.3.5 开孔和开孔补强设计
补强材料一般需与壳体材料相同,若补强材料许用应力小于壳体材料许用应力,则补强面积按壳体材料与补强材料许用应力之比而增加。若补强材料许用应力大于壳体材料许用应力,则所需补强面积不得减少。
要求:
孔周边会出现较大的局部应力,采用分析 设计标准中规定的方法和压力面积法等方 法进行分析计算。
表4-14 不另行补强的接管最小厚度 mm
6.0
5.0
4.0
3.5
89
76
65
57
48
45
38
32
25
接管公称外径
最小厚度
*
四、等面积补强计算
GB150对开孔最大直径的限制:
主要用于补强圈结构的补强计算。
基本原则:
使有效补强的金属面积,等于或大于开孔 所削弱的金属面积。
(1)允许开孔的范围
图4-37 (b)厚壁接管补强
高强度低合金钢制压力容器由于材料缺口敏感性较高,一般都采用该结构,但必须保证焊缝全熔透。
应用
4.3.5 开孔和开孔补强设计
*
过程设备设计
厚壁接管补强
开孔和开孔补强设计
过程设备设计
压力容器的开孔与补强

压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
压力容器的开孔与补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
浅谈压力容器的开孔补强设计

浅谈压力容器的开孔补强设计摘要:笔者通过对新版GB150.1~4-2011的宣贯学习,由于此次标准更新内容多,修订的内容宽,许多内容的修订都紧跟时代步伐,一些新思想、新理念、新技术、新材料的应用,使得新版GB150更具有鲜明的特色,同时也借鉴了ASME、EN等标准的一些先进的设计理念,可以说是融会贯通,更好的以实践为准则。
本文主要就压力容器的开孔补强设计展开探讨。
关键词:压力容器新版GB150开孔补强设计一、压力容器的开孔补强设计在压力容器壳体和平盖上,因开孔接管处几何不连续,容器强度受到削弱,接管与主壳相贯处应力集中,内压下产生较大的局部应力,再加上接管上会有各种附加载荷产生的应力、温差应力以及容器材质和制造缺陷等因素的综合作用,往往成为容器破坏的原发部位,需要对开孔接管处进行开孔补强,因此开孔补强是压力容器设计中的一项重要内容。
具体对压力容器的开孔补强设计方案主要包括以下四种:1.不另行补强GB150.3-2011中6.1.3规定壳体开孔不另行补强需满足以下条件:1.1设计压力p≤2.5MPa;1.2两相邻开孔中心的间隙应不小于两孔直径之和;对于3个或3个以上相邻开孔,任意两孔中心的间距应不小于该两孔直径之和的2.5倍;1.3接管外径小于或等于89mm;1.4接管厚度满足GB150.3-2011表6-1的要求,表中接管壁厚的腐蚀裕量为1mm,需要加大腐蚀裕量时,应相应增加壁厚;1.5开孔不得位于A、B类焊接接头上;1.6钢材的标准抗拉强度下限值大于等于540 MPa时,接管与壳体的连接宜采用全焊透的结构型式。
此外,笔者还想补充一种不另行补强的情况:当设备壳体有效厚度大于等于其计算厚度的2倍时,壳体开孔补强也是可以免除计算的。
此种方案的提出是用等面积补强法来推导出来的,大多出现在操作条件不苛刻的换热器设计当中,此时为了保证设备的刚性对壳体的最小厚度进行了要求,而此最小厚度有时会大于壳体的计算厚度一倍甚至更多。
浅论压力容器中的开孔补强设计

浅论压力容器中的开孔补强设计压力容器在其设计中,为了将自身的使用功能进行最大化的发挥,需进行适当的开孔处理。
但是不可否认的是,开孔处理将会对容器造成一定的损伤,对其牢固度将会形成一定的不利影响,针对此类问题的出现,相应的补强设计便是对其所带来的不利影响进行较为科学妥善的处理。
1 开孔补强设计的重要性在进行压力容器设计时,开孔处理操作极为常见。
在通过状况之下,开孔处理主要是为后期的接管安装提供便利,对容器的功能性需求予以满足。
有时为了对整个压力容器进行全面维修、养护、调试,也需进行开孔处理。
而开孔处理会对整个容器的内部结构及其使用性能产生一定的不利影响,通常会使得容器整体的抗压性遭到削弱。
此种情况出现的主要原因为:在开孔处理后,压力容器内部存在的应力出现了断层差异。
而在开孔处进行接管,也会使得容器内部出现受力不均的状况。
另外大部分的压力容器应用于一些温度、压力均高的环境之下,应力、受力不均问题更为突出,再加上受到一些容器材料等多种因素的影响,整个容器性能将会受到极大的损害。
在容器的应用工作中,其工作质量、效率也较差。
所以,在对相关设计规范内容充分理解、遵守的前提之下,对容器进行开孔补强设计极为重要。
2 开孔补强设计在压力容器设计中的应用2.1 补强圈补强设计的应用在开孔补强处理中,局部补强方式应用较多,其中补强圈补强设计应用范围较广。
补强圈补强主要是指在压力容器壁上进行补强板的焊接处理,从而帮助进一步增强整个容器板的金属厚度,促使其开孔边缘强度得以增强,最终达到补强目的。
在补强圈补强方式应用中,有两点问题需着重关注:第一,补强板的设计厚度需严格要求。
一般情况下,补强板的厚度值与整个容器的开孔名义厚度值相比,应不超过其1.5倍。
大量的实践结果表明,如果补强板的厚度值大于开孔名义厚度的1.5倍,那么在进行焊接处理时,极易因为厚度过大而增大器焊接角,最终导致出现不连续应力过大的问题。
另外,在进行补强圈补强设计时,补强板材料需具有极强的塑性、延伸性,且其钢材的屈服强度在常温环境下应保持在400MPa范围内。
压力容器常用开孔补强方法对比分析

压力容器常用开孔补强方法的比较分析压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。
压力容器开孔补强一般有两种计算方法:一是等面积法,二是分析方法。
本文对这两种方法作以比较和分析。
<b> 在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。
容器开孔后,一方面由于器壁承受载荷截面被削弱,导致局部应力增加,容器承载能力减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。
因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。
开口加固的基本原理2.1.等面积法该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,并以加固壳体的一次总平均应力作为加固原则。
当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而和还产生很高的弯曲应力。
等面积法开口加固结构形成的应力集中在某一区域,当离孔边缘的距离越大,越接近薄膜应力。
它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。
2.2.分析方法这种加固方法基于壳体的极限分析,相对等面积法合理得多,但须受开孔壳体和补强接管的尺寸限制。
这种方法优点是:克服等面积法的缺点,在转角处采用圆滑过渡,减少结构形状的突变,减小应力集中程度。
将补强面积集中在应力最高点,充分利用补强面积,使补强更经济、合理。
比较分析3.1.等面积法等面积法顾名思义:壳体截面的承载强度因开口而减弱的区域,须有补强材料予以等面积补偿,其实质是壳体截面因开孔丧失的强度,即被削弱的“强度面积”A乘以壳体材料在设计温度下的许用应力[σ]<font size="2">t,即A[σ]<font size="2">t,应由补强材料予以补偿,当补强材料与壳体材料相同时,则补强面积就等于削弱的面积,故称等面积法。
2020年压力容器的开孔与补强

(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
压力容器壳体的开孔与补强

压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(情绪管理方法)压力容器的开孔与补强第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中;(2) 开孔补强的原则、补强结构和补强计算;(3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是:✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫⎝⎛-=θστθσσσθσσσσθθ2sin32142cos3141432cos34122312422214212242222122rarararararararr(3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r1r3r=a,=0,=(-con2),=02θθσσθστ。
但是在孔边=2πθ±处θσ最大,孔边处径向截面处的应力集中系数K t=2.5。
而在另一个截面,即轴向截面的孔边r=a,π处的最大应力1=0.5θσσ,此处应力系数K t=0.5,比径向截面的应力集中系数小得多。
其他情况,例如开椭圆孔以及排孔等情况详见国标规定。
针对开孔部位的壳体或者封头壁厚为δ,直径为D,开孔的孔径为d时,在接管根部开孔边缘处的应力集中现象呈现如下的特点:➢最大应力在孔边,是应力集中最严重的地方;➢应力集中具有局部性,其范围也是极为有限的;➢应力集中的情况和开孔的孔径与直径的相对尺寸d/D成正比,开孔不宜过大;➢应力集中和D/δ成反比;所以增大开孔四周壳体的壁厚,则可以极大改善应力集中的情况,因此在开孔周围一定的范围内,采用焊接补强圈的方法。
➢球壳上开孔的应力集中系数稍低于通体上开孔的应力集中系数;因此在可能的情况下,在封头上开孔,优于在壳体上开孔。
5、应力集中对容器安全的影响➢接管和壳体均为具有良好塑性的材料制成,如果容器内介质压力平稳,对容器的安全使用不会有太大的影响;➢如果容器内有较大的压力波动,则应力集中区的金属在交变的高应力作用下会出现反复的塑性变形,导致材料硬化,并产生疲劳破坏。
应力集中是产生疲劳破坏的根源。
6、开孔并带有接管时的应力集中系数以上讨论的是仅在壳体上开孔,但是在实际中通常是还在开孔处有接管,开孔处因为接管与壳体在内压作用下发生变形协调而导致不连续应力出现。
例如球壳与圆管的连接如下图所示。
因此接管对开孔边缘处的应力集中影响也需要考虑。
Fig. 4 Deformation and internal forces in the opening of sphere shell应力集中系数曲线:为了便于设计、对不同直径的和不同厚度的壳,带有不同直径与接管,按理论计算得到的应力集中系数绘制成一组组曲线。
应力集中系数曲线图绘制根据: ●壳体的直径,壳体厚度;●接管的直径,接管厚度;●接管形式的平齐接管,插入接管,的不同而绘制。
第二节 容器的开孔补强开孔部分的应力集中将引起壳体局部的强度削弱,若开孔很小并有接管,且接管又能使强度的削弱得以补偿,则不需另行补强。
若开孔较大,就要采取适当的补强措施。
一般容器只要通过补强将应力集中系数降低到一定的范围即可。
按“疲劳设计”的容器必须严格限制开孔接管部位的最大应力。
经过补强后的接管区可以使应力集中系数降低,但不能消除应力集中。
1、开孔补强的基本原则当在容器开孔后,由于各种强度富余量的存在,开孔并非都要补强。
而在孔周围不需要进行补强的规定,称为开孔补强设计的基本原则。
(1)允许不补强开孔的原因●应力集中的局部性原因,根据应力集中的局部性特征,开孔附近的峰值应力,不会产生壳体的整体屈服; ●当应力集中系数小于时,开孔附近除疲劳断裂外,不产生一般的强度破坏;●容器有效壁厚,是在计算壁厚值加上壁厚附加量,按商品钢板系列的圆整值。
一般大于强度值的要求,从整体上得到了加强。
●在壁厚计算公式中,焊缝系数一般小于1, 在规定中,明确指出,开孔不允许在焊缝影响区内,则认为开孔区的强度承载能力高于焊缝区。
(2)允许不另行补强的最大开孔直径a.不另行补强的最大孔径为δm m D d 14.0≤b.当两孔中心之间的间距大与两孔直径之和的两倍时,则每一孔均可视为单个开孔。
2、开孔补强形式(1)内加强平齐接管: 将补强金属加在接管或壳体的内侧。
(2(4)密集补强形式:补强金属集中在接管与壳体的连接处 以上四类补强形式,从补强的效果,即补强所附加金属起到的实际作用,实践证明了密(d)密集补强集补强效果最好。
对称凸出接管列第二,外加强最差。
3、补强结构(1)贴板补强结构贴板补强结构是在开孔周围贴焊一个补强圈,补强圈的材料和厚度一般与壳体相同。
(a )需要保证补强圈与壳体全面贴合;(b)需要保证焊缝的全焊透结构;(c) 在补强圈上开有M10的通孔,以充气检验其焊透性;(d )常用场合:中低压容器。
ab (2)接管补强结构:即在开孔处焊接一段加厚的接管,加厚接管处于最大应力区,故能有效的降低应力集中系数。
(a )优点:结构简单,焊缝小,容易对焊缝质量进行检验(b)缺点:焊缝处在最大应力区内;(c)当用于重要设备时,应保证焊缝的全焊透性。
焊缝磨平,进行无损探伤。
(3)整锻件补强结构: 将接管于壳体连同加强部分做成一整体锻件。
(a )优点:补强金属集中于开孔应力最大部位,应力集中系数最小。
焊缝及热影响区离开最大应力点位置,抗疲劳性能优越。
(b)缺点:锻件供应困难,制造烦琐,成本较高。
(c )常用场合:只用于重要的设备,如高压容器,核容器等。
补强结构接管补强4、开孔补强的设计准则(1)等面积补强准则该方法认为在有效的补强范围内,壳体处本身承受内压所需截面积外的多余截面积A不少于开孔所减少的有效截面积A0。
等面积补强法是世界各国延用已久的一种经验设计方法。
◆开孔削弱的截面积,指沿壳体纵向截面上的开孔投影面积。
式中:d为开孔直径或接管内径加上壁后附加量C后的直径。
T为壳体按内压或外压计算所需的计算厚度。
Fr为材料强度削弱系数,即设计温度下接管材料与壳体材料许用应力之比,fr<1.0◆有效补强范围:等面积补强法认为在右图中的WXYZ的矩形范围内补强是有效的。
◆补强区内补强金属面积A(a)容器壳体设计厚度之外的多余金属截面积:A1筒体或封头,承受内压或外压所需的厚度和壁厚附加量之外剩余的金属面积。
A1=(B-d)[(S-C)-So],C—壁厚附加量式中Tn,tn分别为壳体及接管的名义厚度T为容器壳体的计算厚度C为接管的壁厚附加量fr为材料的强度削弱系数(b)接管所需计算厚度之外的多余金属截面积:A2 接管承受内压或外压所需厚度和壁厚附加量两者之外多余的金属面积。
A2=2h1(St-Sto-C)+2h2(St-C1-C2)式中:t-为接管按内压或外压计算所需的计算厚度;C2-为接管的腐蚀附加量。
(c)在有效补强区内焊缝金属的截面积。
(d)在有效补强区内另加的补强元件的截面积。
若A1+A2+A3≥A,开孔不需要补强A1+A2+A3 <A,开孔需要补强则A4≥A-(A1+A2+A3)A4—补强金属截面积。
(2)极限分析补强设计准则由于开孔只造成壳体的局部强度削弱,如果在某一压力载荷下容器开孔处的某一区域其整个截面进入塑性状态,以至发生塑性流动,此时的载荷便为极限载荷。
利用塑性力学方法对带有整体补强的开孔补强结构求解出塑性失效的极限载荷。
以极限载荷为依据来进行补强结构设计,即以大量的计算可以定出补强结构的尺寸要求,使其具有相同的应力集中系数。
(3)开孔补强的其他问题以上是壳体上单个开孔的等面积补强方法,工程上有时还会碰到并联开孔的情况,如果各相邻孔之间的空心距离小于两孔平均直径的两倍,则这些相邻孔可以不再以单孔计算,而应作并联孔处理。
另外还有开排孔、平板盖开孔的情况,其补强设计方法可按照压力容器标准中第六章的相应规定进行。
对于成型封头开孔大小超过时D/2,也超出了等面积补强的规定适用范围,此时可采用“变径段”作过渡。