化工名词解释
化工名词解释

宁波三江益农化学有限公司
名词解释
4、熔点与凝固点 定义:
熔点是固体将其物态由固态转变(熔化)为液态的温度。进行相反动作(即 由液态转为固态)的温度,称之为凝固点。与沸点不同的是,熔点受压力的影响 很小。而大多数情况下一个物体的熔点就等于凝固点。
名词解释
1、密度 定义:物质每单位体积内的质量(重量)。 每1立方米体积的水重量为1吨;(标准 )
水的密度为“1”,密度少于“1”说明此物质比水轻,密度大于“1”说明 此物质比水重。
比如:甲苯的密度为0.867,甲基环已烷的密度为0.79,都小于1,所以我 们在水洗时可以分层(水层在下),乙醇的密度也是0.79,但它溶于水,所以只 能做为反应溶剂使用,不能做为水洗用。
宁波三江益农化学有限公司
名词解释
3、沸点 定义:沸点指物质在1个标准大气压下沸腾(剧烈汽化现象)时的温
度(℃)。 不同物质的沸点是不同的;水的沸点是100℃、甲苯的沸点是110℃、
乙醇的沸点是78℃等等
沸点随外界压力变化而改变,压力越高沸点随之增加,压力越低沸点随之降 低(克拉伯龙—克劳修斯方程)。
二氯的溶点是37-42℃ 苄胺(中I)的溶点是5-10℃ 环氧化物的溶点是0℃左右?
乙醇的溶点是-114℃
宁波三江益农化学有限公司
名词解释
5、闪点 定义:可燃液体挥发遇火源一闪即燃现象的最低温度。
闪点是可燃性液体贮存、运输和使用的一个安全指标,同时也是可燃性液体 的挥发性指标。闪点越低的可燃性液体,越容易挥发性,越容易着火,安全性越 差。
人的密度为:1.02 ~1.05。
宁波三江益农化学有限公司
化工类的名词解释

化工类的名词解释化学工程是研究和应用化学原理、物理原理、数学方法以及工程技术的学科,主要涉及化学过程的设计、操作和优化。
在化学工程领域中,有许多名词常常被提及,下面将为您解释其中一些重要的名词。
一、反应器反应器是化学反应的核心设备,用于控制和驱动化学反应发生。
反应器根据不同的需求可以分为多种类型,如连续流动反应器和批量反应器。
连续流动反应器中,反应物以连续的方式流经反应器,反应时间较短;而批量反应器中,反应物一次性投入反应器,反应时间较长。
反应器往往由反应容器、搅拌装置、加热或冷却设备等组成。
二、塔式设备塔是一种常见的分离设备,广泛应用于化学工程中。
它可以通过物料之间的质量传递或物理吸附作用,使混合物中的组分得到分离。
常见的塔式设备有吸收塔、除尘塔、萃取塔等。
吸收塔用于将气体中的污染物吸收到液体中,除尘塔则用于去除气体中的颗粒物,而萃取塔则可将混合物中不同的组分分离出来。
三、催化剂催化剂是一种可以加速化学反应速率而不直接参与其中的物质。
它通过提供一个反应活化能的更低路径,降低了反应所需的能量。
催化剂在化学工程中被广泛应用,如在石油加工中用于裂解和改质反应、在氨合成中用于提高反应速率等。
常见的催化剂包括金属、金属氧化物和贵金属等。
四、溶液溶液是由溶质和溶剂组成的稳定混合物。
溶质是指能够在溶剂中溶解的物质,而溶剂是指能够溶解其他物质的介质。
溶液在化学工程中常常被用于反应介质、分离介质和催化剂载体等。
溶液的组成和浓度往往对反应速率和分离效果起着重要影响。
五、材料工程材料工程是研究材料制备、性能、改性和应用的学科。
在化学工程中,材料工程起着重要作用。
材料工程师通过研究和设计新的材料,以满足化学工程中的不同需求。
例如,高性能催化剂的开发、新型的分离膜材料的研究等,都离不开材料工程的支持。
六、可持续发展可持续发展是指在满足当前需求的同时,不危及未来世代满足其需求的能力。
在化学工程中,可持续发展的理念被广泛应用。
化工名词解释

化工基础名词解释1、温度:温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。
它规定了温度的读数起点(零点)和测量温度的基本单位。
温度没有高极点,只有理论低极点“绝对零度”。
“绝对零度”是无法通过有限步骤达到的。
目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F)、热力学标(K)和国际实用温标。
绝对温度=摄氏度+0℃对应绝对温度是℃,100 ℃对应为℃。
T ℉= ℃+ 32 (t为摄氏温度数,T为华氏温度数)。
0°F相当于℃,100°F相当于摄氏温度℃。
2、压力:流体垂直作用于单位面积上的力,称为流体的静压强,简称压强,习惯上又称压力。
在静止流体中,作用于某点不同方向上的压力在数值上均相同。
在SI单位制中,压力的单位是N/㎡,称为帕斯卡,以Pa表示。
标准大气压有如下换算关系:!1atm=×105Pa=760mmHg=2表压=绝对压力-大气压力真空度=大气压力-绝对压力3、密度:单位体积流体的质量,称为流体的密度,其表达式为mρ=v式中ρ-流体的密度,kg/m3m-流体的质量,kgv-流体的体积,m3对于气体,当压力不太高、温度不太低时,可按理想气体处理,则pMρ=RT式中p-气体的绝度压力,Pa M-气体的摩尔质量,kg/mol T-热力学温度,K R-摩尔气体常数,其值为()?4、比重:物体的密度与4℃纯水的密度的比值,称为比重。
5、比热容:比热容又称比热容量,简称比热。
是单位质量物质的热容量,即使单位质量物体改变单位温度时的吸收或释放的内能。
比热容是表示物质热性质的物理量。
通常用符号c表示。
其国际单位制中的单位是焦耳每千克开尔文(J /(kg·K) 或J /(kg·℃),J是指焦耳,K是指热力学温标,与摄氏度℃相等),即令1千克的物质的温度上升(或下降)1摄氏度所需的能量。
化工 名词解释

(1)π值:在浓硫酸中,磺化速度与硫酸中所含水分浓度的平方成反比,水的生成使磺化反应速度大为减慢,当酸浓度降低到一定程度,反应几乎停止,此时剩余的硫酸叫做废酸,习惯把这种废酸以三氧化硫的质量分数表示。
(2)相比:混酸与被硝化物的质量之比,也叫酸油比。
(3)硝酸比:硝酸与被硝化物的摩尔比。
(4)重氮化反应:芳香族伯胺与亚硝酸(或亚硝酸盐)作用生成重氮盐的反应。
(5)偶合反应:指重氮盐与活泼氢原子的化合物发生的以偶氮基取代氢原子的反应。
(6)塑料:是以合成树脂为基本成分,加入填充剂等助剂后,可以做成各种“可塑性”的材料。
(7)涂料:是能涂敷于底材表面并形成坚韧连续膜的液体或固体物料的总称。
(8)烃类热裂解:将石油系烃类原料(天然气,炼厂气,柴油,重油等)经高温作用,使烃类分子发生高温断裂或脱氢反应,生成分子量较小的烷烃,烯烃和其他分子量不同的轻质或重质烃类。
(9)一次反应:由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。
(10)二次反应:由一次反应生成的低级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。
(11)化工工艺学:即化学生产技术,系指将原料物质主要经过化学或物理方法将其转变为产品的方法和过程。
(12)煤的气化:它是以煤或煤焦为原料,以氧气(空气,富氧或者纯氧),水蒸气或氢气为气化剂,在高温条件下通过化学反应把煤或煤焦中的可燃部分转化为气体的过程。
(13)煤的液化:将煤中有机质大分子转化为中等分子的液态产物,其目的就是来生产发动机用液体燃料和化学品。
(14)煤的焦化:煤在炼焦炉中隔绝空气加热到1000℃左右,经过干馏的一系列阶段,最终得到焦炭,这个过程称为高温干馏或高温炼焦。
(15)生产强度:每平方米炉膛在每小时处理的气体的量(以标准状态下的每立方米表示)(16)气化效率:每千克煤气化所得的冷煤气在完全燃烧时热量与气化的每千克煤的发热量之比。
(17)生产强度:每平方米催化剂截面在每小时处理的气体的量(以标准状态下的每立方米表示)(18)体积空速:单位时间通过单位催化剂物料的体积。
化工原理名词解释

流体的主要力学性质流体的主要力学模型1、连续介质模型:假定流体是由无数内部紧密相连、彼此间没有间隙的流体质点(或微团)所组成的连续介质。
不考虑复杂微观分子运动,采用连续函数数学处理。
2、无粘性流体模型:理想流体3、不可压缩流体模型:不考虑压缩及热胀4、实际流体模型表压或真空度:以大气压为基准测得的压力.表压=绝对压力—大气压力真空度=大气压力—绝对压力单位时间内流过管道任一截面的流体体积称流体的体积流量qv ,m3/s或m3/h 单位时间内流过管道任一截面的流体质量表示则称质量流量qm ,kg/s或kg/h 流速(平均流速):单位时间内流体质点在流动方向上所流经的距离质量流速:单位时间内流经管道单位截面积的流体质量粘性:当流体流动时,流体内部存在着内摩擦力,这种内摩擦力会阻碍流体的流动,流体的这种特性称为粘性。
粘度:促使流体流动产生单位速度梯度的剪应力。
牛顿型流体:在流动中形成的的剪应力与速度梯度的关系完全符合牛顿粘性定律的流体。
稳态流动:流体在管路中流动时,在任一点上的流速、压力等有关物理参数都不随时间而改变的流动。
层流(或滞流):流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合.湍流(或紊流):流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。
*减小管内流动阻力的措施一、改进流体外部边界,改善边壁对流动的影响1、减小管壁粗糙度δ2、柔性边壁代替刚性边壁:减35~50%3、采用平顺管道进口:减90%4、采用渐缩管和突扩管5、弯管的R/d取1~4范围6、三通尽可能减小支管与合流管之间的夹角或将折角改缓:减30~50%二、改变流体内部结构实现减阻添加剂减阻,效果显著。
如纳米金属/陶瓷自修复剂,粘度指数调节剂等。
三、改变外界条件:如液体增加温度力学相似性原理两个同类物理现象,在对应的时空点,各标量物理量的大小成比例,各向量物理量的除大小成比例外,且方向相同,则两个现象是相似的。
化工名词解释

化工名词解释Document number:NOCG-YUNOO-BUYTT-UU986-1986UT化工基础名词解释1、温度:温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。
它规定了温度的读数起点(零点)和测量温度的基本单位。
温度没有高极点,只有理论低极点“绝对零度”。
“绝对零度”是无法通过有限步骤达到的。
目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F)、热力学标(K)和国际实用温标。
绝对温度=摄氏度+0℃对应绝对温度是℃,100℃对应为℃。
T℉=℃+32(t为摄氏温度数,T为华氏温度数)。
0°F相当于℃,100°F相当于摄氏温度℃。
2、压力:流体垂直作用于单位面积上的力,称为流体的静压强,简称压强,习惯上又称压力。
在静止流体中,作用于某点不同方向上的压力在数值上均相同。
在SI单位制中,压力的单位是N/㎡,称为帕斯卡,以Pa表示。
标准大气压有如下换算关系:1atm=×105Pa=760mmHg=2表压=绝对压力-大气压力真空度=大气压力-绝对压力3、密度:单位体积流体的质量,称为流体的密度,其表达式为mρ=v式中ρ-流体的密度,kg/m3m-流体的质量,kgv-流体的体积,m3对于气体,当压力不太高、温度不太低时,可按理想气体处理,则pMρ=RT式中p-气体的绝度压力,PaM-气体的摩尔质量,kg/molT-热力学温度,KR-摩尔气体常数,其值为()4、比重:物体的密度与4℃纯水的密度的比值,称为比重。
5、比热容:比热容又称比热容量,简称比热。
是单位质量物质的热容量,即使单位质量物体改变单位温度时的吸收或释放的内能。
比热容是表示物质热性质的物理量。
通常用符号c表示。
其国际单位制中的单位是每千克开尔文(J/(kg·K)或J/(kg·℃),J是指焦耳,K是指热力学温标,与℃相等),即令1千克的物质的温度上升(或下降)1摄氏度所需的能量。
化工原理下名词解释

第七章
平衡分离:借助分离媒介(热能、溶解、吸附剂)使均相混合物变为两相,两相中,各组分达到某种平衡,以各组分在处于平衡的两相中分配关系的差异为依据实现分离。
速率分离:借助推动力(压力、温度、点位差)的作用,利用各组扩散速度的差异,实现分离
第八章
吸收:气体混合物的分离(组分在吸收液中的溶解度
吸收剂:
吸收液、
解吸(脱吸)、
物理吸收、
化学吸收
液气比
比表面、
空隙率、
填料因子
第九章
恒沸混合液
回流比
液泛、
漏液
相平衡常数、
挥发度,
相对挥发度
第十章
超临界流体
萃取相、
萃余相、
萃取剂、
萃取液、
萃余液、
分配系数、
选择性系数
第十一章
湿度,
相对湿度,
湿比热,
水蒸气分压,
干球温度,
湿球温度,
露点
湿基水分,
干基水分,
平衡水分(平衡湿度)
干燥速度、
干燥曲线、
干燥速度曲线、
恒速干燥、
降速干燥
第十二章
结晶:结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过
程,是获得高纯度固体物质的基本单元操作
浓度极化现象:膜分离过程中,通常膜表面附近被脱出物质的浓度逐渐增加,其结果是膜表面附近浓度高于浓缩液主体的浓度,该现象称
浓度极化现象
微胶囊:。
化工基本名词解释

常见化工名词解释CAS NumberCAS编号(CAS Registry Number或称CAS Number, CAS Rn, CAS #),又称CAS登录号或CAS登记号码,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。
馏程是指以油品在规定条件下蒸馏所得到的以初馏点到终馏点表示蒸发特征的温度范围,越小越容易挥发;闪点是指在规定条件下,加热到它的蒸汽与火焰接触发生瞬间闪火时的最低温度,从安全上讲越高越好;KB值KB值是指在25℃下从120g标准kauri gum-丁醇溶液中析出kauri gum所需要稀释剂的ml数,它是表示烃类溶剂相对溶解能力的指标,衡量石油溶剂溶解涂料中树脂的能力。
KB值越大说明溶剂对极性有机化合物的溶解能力越强;溴值bromine value;bromine number表示有机化合物中不饱和程度的一种指标。
指100g物质中所能吸收(加成)溴的克数。
溴值和碘值的关系是:溴值=碘值×0.632。
测定溴值的主要是石油烃类,因石油烃使用溴值比碘值的副反应少、误差小。
苯胺点是指把等体积的苯胺与待测定溶解能力的溶剂均匀混合,逐渐降低温度,观察该体系即将发生浑浊的最低温度,即为该溶剂的苯胺点(℃)。
溶剂的苯胺点越高,其对极性有机化合物的溶解能力越弱。
相对挥发度对于组分互溶的混合液,两组分的挥发度之比称做相对挥发度(relative volatility)。
如果以易挥发组分的挥发度作分子,难挥发组分的挥发度作分母,则相对挥发度应当大于1。
根据两组分的相对挥发度,可以预测蒸馏的难易。
最低爆炸极限(LEL)溶剂蒸汽和空气混合物能够燃烧的最低蒸汽浓度最高爆炸极限(UEL)溶剂蒸汽和空气混合物能够燃烧的最高蒸汽浓度可燃范围溶剂蒸汽浓度在LEL和UEL之间自燃点(AIT)在没有点火源的情况下,可燃性蒸汽和空气混合物能够燃烧的最低温度职业接触极限(OEL)在工作环境下,有害化学品所容许的最高蒸汽浓度蒸汽危害比值VHR蒸气危害比值(VHR)为挥发性物质之蒸气压与其职业接触限值之比值,可用以测量物质的挥发气体之危害性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、逸度系数Fugacity Coefficiency气体B的逸度与其分压力之比称为逸度因子(通常称为逸度系数),并用符号φ表示,即:φB=Pb*/pB。
逸度因子的量纲为一。
由于理想气体的逸度等于其分压力,故理想气体的逸度系数恒等于12、粘度viscosity液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。
粘度又分为动力黏度.运动黏度和条件粘度。
将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力.在单位液层面积上施加的这种力,称为切应力或剪切力τ(N/m2).切变速率(D) D=d v /d x (单位:s -1)切应力与切变速率是表征体系流变性质的两个基本参数两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:τ= ηdv/dx =ηD(牛顿公式)其中η与材料性质有关,我们称为“粘度”。
将两块面积为1㎡的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。
牛顿流体:符合牛顿公式的流体。
粘度只与温度有关,与切变速率无关,τ与D为正比关系。
非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。
又称黏性系数、剪切粘度或动力粘度。
流体的一种物理属性,用以衡量流体的粘性,对于牛顿流体,可用牛顿粘性定律定义之:式中μ为流体的黏度;τyx为剪切应力;ux为速度分量;x、y为坐标轴;dux/dy为剪切应变率。
流体的粘度μ与其密度ρ的比值称为运动粘度,以v表示。
粘度随温度的不同而有显著变化,但通常随压力的不同发生的变化较小。
液体粘度随着温度升高而减小,气体粘度则随温度升高而增大。
3、普朗特数Prandtl Number普朗特数(Prandtl Number)是由流体物性参数组成的一个无因次数(即无量纲参数),表明温度边界层和流动边界层的关系,反映流体物理性质对对流传热过程的影响。
普朗特数是因纪念德国力学家L.Prandtl 在这方面的贡献而命名的。
普朗特数是流体力学中表征流体流动中动量交换与热交换相对重要性的一个无量纲参数,表明温度边界层和流动边界层的关系,反映流体物理性质对对流传热过程的影响。
在考虑传热的粘性流动问题中,流动控制方程(如动量方程和能量方程)中包含着有关传输动量、能量的输运系数,即动力粘性系数μ、热导率k和表征热力学性质的参量定压比热Cp。
通常将它们组合成无量纲的普朗特数来表示,简记为Pr。
它的表达式为:式中,μ为粘度,单位pa*s;Cp为等压比热容;k为热导率;α为热扩散系数(α=λ/ρc )单位:m^2/s;v为运动粘度,单位m^2/s[1]。
其中v和α分别表示分子传递过程中动量传递和热量传递的特性。
当几何尺寸和流速一定时,流体粘度大,流动边界层厚度也大;流体导温系数大,温度传递速度快,温度边界层厚度发展得快,使温度边界层厚度增加。
因此,普朗特数的大小可直接用来衡量两种边界层厚度的比值。
不同流体的普朗特数相差很大:空气的普朗特数约为0.7;水的普朗特数在20℃时约为7,在100℃时约为1.75;油的普朗特数的数量级为10e3;液态金属的普朗特数很小,如汞在20℃时为0.0266。
普朗特数(Pr数)在不同的流体于不同的温度、压力下,数值是不同的。
液体的Pr数随温度有显著变化;而气体的Pr数除临界点附近外,几乎与温度及压力无关。
大多数气体的Pr数均小于1,但接近于1;例如,对空气(γ=1.4,γ为比热比)近似为3/4,对单原子气体(γ=5/3)为2/3,且随着γ趋于1,Pr数也趋近于1。
有些情况下,气体的Pr数远大于1。
常温下水的Pr数可达10以上。
利用气体Pr数接近于1的特点,在分析气体边界层问题时,常假定Pr=1,从而简化方程的处理。
如平板边界层中,当取Pr=1时,动量方程和能量方程的形式相似,它们的解呈线性关系。
4、逸度Fugacity作为物理学的逸度,其定义是:(dG)=R*T*d(ln f)f 就是逸度,它的单位与压力单位相同,逸度的物理意义是它代表了体系在所处的状态下,分子逃逸的趋势,也就是一种物质迁移时的推动力或逸散能力。
相平衡与逸度所谓相平衡指的是混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态。
从热力学上看,整个物系的自由焓处于最小的状态。
从动力学来看,相间表观传递速率为零。
相平衡热力学是建立在化学位概念基础上的。
一个多组分系统达到相平衡的条件是所有相中的温度T、压力P和每一组分i的化学位μ相等。
从工程角度上,化学位没有直接的物理真实性,难以使用。
Lewis提出了等价于化学位的物理量——逸度。
它由化学位简单变化而来,具有压力的单位。
由于在理想气体混合物中,每一组分的逸度等于它的分压,故从物理意义讲,把逸度视为热力学压力是方便的。
在真实混合物中,逸度可视为修正非理想性的分压。
引入逸度概念后,相平衡条件演变为“各相的温度、压力相同,各相组分的逸度也相等”。
即:T1=T2=......Tn (1)p1=p2=.......pn (2)f1=f2=.........fn (3)逸度 f 若不与通过实验直接测得的物理量T、P和组成相关联,那么,式(3)也没有任何实际用途。
5、绝对压力和表压absolute pressure, Gauge Pressure绝对压,或称为真实压,是以绝对零压为起点计算的压强。
或真空为起点计算的压强。
绝对压强,简称绝压。
表压强,简称表压,是指以当时当地大气压为起点计算的压强。
当所测量的系统的压强等于当时当地的大气压时,压强表的指针指零。
即表压为零。
真空度,当被测量的系统的绝对压强小于当时当地的大气压时,当时当地的大气压与系统绝对压之差,称为真空度。
此时所用的测压仪表称为真空表。
系统P>大气压时绝对压=大气压+表压系统P<大气压时绝对压=大气压-真空度6、汽化潜热latent heat of vaporization汽化潜热(latent heat of vaporization),即温度不变时,单位质量的某种液体物质在汽化过程中所吸收的热量。
汽化分两种,蒸发和沸腾。
两者都吸热,蒸发只在液体表面。
而沸腾是液体的内部和表面同时进行的。
汽化潜热。
同种物质液体分子的平均距离比气体中小得多。
汽化时分子平均距离加大、体积急剧增大,需克服分子间引力并反抗大气压力作功。
因此,汽化要吸热。
单位质量的液体转变为相同温度的蒸气时吸收的热量称为汽化潜热,简称汽化热。
它随温度升高而减小,因为在较高温度下液体分子具有较大能量,液相与气相差别变小。
在临界温度下,物质处于临界态,气相与液相差别消失,汽化热为零。
物质从液态转变为汽态的过程叫汽化。
以水为例:例如:在3.92MPa绝对压力下,水的汽化潜热为1719.5131kJ/kg,在9.81MPa绝对压力下时,水的汽化潜热就变为1329.1156kJ/kg了。
7、压缩因子compressibility factor压缩因子描述真实气体的pVT性质中,最简单,最直接,最准确,使用的压力范围也最广泛的状态方程,压缩因子是将理想气体理想状态方程用压缩因子Z加以修正。
即:pV=ZnRT由此可知,压缩因子的定义为:Z=pV/nRT=pVm/RT压缩因子的量纲为一。
很显然,Z的大小反映出真实气体对理想气体的偏差程度即Z等于Vm(真实)除以Vm(理想)。
对于理想气体,在任何温度压力下Z恒等于1。
当Z<1时,说明真实气体的Vm比同样条件下理想气体的Vm小,此时真实气体比理想气体易于压缩;当Z>1时,说明真实气体的Vm比同样条件下理想气体的Vm大,此时真实气体比理想气体难于压缩。
由于Z反映出真实气体压缩的难易程度,所以将它称为压缩因子。
实际气体的P-V-T关系常用下式表示:pV=ZnRT式中的Z称为压缩因子,表示实际气体偏离理想气体行为的程度。
当实际气体处于临界点此时的压缩因子称为临界压缩因子ZC. 多数气体的临界压缩因子比较接近,0.25-0.31之间8、干度quality所谓干度,是指每千克湿蒸汽中含有干蒸汽的质量百分数,而湿度分为绝对湿度和相对湿度,绝对湿度指每立方米湿蒸汽中含水蒸气的质量,相对湿度指湿蒸汽中水蒸气的实际含量接近最大可能量的程度,即湿蒸汽中水蒸气的实际分压与同温度下水蒸气饱和压力之比。
热力学中干度的定义如下:汽液共存物中,汽相的质量分数或摩尔分数。
常用x表示。
有下式:M = Mα*x + Mβ*(1-x)α表示汽相,β表示与之平衡的液相,M泛指热力学容量性质。
据定义,湿蒸汽的干度和湿度都是大于零小于1的。
参数干度x定义为蒸汽质量占混合物总质量的比例,x=mvapor/mtotal。
在湿蒸汽分析中,干度是确定状态的两个独立强度参数之一。
令湿蒸汽的比焓为h,其干度就为x=(hx-hf)/(hs-hf),hx为湿蒸汽的焓,hf为饱和水的焓,hs为饱和蒸汽的焓9、热扩散系数Thermal Diffusivity以物体受热升温的情况为例来分析。
在物体受热升温的非稳态导热过程中,进入物体的热量沿途不断地被吸收而使局部温度升高,在此过程持续到物体内部各点温度全部相同为止。
定义α= λ/ρc【中文】热扩散系数【英文】Thermal Diffusivityα称为热扩散率或热扩散系数(thermal diffusivity),单位m^2/s.式中:k:导热系数,单位W/(m·K);ρ:密度,单位kg/m^3c:热容,单位J/(kg·K).物理意义由热扩散率的定义α=λ/ρc 可知:(1)物体的导热系数λ越大,在相同的温度梯度下可以传导更多的热量。
(2)分母ρc是单位质量的物体温度升高1℃所需的热量。
ρc 越小,温度升高1℃所吸收的热量越小,可以剩下更多热量继续向物体内部传递,能使物体各点的温度更快地随界面温度的升高而升高。
热扩散率α是λ与1/ρc两个因子的结合。
α越大,表示物体内部温度扯平的能力越大,因此而有热扩散率的名称。
这种物理上的意义还可以从另一个角度来加以说明,即从温度的角度看,α越大,材料中温度变化传播的越迅速。
可见α也是材料传播温度变化能力大小的指标,因而有导温系数之称。
10、音速velocity of sound,sonic speed音速(velocity of sound,sonic speed)也叫声速,声速是介质中微弱压强扰动的传播速度,其大小因媒质的性质和状态而异。