不锈钢的切削加工

合集下载

分析不锈钢的机械加工方法

分析不锈钢的机械加工方法

分析不锈钢的机械加工方法不锈钢是一种耐腐蚀的金属材料,广泛应用于制造行业中。

机械加工是对不锈钢进行形状加工和表面处理的重要方法之一,本文将分析常用的不锈钢机械加工方法。

1.铣削加工:铣削是将刀具在工件上旋转切削的一种加工方法。

不锈钢的硬度相对较高,因此在铣削过程中需要选用高硬度的刀具,并采用适当的切削速度和进给速度。

对于精密加工,还可采用数控铣床进行精确控制。

2.车削加工:车削是通过旋转车刀将工件宽度修整到设计尺寸的加工方法。

不锈钢的硬度高,具有很高的切削难度。

为了保证加工质量,需要选用刀具的刀片材料具有良好的切削性能,经常更换刀片,并且适当选择进给速度和切削速度。

3.钻削加工:钻削是通过旋转刀具在工件上切削孔洞的加工方法。

在不锈钢的钻削中,由于工件硬度高,钻头容易损坏。

因此,应选择硬质合金钻头,采用较低的切削转速,并进行冷却润滑剂的切削润滑。

4.磨削加工:磨削是通过磨料颗粒对工件进行磨削的一种加工方法。

不锈钢硬度高,适合采用砂轮进行磨削。

在磨削过程中,应选用适当的磨具和磨削磨粒,并保证切削液的良好冷却和润滑。

5.锻造加工:锻造是通过对不锈钢材料施加压力,使其发生塑性变形并改变形状的一种加工方法。

不锈钢具有较好的锻造性能,适合进行锻造加工。

通过锻造可以获得高强度和良好的耐腐蚀性能的零件。

6.激光切割:激光切割是通过高能激光束对不锈钢表面进行烧蚀,达到切割的目的。

激光切割具有高精度、高速度的特点,可用于制造复杂形状的零件。

7.电火花加工:电火花加工是通过电脉冲在工件表面产生高能量火花,使工件表面产生微小的氧化腐蚀,从而实现对不锈钢进行精细加工和切割的一种方法。

以上是常见的不锈钢机械加工方法,每种方法都具有适用的情况和要求。

在实际应用中,需要根据具体的加工需求和工件材料特性进行选择,以获得最佳的加工效果。

不锈钢加工 技术要求

不锈钢加工 技术要求

不锈钢加工技术要求不锈钢加工技术要求不锈钢是一种耐腐蚀、美观、耐高温的金属材料,广泛应用于建筑、制造业、汽车、航空航天等领域。

为了保证不锈钢制品的质量和精度,需要进行精细的加工工艺。

本文将介绍不锈钢加工的技术要求。

1. 材料选择在不锈钢加工中,首先要选择合适的不锈钢材料。

常见的不锈钢材料有304、316、321等,它们具有不同的耐腐蚀性能和机械性能。

根据具体的使用环境和要求,选择适合的不锈钢材料非常重要。

2. 切削工艺不锈钢加工中常用的切削工艺包括铣削、车削、钻孔等。

切削工艺需要考虑刀具的选择、切削速度、进给速度等因素。

对于不锈钢材料,由于其硬度较高,切削时需要选择合适的刀具,并采用较低的切削速度和进给速度,以避免过热和损坏刀具。

3. 表面处理不锈钢加工后的表面往往需要进行处理,以提高其耐腐蚀性和美观度。

常见的表面处理方法包括抛光、研磨、喷砂和电镀等。

选择合适的表面处理方法,可以根据具体的需求来确定。

4. 焊接工艺不锈钢材料的焊接需要注意选择合适的焊接方法和焊接材料。

常见的焊接方法有TIG焊、MIG焊和电弧焊等。

在焊接过程中,需要注意保护焊接区域免受氧化和污染,以保证焊接接头的质量。

5. 尺寸精度控制不锈钢加工中,尺寸精度是非常重要的。

根据具体的产品要求,需要控制不同的尺寸公差。

在加工过程中,需要采用合适的测量工具和精度控制方法,确保产品的尺寸精度符合要求。

6. 表面质量控制不锈钢制品的表面质量对于美观度和耐腐蚀性非常重要。

在加工过程中,需要注意避免表面划伤、瑕疵和氧化。

对于表面质量要求较高的产品,可以采用抛光、喷砂等方法进行处理,以提高表面质量。

7. 清洁和防护不锈钢制品在加工完成后,需要进行清洁和防护工作。

清洁可以采用清洗剂和纯净水进行,以去除加工过程中产生的油污和颗粒。

防护可以采用防锈剂、包装膜等方法,避免不锈钢制品在储存和运输过程中受到腐蚀和损坏。

总结:不锈钢加工技术要求包括材料选择、切削工艺、表面处理、焊接工艺、尺寸精度控制、表面质量控制、清洁和防护等方面。

不锈钢车削参数

不锈钢车削参数

不锈钢车削参数不锈钢车削是一种重要的金属加工工艺,广泛应用于制造工业中的零部件生产。

车削是一种常见的金属切削加工方法,通过在车床上将工件固定在主轴上,然后使用刀具在工件上进行旋转切削来实现对工件的加工。

不锈钢是一种具有良好耐腐蚀性和耐热性的金属材料,因此在汽车制造、航空航天、化工设备等领域得到广泛应用。

不锈钢车削参数包括切削速度、进给速度、切削深度、切削力等多个方面,下面将对这些参数进行详细介绍。

一、切削速度切削速度是指车削刀具在切削时与工件接触的线速度,通常用米/分钟来表示。

对于不锈钢的车削,切削速度是一个至关重要的参数。

一般来说,对于不同种类的不锈钢,其切削速度也会有所不同。

常见的不锈钢材料有304不锈钢、316不锈钢等,它们的硬度和耐热性也会有所差异,因此需要根据具体的材料来确定切削速度。

二、进给速度进给速度是指刀具在切削时对工件的移动速度,通常以每分钟进给量来表示。

对于不锈钢车削来说,进给速度的选择对于加工质量和效率都有着重要影响。

一般来说,过大或过小的进给速度都会影响到车削的效果,因此需要根据不同的不锈钢材料来选择适当的进给速度。

三、切削深度切削深度是指刀具在进行车削时每次从工件上削下的距离。

对于不锈钢车削来说,切削深度的选择直接关系到车削的加工效率和加工质量。

一般来说,过大的切削深度容易导致刀具损坏,而过小的切削深度则容易影响车削的加工效率,因此需要根据具体的工件和车削刀具来选择适当的切削深度。

四、刀具选择不锈钢车削需要选择适合不锈钢加工的刀具。

常见的刀具材料有硬质合金、高速钢等,对于不同种类的不锈钢,需要选择硬度合适、耐磨损的刀具材料,并根据具体的工件形状和加工要求来选择合适的刀具类型。

五、切削润滑不锈钢材料的车削过程中,由于其硬度较高,容易产生高温,并且切屑也容易粘附在刀具上,因此切削时需要使用适当的切削润滑润滑,以降低切削温度,延长刀具的使用寿命,提高加工质量。

通过对不锈钢车削参数的合理选择,在保证车削加工效率的还能够得到尺寸精确、表面光滑的加工零件。

不锈钢车削加工特点及加工工艺

不锈钢车削加工特点及加工工艺

304 不锈钢车削加工特点及加工工艺304 不锈钢广泛应用与各行各业,你确定对其车削加工特点及相关的加工工艺很感兴趣。

下面就由我为你带来 304 不锈钢车削加工特点及加工工艺,期望你宠爱。

304 不锈钢车削加工特点(1)切削力大AISI 304 奥氏体不锈钢的硬度不高(硬度≤187HBS),由于其含大量的 Cr、Ni、Mn 等元素,塑性较好(断后伸长率δ5≥40%,断面收缩率ψ≥60%)。

切削加工时塑性变形大,尤其在较高温度时仍可保持较高的强度(一般钢在切削温度上升时强度下降明显),导致 AISI304 奥氏体不锈钢的切削力较大。

常规切削条件下,AISI 304 不锈钢的单位切削力达 2450MPa,比 45 钢高 25%以上。

(2)加工硬化严峻AISI 304 不锈钢在切削加工时伴有较为明显的塑性变形,材料晶格会产生严峻的歪扭;同时,由于奥氏体组织在稳定性方面的缺陷,一小局部奥氏体在此过程中变成了马氏体;此外,奥氏体中存在的杂质化合物会随着切削过程的进展因受热而分解,弥散分布的杂质在外表产生了硬化层,使加工硬化现象格外明显,硬化后的强度σb达1500MPa 以上,硬化层深度 0.1-0.3mm。

(3)切削区局部温度高由于AISI304 不锈钢所需切削力大,且切屑不易切离,使得分别切屑所消耗的功也较大。

常规条件下切削AISI 304 不锈钢比低碳钢高约50%,产生的切削热多。

奥氏体不锈钢的导热性差,AISI304 不锈钢的热导率为 16.3-21.5W/m·K,仅为 45 钢热导率的三分之一,因而使得切削区域的温度较高(通常切削加工时切屑所带走的热量应占切削热量的70%以上),大量切削热集中在切削区和“刀—屑”接触面上,传入刀具中的热量达20%(切削一般碳素钢时该数值仅为9%),使得在同等切削条件下,AISI304 不锈钢切削温度比 45 钢高约 200-300℃。

(4)刀具易产生粘附磨损由于奥氏体不锈钢的高温强度高,加工硬化倾向大,因此,切削负荷重,奥氏体不锈钢与刀具和切屑之间会由于切削过程中其与刀具之间的亲合趋势显著增加,从而不行避开地产生粘结、集中等现象,并生成“切屑瘤”,造成刀具粘附磨损。

浅谈不锈钢材料的车削加工

浅谈不锈钢材料的车削加工

浅谈不锈钢材料的车削加工不锈钢是一种耐腐蚀、具有高强度的金属材料,广泛应用于制造业中。

车削是一种常见的金属加工方法,用于对工件进行精确的形状和尺寸加工。

不锈钢的车削加工具有一些特点和技巧,下面将从材料性质、车削工艺、工具选择以及表面质量等方面,对不锈钢材料的车削加工进行深入浅出的探讨。

首先要了解不锈钢材料的性质,以便进行合理的车削加工。

不锈钢的硬度较高,加工难度较大;同时,由于其中含有铬、镍等耐腐蚀元素,不锈钢具有较高的韧性和延展性。

因此,在车削加工过程中需要采取适当的加工参数和工具选择,以确保加工质量和工具寿命。

在车削加工中,切削速度、进给量和切削深度是影响加工效果的重要参数。

对于不锈钢材料,由于其硬度较高,一般需要采用较低的切削速度。

而对于进给量和切削深度,需要根据具体情况进行调整,以避免过度切削,导致工件表面质量下降、工具磨损加剧。

对于不锈钢材料的车削加工,工具选择也是非常重要的。

一般来说,硬质合金刀具具有较好的耐磨性和切削性能,适用于对不锈钢材料进行精细车削加工。

同时,鉴于不锈钢的高韧性和延展性,铺设刀具的刃角要求较小,刃口要光滑锋利,以保证切削力和刀具使用寿命。

此外,不锈钢材料的车削加工还需要注意切削润滑和冷却问题。

由于不锈钢的短切屑对切削过程有一定的干扰,切削润滑和冷却可以有效地减少切削热,防止刀具过热和磨损。

一般来说,可以通过植入切削剂、切削液和冷却剂等方式进行切削润滑和冷却。

最后,不锈钢材料的车削加工后还需要进行相应的表面处理,以提高工件的表面质量和防锈性能。

一般可以采用研磨、抛光等方式进行表面处理,以增加工件的光洁度和美观度。

总之,不锈钢材料的车削加工是一项综合性的任务,需要考虑材料性质、车削工艺、工具选择以及表面质量等多个方面的因素。

只有合理选择加工参数和工具,严格控制加工过程,才能获得满意的加工效果和产品质量。

同时,注重切削润滑和冷却、以及后续表面处理,也是保证不锈钢材料车削加工成功的关键。

不锈钢车削参数

不锈钢车削参数

不锈钢车削参数不锈钢车削参数是指在车削加工过程中,针对不锈钢材料的特性和要求所设定的一系列切削参数。

这些参数对于保证加工质量和提高生产效率具有重要意义。

以下是一些建议的不锈钢车削参数:1. 切削速度(Vc):切削速度是刀具在旋转时与工件接触点的速度。

对于不锈钢材料,切削速度应适当降低,以防止刀具过热和磨损。

一般推荐切削速度为20-60m/min。

2. 进给量(f):进给量是指刀具在每次切削行程中沿工件轴向移动的距离。

对于不锈钢材料,进给量应适当降低,以减小刀具磨损和切削力。

一般推荐进给量为0.1-0.3mm/r。

3. 切削深度(ap):切削深度是指刀具在每次切削行程中切入工件的深度。

对于不锈钢材料,切削深度应适当降低,以减小刀具磨损和切削力。

一般推荐切削深度为0.1-0.5mm。

4. 刀具前角(γo):刀具前角是指刀具主切削刃与工件表面的夹角。

对于不锈钢材料,刀具前角应适当增大,以提高切削性能和减少刀具磨损。

一般推荐前角为10-20°。

5. 刀具后角(αo):刀具后角是指刀具主切削刃与工件表面的夹角。

对于不锈钢材料,刀具后角应适当增大,以提高切削性能和减少刀具磨损。

一般推荐后角为8-12°。

6. 切削液:不锈钢车削过程中,应使用适当的切削液来冷却和润滑刀具和工件,以降低切削温度和减少刀具磨损。

常用的切削液有水溶性切削液、油溶性切削液和乳化液等。

7. 刀具材质:不锈钢车削过程中,应选择具有良好耐磨性和抗腐蚀性的刀具材质,如硬质合金、陶瓷和高速钢等。

8. 机床刚性:不锈钢车削过程中,应选择具有较高刚性的机床,以保证加工精度和表面质量。

9. 工艺路线:不锈钢车削过程中,应根据工件的形状和尺寸选择合适的工艺路线,以减少切削力和热量对加工质量的影响。

总之,不锈钢车削参数的选择应根据具体的工件材料、形状和尺寸以及加工要求进行综合考虑,以达到最佳的加工效果。

316l车床切削参数

316l车床切削参数

316l车床切削参数
316L不锈钢是一种常见的不锈钢材料,常用于制造零件和构件。

在车床上对316L不锈钢进行切削加工时,需要考虑一些重要的切削
参数,以确保加工质量和工艺效率。

首先,切削速度是一个关键参数。

对于316L不锈钢,通常推荐
使用较低的切削速度,以避免过热和刀具磨损。

切削速度的选择应
该考虑到刀具材料、刀具类型和加工稳定性等因素。

其次,进给速度也是非常重要的参数。

适当的进给速度可以确
保切削过程中不会出现过度磨损或者切削力过大的情况。

进给速度
的选择需要结合刀具的类型、切削深度和加工表面的粗糙度要求等
因素来综合考虑。

另外,切削深度也需要合理控制。

对于316L不锈钢这样的材料,一般建议采用较小的切削深度,以确保切削过程中不会过度磨损刀
具或者引起加工表面的变形。

此外,切削润滑和冷却也是非常重要的参数。

由于316L不锈钢
具有较高的热导性和热膨胀系数,因此在切削过程中需要足够的润
滑和冷却,以确保切削过程稳定和加工表面质量。

最后,刀具的选择也是影响切削参数的重要因素。

针对316L不
锈钢的切削,一般推荐选择具有良好耐磨性和热稳定性的硬质合金
刀具,以确保切削效率和加工质量。

综上所述,316L不锈钢的车床切削参数需要综合考虑切削速度、进给速度、切削深度、切削润滑和冷却以及刀具选择等多个因素,
以确保加工质量和工艺效率。

在实际应用中,需要根据具体的加工
要求和设备条件进行合理的参数选择和调整。

不锈钢材料的车削加工

不锈钢材料的车削加工

不锈钢材料的车削加工摘要:随着现代工业的日益发达,不锈钢材质也在生产加工中被广泛应用,因此合理选用不锈钢材质加工刀具,是确保正确高效切割不锈钢的关键条件。

针对不锈钢切削特点,一般要求刀具材质应具备耐热性好、耐磨性高、与不锈钢材质的亲和性影响小等优点。

关键词:不锈钢材料车削加工不锈钢,是在空气中或化学腐蚀介质中都可以抗侵蚀的一类高温合金钢,不锈钢是指拥有漂亮的表层和耐腐蚀性能良好,而且无须经过镀色等表层处理过程,而发挥了不锈钢所存在的表层特点,应用在多种多样的钢材的一类,也常简称为不锈耐酸钢材。

一:不锈钢车削加工的弊端1、加工硬化严重。

2、塑性变形大,热硬度高,切削抗力大,刀具卷曲折断难。

3、由于切屑和工作物之间的磨擦大,所形成的剪切热较多。

4、切削刀具表面容易粘附,易生成积屑瘤,使切削刀具表面出现粘附、扩大损坏,造成前刃面出现月牙洼,切削后刃生成较小的剥落和缺陷;不锈耐酸钢的碳化物微粒硬度很高,在切割时会直接和菜刀接触,从而损坏菜刀,使菜刀的磨损程度加大。

不锈耐酸钢材质的加热强度高、加工韧性大对数控车高速切削并不适用,相较而言,不锈钢材质在高温下的加工硬度下降较小,但实践已证明,在相同切削高温的作用下,不锈钢车削用量远较于一般的碳素钢更难以加工,其中加热强度高是个至关重要的原因。

加工质量硬化趋势强,对数控车削用量影响大在数字控制高速切削的过程中,由于刃刃对工件材料挤出的效果使车削用量区的金属材料形成了变化,晶内出现滑移,晶体畸变,组织致密,加工力学性能也随之改变,而一般的车削用量硬度也可提高2~3倍。

数控切割后的机械加工生硬层深入可能从数十微米至数百微米之间,所以前一次性走刀所形成的机械加工生硬状态,也阻碍了下一次性走刀时的切割,同时加工生硬层的高硬度也使得刀具非常易于损坏,而且岩屑的粘着性强、导热差对数控技术切割也有一定危害。

此外,刀由于受剥肋断面宽度形状的影响,再加上本身硬度不够,加工中易形成振动,刃刃也易在切削过程中因为内部温度过高而烧坏或由于其震动太大而崩裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。

这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。

含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。

钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。

为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。

这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。

由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。

所含的合金元素对切削加工性影响很大,有的甚至很难切削。

2 不锈钢可分为哪几类?不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。

工业上常用的不锈钢一般按金相组织分类,可分为以下五大类:1.马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。

2.铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。

3.奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr18Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。

4.奥氏体+铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。

5.沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7Al、0Cr15Ni7M02Al等。

前两类为铬不锈钢,后三类为铬镍不锈钢。

3 不锈钢有哪些物理、力学性能?1.马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性,有的有磁性,但内应力大且脆。

经低温回火后可消除其应力,提高塑性,切削加工较困难,有切屑擦伤或粘结的明显趋向,刀具易磨损。

当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,工件已加工表面质量低。

含碳量达0.4%~0.5%时,切削加工性较好。

马氏体不锈钢经调质处理后,可获得优良的综合力学性能,其切削加工性比退火状态有很大改善。

2.铁素体不锈钢:加热冷却时组织稳定,不发生相变,故热处理不能使其强化,只能靠变形强化,性能较脆,切削加工性一般较好。

切屑呈带状,切屑容易擦伤或粘结于切削刃上,从而增大切削力,切削温度升高,同时可能使工件表面产生撕裂现象。

3.奥氏体不锈钢:由于含有较多的镍(或锰),加热时组织不变,故淬火不能使其强化,可略改善其加工性。

通过冷加工硬化可大幅度提高强度,如果再经时效处理,抗拉强度可达2550~2740 MPa。

奥氏体不锈钢切削时的带状切屑连绵不断,断屑困难,极易产生加工硬化,硬化层给下一次切削带来很大难度,使刀具急剧磨损,刀具耐用度大幅度下降。

奥氏体不锈钢具有优良的力学性能,良好的耐蚀能力,较突出的是冷变形能力,无磁性。

4.奥氏体+铁素体不锈钢:有硬度极高的金属间化合物析出,强度比奥氏体不锈钢高,其切削加工性更差。

5.沉淀硬化不锈钢:含有能起沉淀硬化的铊、铝、钼、钛等合金元素,它们在回火时时效析出,产生沉淀硬化,使钢具有很高的强度和硬度。

由于含碳量低保证了足够的含铬量,因此具有良好的耐腐蚀性能。

4 不锈钢有哪些切削特点?不锈钢的切削加工性比中碳钢差得多。

以普通45号钢的切削加工性作为100%,奥氏体不锈钢1Cr18Ni9Ti的相对切削加工性为40%;铁素体不锈钢1Cr28为48%;马氏体不锈钢2Cr13为55%。

其中,以奥氏体和奥氏体+铁素体不锈钢的切削加工性最差。

不锈钢在切削过程中有如下几方面特点:1.加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。

如奥氏体不锈钢硬化后的强度σb达1470~1960MPa,而且随σb的提高,屈服极限σs升高;退火状态的奥氏体不锈钢σs不超过的σb30%~45%,而加工硬化后达85%~95%。

加工硬化层的深度可达切削深度的1/3或更大;硬化层的硬度比原来的提高1.4~2.2倍。

因为不锈钢的塑性大,塑性变形时品格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。

前一次进给或前一道工序所产生的加工硬化现象严重影响后续工序的顺利进行。

2.切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。

同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。

因此加工不锈钢的切削力大,如车削1Cr18Ni9Ti的单位切削力为2450MPa,比45号钢高25%。

3.切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;加上不锈钢的导热系数约为45号钢的½~¼,大量切削热都集中在切削区和刀—屑接触的界面上,散热条件差。

在相同的条件下,1Cr18Ni9Ti的切削温度比45号钢高200℃左右。

4.切屑不易折断、易粘结:不锈钢的塑性、韧性都很大,车加工时切屑连绵不断,不仅影响操作的顺利进行,切屑还会挤伤已加工表面。

在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积屑瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。

含碳量较低的马氏体不锈钢的这一特点更为明显。

5.刀具易磨损:切削不锈钢过程中的亲和作用,使刀—屑间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。

6.线膨胀系数大:不锈钢的线膨胀系数约为碳素钢的1.5倍,在切削温度作用下,工件容易产生热变形,尺寸精度较难控制。

5 切削不锈钢时怎样选择刀具材料?合理选择刀具材料是保证高效率切削加工不锈钢的重要条件。

根据不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点。

目前常用的刀具材料有高速钢和硬质合金。

1.高速钢的选择:高速钢主要用来制造铣刀、钻头、丝锥、拉刀等复杂多刃刀具。

普通高速钢W18Cr4V使用时刀具耐用度很低已不符合需要,采用新型高速钢刀具切削不锈钢可获得较好的效果。

在相同的车削条件下,用W18Cr4V和95w18Cr4V两种材料的刀具加工1Cr17Ni2工件,刀具刃磨一次加工的件数分别为2~3件和12件,用95w18Cr4V的刀具耐用度提高了几倍。

这是由于提高了钢的含碳量,从而增加了钢中碳化物含量,常温硬度提高2HRC红硬性更好,600℃时由W18Cr4V的HRC48.5上升到HRC51~52,耐磨性比W18Cr4V提高2~3倍。

应用高钒高速钢W12Cr4V4Mo制作型面铣刀加工1Cr17Ni2可以获得较高的刀具耐用度。

因为含钒量增加,可在钢中形成硬度很高的VC,细小的VC存在于晶介,可以阻止晶粒长大,提高钢的耐磨性;W12Cr4V4Mo的红硬性很好,600℃时硬度可达HRC51.7,因此适合于制作切削不锈钢的各种复杂刀具。

但其强度(σb=3140 MPa)及冲击韧性(a k=2.5 J/cm3)略低于W18Cr4V,使用时要稍加注意。

随着刀具制作技术的不断发展,对于批量大的工件,采用硬质合金多刃、复杂刀具进行切削加工效果会更好。

2.硬质合金的选择:YG类硬质合金的韧性较好,可采用较大的前角,刀刃也可以磨得锋利些,使切削轻快,且切屑与刀具不易产生粘结,较适于加工不锈钢。

特别是在振动的粗车和断续切削时,YG类合金的这一优点更为重要。

另外,YG类合金的导热性较好,其导热系数比高速钢高将近两倍,比YT类合金高一倍。

因此YG类合金在不锈钢切削中应用较多,特别是在粗车刀、切断刀、扩孔钻及铰刀等制造中应用更为广泛。

较长时期以来,一般都采用YG6、YG8、YG8N、YW1、YW2等普通牌号的硬质合金作为切削不锈钢的刀具材料,但均不能获得较理想的效果;采用新牌号硬质合金如813、758、767、640、712、798、YM051、YM052、YM10、YS2T、YD15等,切削不锈钢可获得较好的效果。

而用813牌号硬质合金刀具切削奥氏体不锈钢效果很好,因为813合金既具有较高的硬度(≥HRA91)、强度(σb=1570MPa),又具有良好的高温韧性、抗氧化性、抗粘结性,其组织致密耐磨性好。

6 切削不锈钢时怎样选择刀具几何参数?1.前角γ0:不锈钢的硬度、强度并不高,但其塑性、韧性都较好,热强性高,切削时切屑不易被切离。

在保证刀具有足够强度的前提下,应选用较大的前角,这样不仅能够减小被切削金属的塑性变形,而且可以降低切削力和切削温度,同时使硬化层深度减小。

车削各种不锈钢的前角大致为12°~30°。

对马氏体不锈钢(如2Cr13),前角可取较大值;对奥氏体和奥氏体+铁素体不锈钢,前角应取较小值;对未经调质处理或调质后硬度较低的不锈钢,可取较大前角;直径较小或薄壁工件,宜采用较大的前角。

高速钢铣刀取γn=10°~20°,硬质合金铣刀取γn=5°~10°;铰刀一般取γ0=8°~12°;丝锥一般取γ0=15°~20°(机用)或γ0=20°(手用)。

2.后角α0:加大后角能减小后刀面与加工表面的摩擦,但会使切削刃的强度和散热能力降低。

相关文档
最新文档