实时时钟芯片应用设计时必须要考虑的事项
fpga硬件设计注意事项

fpga硬件设计注意事项FPGA硬件设计注意事项FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,广泛应用于数字电路设计、嵌入式系统和数字信号处理等领域。
在进行FPGA硬件设计时,有许多注意事项需要考虑,以确保设计的正确性、可靠性和性能。
本文将从不同的角度介绍一些FPGA硬件设计的注意事项。
一、设计规范与原则1. 时钟设计:合理规划时钟域,避免时钟冲突和时序问题。
确保时钟信号的稳定性和时钟分配的合理性,防止时钟抖动和时钟偏移。
2. 信号的同步与异步:减少异步信号的使用,尽量采用同步信号。
异步信号可能引发时序问题和数据不一致性。
3. 电源与地线设计:合理规划电源和地线,避免电源噪声和地线回流问题。
注意电源的稳定性和电源线的阻抗匹配。
4. 状态机设计:合理设计状态机,减少状态数量和状态转移的复杂性。
状态机的设计应简洁清晰,易于理解和维护。
二、资源利用与性能优化1. 逻辑资源利用:合理利用FPGA芯片的逻辑资源,避免资源浪费和资源冲突。
优化逻辑电路的结构,减少逻辑门数量。
2. 存储资源利用:合理规划存储资源,包括寄存器、RAM和ROM等。
避免存储资源的过度使用和冲突。
3. 时序优化:通过合理的时序约束和时序分析,优化电路的时序性能。
减少时序路径的延迟,提高电路的工作频率。
4. 时钟域划分:合理划分时钟域,减少时钟域之间的转换和同步问题。
避免时钟域跨越过多的逻辑。
三、可靠性与稳定性设计1. 异常处理与容错设计:考虑到硬件设计可能遇到的异常情况,合理设计异常处理机制和容错设计。
保证系统的可靠性和稳定性。
2. 时序分析与时序约束:进行时序分析,确保电路的时序约束满足要求。
避免时序问题导致的功能错误和不稳定性。
3. 时钟和复位信号的处理:合理设计时钟和复位信号的处理逻辑。
确保时钟和复位信号的稳定性和可靠性。
四、仿真与验证1. 仿真环境搭建:搭建适合的仿真环境,对设计进行全面的仿真验证。
EPSON 实时时钟芯片RX-8010SJ Application Manual介绍

根据实际功能设置 1F[h]寄存器 使 STOP=‘0’
继续其它操作
RX-8010SJ 13
13.1
通过 I2C 总线接口读写数据
器件地址(Device Address/Slave Address) 所有的通讯操作都是以 [START 条件] + [从设备地址 + (R/W 读写选择)开始的。 从设备地址如下:
RX-8010SJ
12.3.2 固定周期定时中断寄存器 相关寄存器:
* 在进入操作设定之前,建议将 TE 位 清 0。 * 在不用该功能的时候,计数器 0,1 可以作为 RAM 来使用,但需要将 TE 和 TIE 清 0。 1)用于固定定时器的递减计数器 0,1 该寄存器用来设定定时器的默认值, 从 0 到 65535。 在写入预设值之前请确认 TE 位 为’0’。 *TE 为‘0’时读出来的值是预设值, ‘1’时读出来的值是计数值。 2)TSEL0,TSEL1,TSEL2 这三个位的组合用来设置倒数计数的周期(时钟源)
时钟芯片的选择与应用

√
√
√
时戳 - - -
√
看门狗 - - -
√
54 SEMICONDUCTOR COMPONENTS APPLICATION 2008年06月
应用 APPLICATION DESIGN
设计
二、PCF2128 概述
PCF2128 是内部集成温度补偿晶体振荡器(TCXO) 和 32.768kHz 石英晶振的 CMOS 实时时钟/日历芯片,适用 于要求极高精度、极低功耗的场合。PCF2128 具有 512 字 节通用静态 RAM、可供选择的 I2C 和 SPI 接口、后备电源 转换、可编程看门狗、时戳等特性功能。
关键字: 时钟芯片、PCF2128、实时时钟(RTC)
一、 NXP 时钟芯片选型指南
PCF8563、PCA8563/65 系列芯片是 NXP 公司生产的 低功耗 CMOS 实时时钟/日历芯片,提供可编程时钟输 出、中断输出、掉电检测和报警等功能。地址和数据通过 I2C 总线串行传输,总线速度最高为 400kbits/s,每次读写 数据后,内嵌的字地址寄存器自动产生增量。
SPI
存储器 - - - 4kb SRAM
表 1 NXP 系列时钟芯片选型表
报警 √ √ √
NXP 系列时钟芯片
功耗(3V) 工作温度 低压检测 电池转换
250nA -20℃~+85℃
√
√
250nA -20℃~+85℃
√
√
500nA -40℃~+125℃ √
√
电源失效 - - -
√
-
-20℃~+85℃
作电压范围是 1.8V ̄5.5V,本设计采用 3.3V 供电模式, 在系统电源输入端接入一个 10μF 极性电容 C6 和一个 0.1μF 电容 C5 进行滤波,0.1μF 的电容 C4 接在芯片的 电源输入端进行再次滤波。
实时时钟芯片RX_8025的原理及其应用

电压下降, 且内部晶 振也停止工作
)’+
计时功能单元 可进行至阳历的下二位数和年、 月、 日、 星期、
* *
B B
* B
正常状态 电压下降, 但内部晶 振继续工作
时、 分、 秒各个时段寄存器的设定 = 计时 = 读取, 当阳 历的下二位数为 # 的倍数时,可自动识别闰年, 且 自动判别至 )*"" 年,推荐应用此功能于复费率电 子式电能表对不同时段的电量的设定和读取及抄 表系统的定时抄表器上。
令, 收到应答信号后, 再发要读数据的地址, 收到应 答信号后, 再发起始位后, 主器件向 W*)+ 芯片发送 读指令, 收到应答信号后, 就开始读数据, 读完后再 发非应答信号后结束。格式见图 + 。
!’)
子程序举例框图及清单 作为一个简单的应用实例, 我们给出以下 S>T
!’B’)
读操作 首先主器件( 微处理器) 向 W*)+ 芯片发送写指
OEFV 位 来 设 置 和 监 视 ERES3 TO 报 警 。 当 OER,、 OEFV 都 为 B 时 , 则 表 示 当 前 时 间 与 , ERES3 TO 的 设 定 时 刻 一 致 , = 9(@M 置 “ R” ERES3TO 报警功能有效,发生 ERES3TO 警报; 主 机 可 通 过 表 ! 各 寄 存 器 的 AER,、 AEFV 位 来 设 置和监视 ERES3TA 报警,当 AER,、 AEFV 都为 B 时 , 则 表 示 当 前 时 间 与 ERES3TA 的 设 定 时 刻 一 致, , = 9(@E 置 “ R” ERES3TA 报警功能有效,发生 ERES3TA 警报。 T +* T
总第 !" 卷 第 ##" 期
门控时钟 低功耗芯片设计方案

门控时钟低功耗芯片设计方案全文共四篇示例,供读者参考第一篇示例:门控时钟低功耗芯片设计方案随着物联网技术的飞速发展,原本以人类为中心的智能家居和智能办公等应用场景也逐渐普及,门控时钟低功耗芯片成为这些智能设备的重要组成部分。
门控时钟低功耗芯片设计方案要求具有高性能、低功耗、稳定可靠等特点,以满足现代智能设备对芯片性能的需求。
1. 高性能:门控时钟低功耗芯片需要具有高性能的时钟控制功能,能够对设备的时序信号进行准确控制,确保设备的正常运行。
2. 低功耗:门控时钟低功耗芯片需要具有低功耗的特点,以延长设备的使用时间,提高设备的续航能力。
3. 稳定可靠:门控时钟低功耗芯片需要具有稳定可靠的性能,能够在各种工作环境下保持稳定的工作状态,确保设备的正常运行。
4. 外设接口丰富:门控时钟低功耗芯片需要具有丰富的外设接口,以支持设备与其他外部设备的连接和通讯。
5. 易集成:门控时钟低功耗芯片需要具有易于集成的特点,能够方便地与其他组件进行接口连接,实现功能的扩展和定制。
1. 芯片选用:在选择芯片时,可以考虑采用低功耗的CMOS工艺制程,以降低整体功耗。
可以选择具有高性能和稳定可靠性的时钟控制器芯片,以确保时序信号的准确控制。
2. 功耗优化设计:在芯片设计过程中,可以采用功耗优化设计策略,通过降低功耗模块的工作频率、优化电源管理电路等方式,降低整体功耗,延长设备的续航时间。
3. 时钟控制算法优化:通过优化时钟控制算法,可以提高时钟控制的准确性和稳定性,确保设备的正常运行。
可以提供丰富的时序控制功能,以满足不同应用场景对时序信号的需求。
4. 外设接口设计:在芯片设计中,可以设计丰富的外设接口,如UART、SPI、I2C等接口,以支持设备与其他外部设备的连接和通讯。
可以提供GPIO接口和PWM输出等功能,实现设备的功能扩展和定制。
5. 集成设计:在芯片设计中,可以将时钟控制器、功耗管理电路、外设接口等功能集成到同一芯片中,实现功能的集成和有效管理。
实时时钟电路知识汇总

实时时钟电路知识汇总一、实时时钟用备用电池的选择通常,实时时钟电池的选择要符合以下几个条件,一是设备的设计空间和位置,二是设备的功率损耗,三是充电电路的考量。
根据这样三个条件,在所有的适宜用作实时时钟备用的电池中,大致有以下几种,1、可充电纽扣式锂锰电池,型号包括614,621,414等,可选择品牌有德国瓦尔塔的MC系列、日本精工的MS系列和日本松下的ML系列。
这类电池的特点是电池体积十分小,适用于线板空间非常有限的电路中,比方说GSM手机,数字MP3,数码相机等微型产品;2、可充电纽扣式镍氢电池,型号根据电池容量不同而分为15mA时~80mA时不等。
目前这类电池品质最好,运用最广泛的是德国瓦尔塔品牌,国内也有相当公司在做此类产品,但在电池寿命和安全性能方面还有待提高。
产品主要用于多种单片机,比方说加油机、检测仪器类、PDA设备、复印机或传真机设备等。
3、一次性纽扣式锂电池,型号主要有CR2032、CR1220等,由于是一次性电池,这类产品适用于那些寿命更新比较快,又不需要充电电路的设备。
实时时钟电池目前市场比较混乱,价格也很混乱。
尤其以第一种电池运用最为广泛,但电池的价格却高低相差很大,其实对于工业类客户,通常614的价格不会超过美圆0.45~0.40之间,如果用量大,比如手机客户,他们可以拿到更好的价格。
而对于第二、三两种电池,根据设备需要的电压不同而有差异。
但应该说电池不应该很贵。
二、实时时钟电池的选择和认识我们经常有很多在设计时钟电源或者备用电源时候由于选择电源管理方案的问题而出现电池时钟归零问题,不能充电问题,备用时间不足够等多方面的问题。
在选择电源方案时候,首先必须考虑你使用电池的目的和使用环境问题。
对于设计工程师来说,使用目的是很明确的,但对于电池的使用环境却往往不是很清楚,经常性没有主见地向各电池经营者请教对方的电池是否适合自己的功用。
从电池经营者的角度,每一个电池经营者都会围绕着客户的需求而去专向设计一款或者几款电池方案给客户并解释如何如何,而实际在此过程中存在行而上的成分。
带数字校准功能实时时钟日历芯片AT8372A设计考虑

编制日期:2010-03-10 编号:20100310带数字校准功能高精度时钟芯片AT8372A/B设计考虑徐维锋武汉芯景科技有限公司实时日历时钟芯片广泛应用于电子系统产品中,时间无处不在!时钟日历芯片在应用选型上主要考虑以下几点:1)RTC时钟芯片通讯接口,RTC芯片与CPU的通讯接口主要有I2C、SPI、兼容SPI的3线接口以及并行接口等;2)时钟精度的要求,时钟芯片的时钟精度与所采用晶振的精度、PCB布线、晶振的负载电容等因素有关,下文详细讨论;3)时钟芯片抗干扰能力;4)性价比。
AT8372A/B是武汉芯景科技有限公司推出的CMOS实时时钟/日历芯片。
该芯片内置包括年/月/日/时/分/秒的计时器,在电路中起到钟表的作用。
系统可以设置和读取AT8372A/B中存放的当前时间,据此对数据进行相应处理(例如计费、显示、记录等)。
不仅如此,AT8372A/B还含有时间校正电路,根据CPU 提供的信号来消除晶振的频率误差,从而获得高精度的时钟信号,大大提高钟表走时的精确度。
通过先进的I2C总线与系统之间串行传送数据,AT8372A/B比采用并行总线的同功能芯片大大减少电路板上的布线数目,非常适合于复杂系统。
AT8372A/B目前提供TSSOP-8、SOP8封装形式,可应用于移动电话类通讯产品、便携仪器、电信计费、考勤机、电脑主板、微机外设……等等一切与计时有关的电子产品中,特别适合于时间精度要求严格的场合。
器件特性:z宽工作电压范围:1.45V~6.0Vz休眠电流典型值为0.5μAz包含两套独立的报警系统z提供多种数据读写模式z提供包括星期、小时、分钟的中断输出,中断信号可长时间有效(长达一个月)z具备晶振停振检测功能z可选择12小时/24小时显示模式z提供软件校正功能,对晶振的振荡频率及稳定度要求不高,32.768KHz或32.000KHz的晶振均可使用AT8372A/B的功能框图:编制日期:2010-03-10编号:201003105图1:AT8372A/B 芯片电路结构框图AT8372A 的引脚排布及说明:典型应用电路:符号引脚号 描述INTRB ——————132.768KHz 方波输出/报警中断B 输出SCL 2 串行时钟输入(开漏) SDA 3 串行数据I/O (开漏) VSS 4 地 INTRA ——————5 周期性中断输出/报警中断A 输出OSCOUT 6接晶振的另一个引脚。
DSP系统硬件设计时需注意的几个问题

2 时 钟2.1 DSP系统的时钟电路 DSP系统中时钟电路主要有3种:晶体电路、晶振电路和可编程时钟芯片电路。 (1)晶体电路最为简单,只需晶体和2个电容,但驱动能力差,不能提供多个器件使用,频率范围小(20k~60MHz),使用时须注意配置正确的负载电容,以使输出的时钟频率精确、稳定。TI DSP芯片除C6000和C5510外,内部含有振荡电路,可使用晶体电路产生所需的时钟信号。但也可不使用片内振荡电路,直接由外部提供时钟信号。 (2)晶振电路频率范围宽(1~400MHz),驱动能力强,可为多个器件使用。但由于晶振频率不能改变,多个独立的时钟需要多个晶振。另外在使用晶振时,要注意时钟信号电平,一般晶振输出信号电平为5V或3.3V,对于要求输入时钟信号电平为1.8V的器件(如VC5401、VC5402、VC5409和F281X等),不能选用晶振来提供时钟信号。 (3)可编程时钟芯片电路由可编程时钟芯片、晶体和2个外部电容构成。有多个时钟输出,可产生特殊频率值,适于多个时钟源的系统,驱动能力强,频宽最高可达200MHz,输出信号电平一般为5V或3.3V。常用器件为CY22381和CY2071A。 目前TI DSP工作频率已高达1GHz,为降低时钟的高频噪声干扰,提高系统整体的性能,设计时通常使用频率较低的外部参考时钟源。为此须采用可编程时钟芯片电路,因它可以在在线的情况下,通过编程对系统的工作时钟进行控制,以保证在较低的外部时钟源时,通过其内部集成的PLL锁相环的倍频,获得所希望的工作频率。同时通过在DSP内部对时钟进行编程控制,也能较好地满足不同应用的要求。例如对于自动化仪表、便携式仪器以及家电等应用场合,往往希望有较低能耗,这时可通过编程,使DSP工作在较低频率,甚至可以设定为固定分频模式,并关断内部的锁相环相关电路,使其功耗最小。而对于数字信号处理以及实时系统,通常需要DSP工作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实时时钟芯片应用设计时必须要考虑的事项
总述
实时时钟芯片(RTC)允许一个系统能同步或记录事件,给用户一个易理解的时间参考。
由于RTC的应用越来越广泛,为了避开设计时出现的问题,设计者应熟悉RTCs。
选择接口
RTC可用的总线接口范围很宽。
串行接口包括2线(I2C),3线和串行外设接口(SPI)。
并行接口包含多总线(多数据和地址线)和带单独地址及字节数据输入的设计。
接口的选择通常由所用的处理器类型决定,很多处理器包括2线或SPI接口。
其它的,如8051处理器及其派生的处理器支持多路地址和数据总线。
时间保持非易失性(NV)RAM和SRAM用相同的控制信号,许多处理器都提供这种方便的接口,也包括各种不同的用电池组支持的RAM。
最后,看不见的时钟隐藏电池供电的RAM中并可用64位的软件协议去访问时钟。
备用电池的功能
在有的应用中,例如VCRS,如果去掉电源,会丢失时间和日期信息,。
许多新的应用中,即使主电源去掉了,要求时间和日期信息应保持有效。
为了保持时钟晶振运行,要用到一个主电源或者备用电源,或者一个大容量的电容。
在这种情况下,时钟芯片必须能够在两个电源之间进行切换。
如果有一个电池,例如钮扣型锂电池用作备用电源,当在用备用电源工作时RTC应设计成尽可能少的消耗功耗。
电源切换电路,一般情况下由主电源供电,会使电源切换到电池供电,并使RTC进入低功耗模式。
微处理器和RTC之间的通信通常锁定(称为写保护),用来使电池供电电流最小和防止数据损坏。
许多时钟芯片都包括一个晶振控制位,通常称之为时钟中断(CH)或是晶振使能位(/EOSC)。
此位通常位于秒寄存器或控制寄存器的最高位(位7),几乎在有这位的所有时钟芯片中,初始电池上的首选状态对于晶振来说是无效的。
这允许系统设计者提出制造流程,在安装和测试后,用Vbat进行供电,通常用个锂电池。
此时晶振处于一个停止状。