江苏省南通市2020高考数学二轮冲刺小练(30)

合集下载

江苏省南通市如皋市2020届高三数学下学期二模考试试题含解析

江苏省南通市如皋市2020届高三数学下学期二模考试试题含解析
所以点 到焦点 , 的距离分别为 , ,
故 ,得 .
所以 ,椭圆 的方程为 .
(2)依题意,左焦点 ,设直线 : , , , .
联立方程组 整理得 ,
所以 , .
因为直线 , , 的斜率之和为0,所以 ,
即 ,整理得 ,
即 ,解得 .
所以直线 的方程为 .
(3)若直线 的斜率不存在, ;
若直线 的斜率存在,由(2)可得
,
又 ,直线 的斜率为 , ,
所以 .
故 ,
令 ,则 ,

当 时, , ,
所以 .
显然, ,
所以 的最小值为2.
【点睛】本题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,考查椭圆中的最值问题的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.
19.已知函数 ,其中 , 为自然对数的底数.
所以 .
故答案为:
【点睛】本题主要考查集合 交、并、补运算,意在考查学生对这些知识的理解掌握水平,属于基础题。
2.若复数 满足 ( 为虚数单位),则 ______________.
【答案】
【解析】
由 ,得 ,则 ,故答案为 。
3.某工厂为了了解一批产品 净重(单位:克)情况,从中随机抽测了100件产品的净重,所得数据均在区间[96,106]中,其频率分布直方图如图所示,则在抽测的100件产品中,净重在区间 上的产品件数是.
所以 平面 ,所以 ,
所以 ,
因为 ,所以 .
所以 ,
所以点 就是外接球的球心。
所以外接球的半径为 。
所以外接球的表面积为 .
故答案为:
【点睛】本题主要考查几何体的外接球表面积的计算问题,意在考查学生对这些知识的理解掌握水平。

江苏省南通市2020届高三数学下学期二模考前综合练习试题含解析

江苏省南通市2020届高三数学下学期二模考前综合练习试题含解析
7。已知函数f(x)= 若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
【答案】
【解析】
由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.
【答案】
【解析】
【分析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案。
【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,
最高次项的系数为该项次数的倒数,
∴A ,A 1,解得B ,所以A﹣B .
故答案为: .
【点睛】本题考查了归纳推理,意在考查学生的推理能力.
【详解】(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以

(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.
(1)求证:VA∥平面BDE;
(2)求证:平面VAC⊥平面BDE.
综上所述,a=﹣2.
故答案为:﹣2.
【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.
9。已知双曲线 (a>0,b>0)的两个焦点为 、 ,点P是第一象限内双曲线上的点,且 ,tan∠PF2F1=﹣2,则双曲线的离心率为_____.
【答案】
【解析】
【分析】
根据正弦定理得 ,根据余弦定理得 2PF1•PF2cos∠F1PF2 3,联立方程得到 ,计算得到答案。

江苏南通2020 高考数学冲刺小练(2)

江苏南通2020 高考数学冲刺小练(2)

交 y 轴于 M , N ,且 ON 3OM ,则双曲线的离心率为
.
7.已知动圆 M 与圆 C1 : (x 1)2 y2 1 ,圆 C2 : (x 1)2 y2 25 均内切,则动圆圆心 M 的
轨迹方程是
.
8.设点 A1, 2 ,非零向量 a m, n ,若对于直线 3x y 4 0 上任意一点 P , AP a 恒为
P
(2) FG ∥平面 EBO .
E
F
A
G O
C
B
12. 数列{an}的前 n 项和为 Sn,若存在正整数 r,t,且 r<t,使得 Sr=t,St=r 同时成立,则称数 列{an}为“M(r,t)数列”. (1)若首项为 3,公差为 d 的等差数列{an}是“M(r,2r)数列”,求 d 的值; (2)已知数列{an}为等比数列,公比为 q.若数列{an}为“M(r,2r)数列”,r≤4,求 q 的值.
2
a2 a3,a3 a4,a4 a5 成等差数列,则 q 的值为
.
6.在平面直角坐标
xOy
中,双曲线 C
:
x2 a2
y2 b2
1(a
0,b
0)
的左右焦点分别为 F1, F2 , A, B
分别为
左,右顶点,点 P 为双曲线上一点,且满足 PF2 F1F2 ,点 Q 为 PF2 上一点,直线 QF1, BQ 分别
.
是 i 100 否
N N 1 i
S N T
4.高三某班级共 48 人,班主任为了解学生高考前的心理状 况,将学生按 1 至 48 的学号用系统抽样方法抽取 6 人进行
T
T
i
1 1
输出 S 结束
调查,若抽到的最大学号为 45,则抽到的最小学号为

2020年江苏高考数学第二轮复习专题训练含解析

2020年江苏高考数学第二轮复习专题训练含解析
2020 年江苏高考数学第二轮复习精典试题
高考冲刺训练专题 (一 )
4 1. 中心在原点,一个顶点为 A( -3,0),离心率为 3的双曲线的
x2 y2 方程是 9 - 7 =1 .
解析 :因为双曲线的顶点为 A( -3,0),所以双曲线的焦点在 x
x2 y2
4
轴上,所以设双曲线的方程为 a2-b2=1,则 a=3.又因为 e=3,所以
4. 已知双曲线 xa22-y2=1(a>0)的一条渐近线为 3x+y=0,则 a
3 =3.
解析 :因为双曲线的一条渐近线方程为
y=-
3x,且
a>0,则
b a
= 1a=
3,解得
a=
3 3.
x2 y2 5. 设双曲线 a2-b2=1(a>0,b>0)的右焦点为 F,右准线 l 与两
条渐近线交于 P,Q 两点,如果△ PQF 是直角三角形,那么双曲线的
- y0),M→F2=( 3- x0,-y0),所以 M→F1·M→F 2= x02- 3+ y20.因为点 M 在 双曲线上,所以 x220- y20= 1,代入不等式 M→F 1·M→F 2<0,得 3y02<1,解得
3
3
- 3 <y0< 3 .
9.
设 F1, F2 是双曲线
x2-
y2 24=
1
的两个焦点,
P
是双曲线上的
一点,且 3PF1= 4PF2,则△ PF1F2 的面积为 24 .
解析 :由题意知,双曲线的实轴长为 2,焦距为 F1F2=2×5= 10,
4
1
PF1-PF2= 3PF2- PF2= 3PF2=2,所以

江苏省南通市2020届高三第二学期阶段性模拟考试数学试题(含答案解析)

江苏省南通市2020届高三第二学期阶段性模拟考试数学试题(含答案解析)

开始输出n 输入p结束n ←1, S ←0S < pn ←n + 1S ←S + 2n NY(第5题)江苏省南通市2020届高三第二学期阶段性模拟考试数 学 试 题2020.05(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}2log (1)2B x x =-<,则A B =I ▲ . 2.设复数2(2i)z =+(i 为虚数单位),则z 的共轭复数为 ▲ .3.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线2x ﹣y ﹣1=0上方的概率为 .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ . 5.执行右边的程序框图,若p =14,则输出的n 的值为 ▲ .6.函数22log (32)y x x =--的值域为 ▲ .7.等差数列}{n a 中,若100119753=++++a a a a a , 则=-1393a a ▲ .8.现用一半径为10 cm ,面积为80π cm 2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为 ▲ cm 3.9.已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.已知[)0,2θπ∈,若关于k ()33sin cos k θθ-在(],2-∞-上恒成立,则θ的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//CD AB ,2AB CD =, AC 交BD 于O ,锐角PAD ∆所在平面PAD ⊥底面ABCD ,PA BD ⊥,点Q 在侧棱PC 上,且2PQ QC =. (1)求证://PA 平面QBD ; (2)求证:BD AD ⊥.17.(本小题满分14分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.18.(本小题满分16分)如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面。

2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题(解析版)

2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题(解析版)

2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题一、填空题1.设集合{}1,3A =,{}2230B x x x =--<,则A B =I ____________.【答案】{}1【解析】先解不等式2230x x --<,再求交集的定义求解即可. 【详解】由题,因为2230x x --<,解得13x -<<,即{}|13B x x =-<<, 则{}1A B =I , 故答案为:{}1 【点睛】本题考查集合的交集运算,考查解一元二次不等式.2.已知i 12i z ⋅=+(i 为虚数单位),则复数z =________. 【答案】2i - 【解析】【详解】 解:i 12i z ⋅=+Q()212122i ii z i i i++∴===- 故答案为:2i - 【点睛】本题考查复数代数形式的乘除运算,属于基础题. 3.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】根据特称命题的否定为全称命题得到结果即可. 【详解】解:因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,,则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤. 【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.4.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________. 【答案】56【解析】试题分析:根据题意,记白球为A ,红球为B ,黄球为12,C C ,则 一次取出2只球,基本事件为AB 、1AC 、2AC 、1BC 、2BC 、12C C 共6种, 其中2只球的颜色不同的是AB 、1AC 、2AC 、1BC 、2BC 共5种; 所以所求的概率是56P =. 【考点】古典概型概率5.“sin cos 0αα+=”是“cos20α=”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一) 【答案】充分不必要【解析】由余弦的二倍角公式可得()()22cos2cos sin cos sin cos sin 0ααααααα=-=-+=,即sin cos 0αα-=或sin cos 0αα+=,即可判断命题的关系.【详解】 由()()22cos2cossin cos sin cos sin 0ααααααα=-=-+=,所以sin cos 0αα-=或sin cos 0αα+=,所以“sin cos 0αα+=”是“cos20α=”的充分不必要条件.故答案为:充分不必要 【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用. 6.已知等比数列的前项和为,若,则的值是 .【答案】-2 【解析】试题分析:,【考点】等比数列性质及求和公式 7.若幂函数()a f x x =的图象经过点)122,,则其单调递减区间为_______.【答案】(0,)+∞【解析】利用待定系数法求出幂函数()f x 的解析式,再求出()f x 的单调递减区间. 【详解】解:幂函数()a f x x =的图象经过点1(2,)2,则1(2)2a=, 解得2a =-;所以2()f x x -=,其中()(),00,x ∈-∞+∞U ;所以()f x 的单调递减区间为(0,)+∞. 故答案为:(0,)+∞. 【点睛】本题考查了幂函数的图象与性质的应用问题,属于基础题. 8.若函数()sin 3f x x x ωω= (x ∈R ,0>ω)满足()()02f f αβ==,,且||αβ-的最小值等于2π,则ω的值为___________. 【答案】1【解析】利用辅助角公式化简可得()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,由题可分析||αβ-的最小值等于2π表示相邻的一个对称中心与一个对称轴的距离为2π,进而求解即可. 【详解】由题,()sin 32sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 因为()0fα=,()2f β=,且||αβ-的最小值等于2π,即相邻的一个对称中心与一个对称轴的距离为2π, 所以142T π=,即2T π=,所以2212T ππωπ===,故答案为:1 【点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.9.已知函数()2241020ax x x f x x bx c x ⎧--≥=⎨++<⎩,,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若AB =BC ,则实数t 的值为_________. 【答案】52-【解析】由()f x 是偶函数可得0x >时恒有()()f x f x -=,根据该恒等式即可求得a ,b ,c 的值,从而得到()f x ,令()t f x =,可解得A ,B ,C 三点的横坐标,根据AB BC =可列关于t 的方程,解出即可. 【详解】解:因为()f x 是偶函数,所以0x >时恒有()()f x f x -=,即22241x bx c ax x -+=--, 所以2(2)(4)10a x b x c -+---=,所以204010a b c -=⎧⎪-=⎨⎪+=⎩,解得2a =,4b =,1c =-;所以22241,0()241,0x x x f x x x x ⎧--=⎨+-<⎩…; 由2241t x x =+-,即22410x x t +--=,解得1x =-;故1A x =--1B x =- 由2241t x x =--,即22410x x t ---=,解得1x =.故1C x =1D x =. 因为AB BC =,所以B A C B x x x x -=-252t =-, 故答案为:52-. 【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.10.设集合{}1 A a =-,,e e 2a B ⎧⎫=⎨⎬⎩⎭,(其中e 是自然对数的底数),且A B ⋂≠∅,则满足条件的实数a 的个数为______. 【答案】1【解析】可看出2aa e ≠,这样根据A B ≠∅I即可得出2a =,从而得出满足条件的实数a 的个数为1. 【详解】解:A B ≠∅Q I , 2a ∴=或2aa e =,在同一平面直角坐标系中画出函数y x =与2xy e =的图象,由图可知y x =与2xy e =无交点, 2aa e ∴=无解,则满足条件的实数a 的个数为1. 故答案为:1. 【点睛】考查列举法的定义,交集的定义及运算,以及知道方程2xx e =无解,属于基础题.11.已知过点O 的直线与函数3xy =的图象交于A 、B 两点,点A 在线段OB 上,过A作y 轴的平行线交函数9xy =的图象于C 点,当BC ∥x 轴,点A 的横坐标是【答案】3log 2【解析】通过设出A 点坐标,可得C 点坐标,通过BC ∥x 轴,可得B 点坐标,于是再利用OA OB k k =可得答案. 【详解】根据题意,可设点(),3aA a ,则(),9aC a ,由于BC ∥x 轴,故9a CB yy ==,代入3x y =,可得2B x a =,即()2,9aB a ,由于A 在线段OB 上,故OAOB kk =,即392a aa a=,解得3log 2a =.12.设点P 在函数()1e 2xf x =的图象上,点Q 在函数()()ln 2g x x =的图象上,则线段PQ 长度的最小值为_________)1ln 2-【解析】由解析式可分析两函数互为反函数,则图象关于y x =对称,则点P 到y x =的距离的最小值的二倍即为所求,利用导函数即可求得最值. 【详解】 由题,因为()1e 2xf x =与()()ln 2g x x =互为反函数,则图象关于y x =对称, 设点P 为(),x y ,则到直线y x =的距离为d =, 设()12xh x e x =-, 则()112xh x e '=-,令()0g x ¢=,即ln 2x =, 所以当(),ln 2x ∈-∞时,()0h x '<,即()h x 单调递减;当()ln 2,x ∈+∞时,()0h x '>,即()h x 单调递增,所以()()min ln 21ln 2h x h ==-,则min d =, 所以PQ的最小值为)min 21ln 2d =-,故答案为)1ln 2- 【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.13.设()f x 为偶函数,且当(]2,0x ∈-时,()()2f x x x =-+;当[)2x ∈+∞,时,()()()2f x a x x =--.关于函数()()g x f x m =-的零点,有下列三个命题:①当4a =时,存在实数m ,使函数()g x 恰有5个不同的零点; ②若[]01m ∀∈,,函数()g x 的零点不超过4个,则2a ≤; ③对()1m ∀∈+∞,,()4a ∃∈+∞,,函数()g x 恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______. 【答案】①②③【解析】根据偶函数的图象关于y 轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可. 【详解】解:当4a =时()()[)()()[)20,2422,x x x f x x x x ⎧--∈⎪=⎨--∈+∞⎪⎩又因为()f x 为偶函数∴可画出()f x 的图象,如下所示:可知当0m =时()()g x f x m =-有5个不同的零点;故①正确; 若[]01m ∀∈,,函数()g x 的零点不超过4个, 即[]01m ∀∈,,()y f x =与y m =的交点不超过4个, 2x ∴≥时()0f x ≤恒成立又Q 当[)2x ∈+∞,时,()()()2f x a x x =-- 0a x ∴-≤在[)2x ∈+∞,上恒成立a x ∴≤在[)2x ∈+∞,上恒成立 2a ∴≤由于偶函数()f x 的图象,如下所示:直线l 与图象的公共点不超过4个,则2a ≤,故②正确; 对()1m ∀∈+∞,,偶函数()f x 的图象,如下所示:()4a ∃∈+∞,,使得直线l 与()g x 恰有4个不同的交点点,且相邻点之间的距离相等,故③正确. 故答案为:①②③ 【点睛】本题考查函数方程思想,数形结合思想,属于难题.14.已知函数()2211x kx f x x x ++=++,若对于任意正实数123,,x x x ,均存在以()()()123,,f x f x f x 为三边边长的三角形,则实数k 的取值范围是_______.【答案】1,42⎡⎤-⎢⎥⎣⎦【解析】根据三角形三边关系可知()()()123f x f x f x +>对任意的123,,x x x 恒成立,将()f x 的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由1k -的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论k ,转化为()()12f x f x +的最小值与()3f x 的最大值的不等式,进而求出k 的取值范围. 【详解】因为对任意正实数123,,x x x ,都存在以()()()123,,f x f x f x 为三边长的三角形, 故()()()123f x f x f x +>对任意的123,,x x x 恒成立,()()222111111111k x x kx k f x x x x x x x-++-==+=+++++++,令113t x x =++≥, 则()113k y t t-=+≥, 当10k ->,即1k >时,该函数在[)3,+∞上单调递减,则21,3k y +⎛⎤∈ ⎥⎝⎦; 当1k =,即1k =时,{}1y ∈,当10k -<,即1k <时,该函数在[)3,+∞上单调递增,则2,13k y +⎡⎫∈⎪⎢⎣⎭,所以,当1k >时,因为()()122423k f x f x +<+≤,()3213k f x +<≤, 所以223k +≤,解得14k <≤; 当1k =时,()()()1231f x f x f x ===,满足条件;当1k <时,()()122423k f x f x +≤+<,且()3213k f x +≤<, 所以2413k +≥,解得112k -≤<, 综上,142k -≤≤,故答案为:1,42⎡⎤-⎢⎥⎣⎦【点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.二、解答题15.已知集合{}220A x x x =-->,集合(){}222550B x x k x k =+++<,k ∈R .(1)求集合B ;(2)记M A B =I ,且集合M 中有且仅有一个整数,求实数k 的取值范围. 【答案】(1)5,2B k ⎛⎫=-- ⎪⎝⎭(2)[)(]3,23,4-⋃ 【解析】(1)由不等式22(25)50x k x k +++<可得(25)()0x x k ++<,讨论k -与52-的关系,即可得到结果;(2)先解得不等式220x x -->,由集合M 中有且仅有一个整数,当52k -<-时,则M 中仅有的整数为3-;当52k ->-时,则M 中仅有的整数为2-,进而求解即可. 【详解】解:(1)因为22(25)50x k x k +++<,所以(25)()0x x k ++<,当52k -<-,即52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k -=-,即52k =时,B =∅; 当52k ->-,即52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭. (2)由220x x -->得()(),12,x ∈-∞-⋃+∞, 当52k -<-,即52k >时,M 中仅有的整数为3-,所以43k -≤-<-,即(]3,4k ∈; 当52k ->-,即52k <时,M 中仅有的整数为2-, 所以23k -<-≤,即[)3,2k ∈-; 综上,满足题意的k 的范围为[)(]3,23,4-⋃ 【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.16.已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=. (1)求sin α的值; (2)求tan +2βα⎛⎫⎪⎝⎭的值.【答案】(1)13(2 【解析】(1)先利用同角的三角函数关系解得sin β和()cos αβ+,再由()sin sin ααββ=+-⎡⎤⎣⎦,利用正弦的差角公式求解即可;(2)由(1)可得tan α和tan β,利用余弦的二倍角公式求得tan 2β,再由正切的和角公式求解即可. 【详解】 解:(1)因为1,,cos 23πβπβ⎛⎫∈=-⎪⎝⎭,所以sin β 又0,2πα⎛⎫∈ ⎪⎝⎭,故3,22ππαβ⎛⎫+∈⎪⎝⎭,所以cos()9αβ+===-, 所以sin sin[()]sin()cos cos()sin ααββαββαββ=+-=+-+71193933⎛⎛⎫=⨯---⨯= ⎪ ⎝⎭⎝⎭(2)由(1)得,1sin3α=,0,2πα⎛⎫∈ ⎪⎝⎭,所以cos3α===,所以sintancosααα==,因为22222222cos sin1tan222cos cos sin22cos sin1tan222βββββββββ--=-==++且1cos3β=-,即221tan1231tan2ββ-=-+,解得2tan22β=,因为,2πβπ⎛⎫∈ ⎪⎝⎭,所以,242βππ⎛⎫∈ ⎪⎝⎭,所以tan02β>,所以tan2β=所以tan tan24tan1221tan tan122βαβαβα+⎛⎫+===⎪⎝⎭-⋅-【点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.17.设数列{}n a,{}n b的各项都是正数,n S为数列{}n a的前n项和,且对任意n*∈N,都有22n n na S a=-,1b e=,21n nb b+=,lnn n nc a b=⋅(e是自然对数的底数).(1)求数列{}n a,{}n b的通项公式;(2)求数列{}n c的前n项和n T.【答案】(1)n a n=,12nnb e-=(2)(1)21nnT n=-⋅+【解析】(1)当2n≥时,21112n n na S a---=-,与22n n na S a=-作差可得11(2)n na a n--=≥,即可得到数列{}n a是首项为1,公差为1的等差数列,即可求解;对21n nb b+=取自然对数,则1ln2lnn nb b+=,即{}lnnb是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得1ln 2n n n n c a b n -==⋅,再利用错位相减法求解即可.【详解】解:(1)因为0n a >,22n n n a S a =-,①当1n =时,21112a S a =-,解得11a =; 当2n ≥时,有21112n n n a S a ---=-,②由①-②得,()()2211112(2)n n n n n n n n a a S S a a a a n -----=---=+≥,又0n a >,所以11(2)n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列,故n a n =,又因为21n nb b +=,且0n b >,取自然对数得1ln 2ln n n b b +=,所以1ln 2ln n nb b +=, 又因为1ln ln 1b e ==,所以{}ln n b 是以1为首项,以2为公比的等比数列,所以1ln 2n n b -=,即12n n b e -=(2)由(1)知,1ln 2n n n n c a b n -==⋅,所以1221112(2)3(2)(1)(2)(2)n n n T n n --=⨯+⨯+⨯++-⨯+⨯L ,③123121(2)2(2)3(2)(1)(2)(2)n n n T n n -⨯=⨯+⨯+⨯++-⨯+⨯L ,④③减去④得:2112222n nn T n --=++++-⨯L()()121221212121n n n n n n n n -=-⨯=--⨯=---,所以(1)21nn T n =-⋅+【点睛】本题考查由n a 与n S 的关系求通项公式,考查错位相减法求数列的和.18.已知矩形纸片ABCD 中,6,12AB AD ==,将矩形纸片的右下角沿线段MN 折叠,使矩形的顶点B 落在矩形的边AD 上,记该点为E ,且折痕MN 的两端点M ,N 分别在边,AB BC 上.设,MNB MN l θ∠==,EMN ∆的面积为S .(1)将l 表示成θ的函数,并确定θ的取值范围; (2)求l 的最小值及此时sin θ的值;(3)问当θ为何值时,EMN ∆的面积S 取得最小值?并求出这个最小值. 【答案】(1)23sin cos 124l ππθθθ⎛⎫=≤≤ ⎪⎝⎭(2)3sin θ=,l 93.(3)6πθ=时,面积S 取最小值为83【解析】(1),2ENM MNB EMA θθ∠=∠=∠=,利用三角函数定义分别表示,,,NB MB ME AM ,且6AM MB +=,即可得到l 关于θ的解析式;12BN ≤,6BM ≤,则2312sin cos 36cos 02BN BM θθθπθ⎧=≤⎪⎪⎪=≤⎨⎪⎪<<⎪⎩,即可得到θ的范围; (2)由(1),若求l 的最小值即求2sin cos θθ的最大值,即可求24sin cos θθ的最大值,设为224()sin cos f θθθ=,令2cos x θ=,则22()(1)f x x θ=-,即可设2()(1)g x x x =-,利用导函数判断函数的单调性,即可求得()g x 的最大值,进而求解;(3)由题,23191sin cos 22sin cos 124S l ππθθθθθ⎛⎫==⨯≤≤ ⎪⎝⎭,则2268114sin cos S θθ=⨯,设2cos 124t ππθθ⎛⎫=≤≤ ⎪⎝⎭,()3(1)t h t t =-,利用导函数求得()h t 的最大值,即可求得S 的最小值.【详解】解:(1),2ENM MNB EMA θθ∠=∠=∠=,故cos ,sin ,cos 2sin cos 2NB l MB ME l AM ME l θθθθθ=====. 因为6AM MB +=,所以sin cos2sin 6l l θθθ+=,, 所以263sin (cos 21)sin cos l θθθθ==+,又12BN ≤,6BM ≤,则2312sin cos 36cos 02BN BM θθθπθ⎧=≤⎪⎪⎪=≤⎨⎪⎪<<⎪⎩,所以124ππθ≤≤, 所以23sin cos 124l ππθθθ⎛⎫=≤≤ ⎪⎝⎭(2)记()2sin cos ,124fππθθθθ=≤≤,则224()sin cos f θθθ=,设2cos x θ=,12,24x ⎡+∈⎢⎣⎦,则22()(1)f x x θ=-, 记2()(1)g x x x =-,则2()23g x x x ='-,令()0g x '=,则212,324x ⎡=∈⎢⎣⎦, 当12,23x ⎡⎤∈⎢⎥⎣⎦时,()0g x ¢>;当22,34x ⎡+∈⎢⎣⎦时,()0g x ¢<, 所以()g x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,在23⎡⎢⎣⎦上单调递减,故当22cos3x θ==时l 取最小值,此时sin θ=,l.(3)EMN ∆的面积23191sin cos 22sin cos 124S l ππθθθθθ⎛⎫==⨯≤≤ ⎪⎝⎭, 所以2268114sin cos S θθ=⨯,设2cos 124t ππθθ⎛⎫=≤≤ ⎪⎝⎭,则12t ≤≤, 设3()(1)h t t t =-,则23()34h t t t '=-,令()0h t '=,312,424t ⎡+=∈⎢⎣⎦,所以当13,24t ⎡⎤∈⎢⎥⎣⎦时,()0h t '>;当32,44t ⎡∈⎢⎣⎦时,()0h t '<,所以()h t 在13,24⎡⎤⎢⎥⎣⎦上单调递增,在34⎡⎢⎣⎦上单调递减,故当23cos 4t θ==,即6πθ=时,面积S 取最小值为【点睛】本题考查三角函数定义的应用,考查利用导函数求最值,考查运算能力.19.已知函数()y f x =.若在定义域内存在0x ,使得()()00f x f x -=-成立,则称0x 为函数()y f x =的局部对称点.(1)若a ,b R ∈且a ≠0,证明:函数()2f x ax bx a =+-有局部对称点;(2)若函数()2xg x c =+在定义域[]1,1-内有局部对称点,求实数c 的取值范围;(3)若函数()12423xx h x m m +=-⋅+-在R 上有局部对称点,求实数m 的取值范围.【答案】(1)见解析(2)514c -≤≤-(3)1m ≤【解析】(1)若函数()2f x ax bx a =+-有局部对称点,则()()0f x f x -+=,即()()220ax bx a ax bx a +-+--=有解,即可求证;(2)由题可得()()0g x g x -+=在[]1,1-内有解,即方程2220x x c -++=在区间[]1,1-上有解,则222x x c --=+,设2(11)xt x =-≤≤,利用导函数求得22x x -+的范围,即可求得c 的范围;(3)由题可得()()0h x h x -+=在R 上有解,即()12124234230x x x x m m m m --++-⋅+-+-⋅+-=在R 上有解,设22(2)x x t t -+=≥,则可变形为方程222280t mt m -+-=在区间[)2,+∞内有解,进而求解即可. 【详解】(1)证明:由()2f x ax bx a =+-得()2f x ax bx a -=--,代入()()0f x f x -+=得()()220ax bx a ax bx a +-+--=,则得到关于x 的方程20(0)ax a a -=≠,由于a R ∈且0a ≠,所以1x =±, 所以函数()2(0)f x ax bx a a =+-≠必有局部对称点(2)解:由题,因为函数()2xg x c =+在定义域[]1,1-内有局部对称点所以()()0g x g x -+=在[]1,1-内有解,即方程2220x x c -++=在区间[]1,1-上有解, 所以222x x c --=+, 设2(11)xt x =-≤≤,则122t ≤≤,所以12c t t -=+令11(),22s t t t t =+≤≤,则221(1)(1)()1t t s t t t-+'=-=, 当1,12t ⎛⎫∈ ⎪⎝⎭时,()0s t '<,故函数()s t 在区间1,12⎛⎫ ⎪⎝⎭上单调递减,当()1,2t ∈时,()0s t '>,故函数()s t 在区间()1,2上单调递增, 所以()()min 12s t s ==, 因为1522s ⎛⎫= ⎪⎝⎭,()522S =,所以()max 52s t =,所以1522t t ≤+≤, 所以514c -≤≤- (3)解:由题,12()423x x h x m m --+-=-⋅+-, 由于()()0h x h x -+=,所以()12124234230xx x x m m m m --++-⋅+-+-⋅+-=,所以()()()244222230x xxx m m --+-++-=()在R 上有解,令22(2)xxt t -+=≥,则2442x x t -+=-,所以方程()变为222280t mt m -+-=在区间[)2,+∞内有解, 需满足条件:()2248402m m ⎧∆=--≥≥,即1m m ⎧-≤≤⎪⎨-≤≤⎪⎩得1m ≤【点睛】本题考查函数的局部对称点的理解,利用导函数研究函数的最值问题,考查转化思想与运算能力.20.已知函数()ln f x x =.(1)求函数()()1g x f x x =-+的零点;(2)设函数()f x 的图象与函数1a y x x=+-的图象交于()11A x y ,,()()1112B x y x x <,两点,求证:121a x x x <-;(3)若0k >,且不等式()()()2211x f x k x --≥对一切正实数x 恒成立,求k 的取值范围.【答案】(1)x=1 (2)证明见解析 (3) 02k <„【解析】(1)令()1g x lnx x =-+,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证1a x < 21x x -,即证1x 212121(1)lnx lnx x x x x --<-g 21x x -,即证2112()1x xln x x >-,构造函数进而求证; (3)不等式22(1)()x lnx k x --…对一切正实数x 恒成立,222(1)(1)(1)(1)[]1k x x lnx k x x lnx x ----=--+Q ,设(1)()1k x h x lnx x -=-+,分类讨论进而求解. 【详解】解:(1)令()1g x lnx x =-+,所以11()1xg x x x-'=-=, 当(0,1)x ∈时,()0g x '>,()g x 在(0,1)上单调递增; 当(1,)x ∈+∞时,()0g x '<,()g x 在(1,)+∞单调递减; 所以()()10min g x g ==,所以()g x 的零点为1x =.(2)由题意Q 11122211a lnx x x a lnx x x ⎧=+-⎪⎪⎨⎪=+-⎪⎩, 211221(1)lnx lnx a x x x x -∴=--g , 要证121a x x x <- 21x x -,即证211212121(1)lnx lnx x x x x x x x --<--g,即证2112()1x x ln x x >-,令211x t x =>,则11lnt t>-,由(1)知1lnx x -„,当且仅当1x =时等号成立,所以111ln t t<-, 即11lnt t>-,所以原不等式成立.(3)不等式22(1)()x lnx k x --…对一切正实数x 恒成立,222(1)(1)(1)(1)[]1k x x lnx k x x lnx x ----=--+Q , 设(1)()1k x h x lnx x -=-+,222122(1)1()(1)(1)k x k x h x x x x x +-+'=-=++,记2()2(1)1x x k ϕ=+-+,△24(1)44(2)k k k =--=-,①当△0„时,即02k <„时,()0h x '…恒成立,故()h x 单调递增. 于是当01x <<时,()()10h x h <=,又210x -<,故22(1)(1)x lnx k x ->-, 当1x >时,()()10h x h >=,又210x ->,故22(1)(1)x lnx k x ->-, 又当1x =时,22(1)(1)x ln k x -=-,因此,当02k <„时,22(1)(1)x lnx k x --…, ②当△0>,即2k >时,设22(1)10x k x +-+=的两个不等实根分别为3x ,434()x x x <, 又()1420k ϕ=-<,于是3411x k x <<-<,故当(1,1)x k ∈-时,()0h x '<,从而()h x 在(1,1)k -单调递减;当(1,1)x k ∈-时,()()10h x h <=,此时210x ->,于是2(1)()0x h x -<, 即22(1)(1)x lnx k x -<- 舍去, 综上,k 的取值范围是02k <„. 【点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题. 21.选修4-2:矩阵与变换(本小题满分10分) 已知矩阵A =01a k ⎡⎤⎢⎥⎣⎦ (k≠0)的一个特征向量为α=1k ⎡⎤⎢⎥-⎣⎦, A 的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.【答案】解:设特征向量为α=1k ⎡⎤⎢⎥-⎣⎦对应的特征值为λ,则01a k ⎡⎤⎢⎥⎣⎦1k ⎡⎤⎢⎥-⎣⎦=λ1k ⎡⎤⎢⎥-⎣⎦,即1ak k kλλ-=⎧⎨=⎩ 因为k≠0,所以a =2. 5分 因为13111A -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以A 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦,即201k ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦,所以2+k =3,解得 k =1.综上,a =2,k =1. 10分 【解析】试题分析:由 特征向量求矩阵A, 由逆矩阵求k 【考点】特征向量, 逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵. 22.本小题满分14分)已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为1,231x t yt ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段的长度【答案】15)21(2222=-【解析】解:解:将曲线C 的极坐标方程化为直角坐标方程为2240x y y +-=, 即22(2)4x y +-=,它表示以(0,2)为圆心,2为半径圆, ………………………4分 直线方程l 的普通方程为31y x =+, ………8分 圆C 的圆心到直线l 的距离21=d ,……………………………10分 故直线l 被曲线C 截得的线段长度为15)21(2222=-.……………14分23.如图,在正四棱锥P ABCD -中,2PA AB ==,点M 、N 分别在线段PA 、BD 上,13BN BD =.(1)若13PM PA =,求证:MN ⊥AD ;(2)若二面角M BD A --的大小为4π,求线段MN 的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:由于图形是正四棱锥,因此设AC 、BD 交点为O ,则以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴正方向建立空间直角坐标系,可用空间向量法解决问题.(1)只要证明MN AD ⋅u u u u r u u u r =0即可证明垂直;(2)设44040a b a -+=⎧⎪⎨-+=⎪⎩=λ()2010,,013y x y z λλ-=⎧⎪⎨-+-=⎭⎪⎩,得M(λ,0,1-λ),然后求出平面MBD 的法向量n ,而平面ABD 的法向量为OP uuu r ,利用法向量夹角与二面角相等或互补可求得λ.试题解析: (1)连结AC 、BD 交于点O,以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴正方向建立空间直角坐标系.因为PA =AB ,则A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1). 由BN u u u r =13BD u u u r ,得N 10,,03⎛⎫ ⎪⎝⎭, 由PM u u u u r =13PA u u u r ,得M 12,0,33⎛⎫ ⎪⎝⎭, 所以1112,,3333MN ⎛⎫=-- ⎪⎝⎭u u u u r ,AD u u u r =(-1,-1,0). 因为MN AD ⋅u u u u r u u u r =0,所以MN ⊥AD(2) 解:因为M 在PA 上,可设PM u u u u r =λPA u u u r ,得M(λ,0,1-λ).所以BM u u u u r =(λ,-1,1-λ),BD u u u r =(0,-2,0).设平面MBD 的法向量n r =(x ,y ,z),由00n BD n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得()2010y x y z λλ-=⎧⎪⎨-+-=⎪⎩ 其中一组解为x =λ-1,y =0,z =λ,所以可取n r =(λ-1,0,λ).因为平面ABD 的法向量为OP uuu r =(0,0,1),所以cos 4π=n OP n OP ⋅r u u ur r u u u r ,即2,解得λ=12, 从而M 11,0,22⎛⎫ ⎪⎝⎭,N 10,,03⎛⎫ ⎪⎝⎭,所以MN =6. 【考点】用空间向量法证垂直、求二面角.24.在一次电视节目的答题游戏中,题型为选择题,只有“A ”和“B ”两种结果,其中某选手选择正确的概率为p ,选择错误的概率为q ,若选择正确则加1分,选择错误则减1分,现记“该选手答完n 道题后总得分为n S ”.(1)当12p q ==时,记3S ξ=,求ξ的分布列及数学期望; (2)当13p =,23q =时,求82S =且()01234i S i ≥=,,,的概率. 【答案】(1)见解析,0(2)802187 【解析】(1)3S ξ=即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当82S =时,即答完8题后,正确的题数为5题,错误的题数是3题,又0(1,2,3,4)i S i ≥=,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)ξ的取值可能为3-,1-,1,3,又因为12p q ==, 故311(3)28P ξ⎛⎫=-== ⎪⎝⎭,311(3)28P ξ⎛⎫=== ⎪⎝⎭, 223113(1)228P C ξ⎛⎫=-=⨯⨯= ⎪⎝⎭,223113(1)228P C ξ⎛⎫==⨯⨯= ⎪⎝⎭, 所以ξ的分布列为:所以1331()(3)(1)308888E ξ=-⨯+-⨯++⨯= (2)当82S =时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知0(1,2,3,4)i S i ≥=,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,此时的概率为()5333658712308803333P C C ⨯⎛⎫⎛⎫=+⋅⋅== ⎪ ⎪⎝⎭⎝⎭(或802187). 【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.。

【附加15套高考模拟试卷】江苏省南通市2020届高三下学期第二次调研测试数学试题含答案

【附加15套高考模拟试卷】江苏省南通市2020届高三下学期第二次调研测试数学试题含答案

江苏省南通市2020届高三下学期第二次调研测试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于命题的说法错误的是( )A .命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”B .已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b <,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++≥”D .“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真命题2.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29s D .32x +,292s +3.如图,在ABC △中,AD AB ⊥,3BC BD =u u u r u u u r ,||1AD =u u u r ,则AC AD ⋅=u u u r u u u r( )A .23B .32C .33 D .34..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A .4πB .1123πC .283πD .16π5.阅读如图的程序框图,当程序运行后,输出S 的值为( )A .57B .119C .120D .2476.已知是抛物线的焦点,,是该抛物线上两点,,则的中点到准线的距离为( ) A .B .2C .3D .47.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .184C .183D .1768. “牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上(图1),好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如(图2)所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A .,a bB .,a cC .,c bD .,b d9.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥面ABC ,M ,N ,Q 分别为AC ,PB ,AB 的中点,3MN =,则异面直线PQ 与MN 所成角的余弦值为( )A .105B.155C.35D.4510.已知数列{}n a和{}n b的前n项和分别为n S和n T,且0na>,2*634()n n nS a a n N=+-∈,()()1111nn nba a+=--,若对任意的n*∈N,nk T>恒成立,则的最小值为()A.13B.19C.112D.11511.设a b,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是()A.若a b,与α所成的角相等,则a b∥B.若aαβ∥,b∥,αβ∥,则a b∥C.若a b a bαβ⊂⊂P,,,则αβ∥D.若a bαβ⊥⊥,,αβ⊥,则a b⊥r r12.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n=,则p的值可以是( )(参考数据: sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A.2.6B.3C.3.1D.14二、填空题:本题共4小题,每小题5分,共20分。

2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题解析

2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题解析

绝密★启用前2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题学校:姓名:班级:考号:注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、填空题1.设集合人={1,3},3=国了2_2》—3<o"则A B=.【答案】{1}先解不等式x2-2x-3<0,再求交集的定义求解即可.解:由题,因为2x—3<0,解得-l<x<3,即3={幻-1<,<3},则A B={1],故答案为:{1}点评:本题考查集合的交集运算,考查解一元二次不等式.2.已知z・i=l+2i(i为虚数单位),则复数z=.【答案】2—i解:解:z・i=l+2il+2z(l+2z)z.z=-----=-——=2-ii r故答案为:2—Z点评:本题考查复数代数形式的乘除运算,属于基础题.3.命题“玉<0,./-2*-1>0”的否定是.【答案】Vx<0,%2-2%-1<0根据特称命题的否定为全称命题得到结果即可.解:解:因为特称命题的否定是全称命题,所以,命题3-X'<0,.r2-2.r-1>0,则该命题的否定是:Vx<0,%2-2%-1<0故答案为:X/x<0,%2 —2x—1<0•点评:本题考查全称命题与特称命题的否定关系,属于基础题.4.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【答案】|6试题分析:根据题意,记白球为A,红球为B,黄球为G,G,则一次取出2只球,基本事件为AB、AG、AC2,BC[、BJ GO?共6种,其中2只球的颜色不同的是能、AC,,AC2,Bq、Be?共5种;所以所求的概率是P=~.6【考点】古典概型概率5.咔欢+0a=”是“cos2a=0”的——条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)【答案】充分不必要由余弦的二倍角公式可得cos la=cos2a-sin2a=(cos-sin a)(cos a+sin a)=0,艮p sin a-cos a=0或sin a+cos a=0,即可判断命题的关系.解:由cos2a=cos2a一sin2a=(cos a-sin a)(cos a+sin a)=0,所以sina-cosa=0或sina+cosa=0,所以"sina+cosa=0"是"cos2a=0"的充分不必要条件.故答案为:充分不必要点评:本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.6.已知等比数列混/的前n项和为Sn,^a2a8=2a3a6,S5=-62;则a]的值是.【答案】-22.aid-25)试题分析:’a2a8=2a3a6"a5=2a5a4"a5=2a4"q=2)S5=^62"-^=-62"^=-2【考点】等比数列性质及求和公式7.若幕函数/(x)=x fl的图象经过点(72,,则其单调递减区间为―【答案】(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏南通2020高考数学二轮冲刺小练(30) 班级 学号 姓名
1.已知,a b 为实数,集合{,1},b M a =N={},0,:a f x x →表示把集合M 中的元素x 映射到集合N 中仍为x ,则a b += .
2.若,i j 是互相垂直的两个单位向量,则2-i j 与2+i j 的夹角为 .
3.点P (1,2,4)-关于点A (1,1,)a -的对称点是(,,2)Q b c -,则a b c ++= .
4.设()f x 是定义在(0,)+∞上的增函数,且()()()x
f f x f y y
=-,若(2)1f =,则(4)f = .
5.设全集22,{|4},{|1}1
U M x y x N x x ===-=-R ≥ 都是U 的子集(如图所示),则阴影部分所示的集合是

6.已知G 是△ABC 的重心,过G 的一条直线交AB 、AC 两点分别于E 、 F ,且有,AE AB AF AC λμ==u u u r u u u r u u u r u u u r ,则11λμ
+= . 7.已知函数)1lg(1)(222++++
=x x x x x f ,且62.1)1(≈-f ,则≈)1(f . 8.设A ,B ,C ,D 是空间不共面的四点,且满足0,0,0,AB AC AC AD AB AD ⋅=⋅=⋅=u u u r u u u r u u u r u u u r u u u r u u u r 则△BCD 的形状是 三角形.(填“钝角”、“直角”、“锐角”之一)
9.函数y=x 2(x>0)的图像在点(a k ,,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____ _.
10.已知P 是直线3480x y ++=上的动点,PA 、PB 是圆22
2210x y x y +--+=的两条切线,
A 、
B 是切点,
C 是圆心,那么四边形PACB 面积的最小值为 . 11.在△ABC 中,||2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r . (1)求22||||AB AC +u u u r u u u r 的值; (2)当△ABC 的面积最大时,求∠A 的大小.
12.如图,在四棱锥P-ABCD中PD⊥底面ABCD,底面为正方形,PD=DC,E、F分别是CD、PB的中点.
(1)求证:EF//平面PAD;
(2)求证:EF⊥AB;
(3)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.。

相关文档
最新文档