机械设计基础知识点总结
50个机械设计基础知识点

50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。
2.静力学:研究物体在静止状态下的力学性质。
3.动力学:研究物体在运动状态下的力学性质。
4.运动学:研究物体的运动特性,如速度、加速度和位移。
5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。
6.力的合成:通过矢量相加的方法计算多个力的合力。
7.力的分解:将一个力分解为多个力的合力。
8.平衡:物体受到的合力和合力矩均为零。
9.功:力在物体上产生的位移所做的功。
10.能量:物体的能力做功的量度。
11.弹性力:物体受到变形后,恢复原状的力。
12.摩擦力:物体在运动或静止时受到的阻力。
13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。
14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。
15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。
16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。
17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。
18.滑块机构:由滑块和导轨构成的机构,实现直线运动。
19.传动比:用来衡量运动传递的效率。
20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。
21.离合器:用来连接或分离两个旋转物体的装置。
22.制动器:用来减速、停止或固定运动物体的装置。
23.轴承:用来支撑和减小机械运动中的摩擦力的装置。
24.轴线:用来连接和支撑旋转物体的直线。
25.键连接:通过键连接来实现轴线和轴承的固定。
26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。
27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。
28.轴向力:作用于轴线方向上的力。
29.径向力:作用于轴线垂直方向上的力。
30.弹簧:用来储存和释放能量的装置。
31.拉伸强度:材料抵抗拉伸破坏的能力。
32.压缩强度:材料抵抗压缩破坏的能力。
33.硬度:材料抵抗划伤或穿透的能力。
34.拉伸试验:测试材料的拉伸性能和强度。
机械设计基础知识点整理

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230-450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。
确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀。
疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、$10、11、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹12、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角13、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动14、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
(完整word版)《机械设计基础》知识点汇总.

机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。
(1)都是人为的各种实物的组合。
(2)组成机器的各种实物间具有确定的相对运动。
(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。
2、机构主要用来传递和变换运动。
机器主要用来传递和变换能量。
3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。
各种机器经常用到的零件称为通用零件。
特定的机器中用到的零件称为专用零件。
4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。
若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。
根据功能的不同,一部完整的机器由以下四部分组成:1. 原动部分:机器的动力来源。
2. 工作部分:完成工作任务的部分。
3. 传动部分:把原动机的运动和动力传递给工作机。
4. 控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。
5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。
公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。
公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。
推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。
公理 3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。
推论2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。
公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。
机械设计基础知识点总结

绪论:机械:机器与机构的总称。
机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。
机构:是具有确定相对运动的构件的组合。
用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。
构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。
是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。
零件:制造的单元。
分为:1、通用零件,2、专用零件。
一:自由度:构件所具有的独立运动的数目称为构件的自由度。
运动副:使两构件直接接触并能产生一定相对运动的可动联接。
高副:两构件通过点或线接触组成的运动副称为高副。
低副:两构件通过面接触而构成的运动副。
根据两构件间的相对运动形式,可分为转动副和移动副。
F = 3n- 2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。
复合铰链:虚约束:重复而不起独立限制作用的约束称为虚约束。
计算机构的自由度时,虚约束应除去不计。
局部自由度:与输出件运动无关的自由度,计算机构自由度时可删除。
二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。
整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。
构成:整转副是由最短杆及其邻边构成。
类型判定:(1)如果:lmin+lmax≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。
双曲柄机构:以最短杆为机架。
双摇杆机构:以最短杆的对边为机架。
(2)如果:lmin+lmax>其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。
急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。
压力角:作用于C点的力P与C点绝对速度方向所夹的锐角α。
《机械设计基础》知识点汇总.

《机械设计基础》知识点汇总1、具有以下三个特征的实物组合体称为机器。
(1)都是人为的各种实物的组合。
(2)组成机器的各种实物间具有确定的相对运动。
(3)可代替或减轻人的劳动,完成有用的机械功或转换机械能。
2、机构主要用来传递和变换运动。
机器主要用来传递和变换能量。
3、零件是组成机器的最小单元,也是机器的制造单元,机器是由若干个不同的零件组装而成的。
各种机器经常用到的零件称为通用零件。
特定的机器中用到的零件称为专用零件。
4、构件是机器的运动单元,一般由若干个零件刚性联接而成,也可以是单一的零件。
若从运动的角度来讲,可以认为机器是由若干个构件组装而成的。
根据功能的不同,一部完整的机器由以下四部分组成:1.原动部分:机器的动力来源。
2.工作部分:完成工作任务的部分。
3.传动部分:把原动机的运动和动力传递给工作机。
4.控制部分:使机器的原动部分、传动部分、工作部分按一定的顺序和规律运动,完成给定的工作循环。
5、物体间机械作用的形式是多种多样的,力对物体的效应取决于力的大小、方向和作用点,这三者被称为力的三要素。
公理1 二力平衡公理作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等,方向相反,且作用在同一条直线上。
对于变形体而言,二力平衡公理只是必要条件,但不是充分条件。
公理2 加减平衡力系公理在已知力系上加上或者减去任意平衡力系,并不改变原力系对刚体的作用。
推论1 力的可传性原理作用在刚体上某点的力,可以沿着它的作用线移动到刚体内任意一点,并不改变该力对刚体的作用效应。
公理3 力的平行四边形公理作用在刚体上同一点的两个力,可以合成为一个合力。
合力的作用点也在该点,合力的大小、方向,由这两个力为边构成的平行四边形的对角线确定。
推论 2 三力平衡汇交原理:作用在刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线通过汇交点。
公理4 作用与反作用公理两物体间的作用力与反作用力总是同时存在,且大小相等、方向相反、沿同一条直线,分别作用在这两个物体上。
《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选⽤材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常⽤润滑剂的性能习题2-1 摩擦可分哪⼏类?各有何特点?2-2 润滑剂的作⽤是什麽?常⽤润滑剂有⼏类?第3章平⾯机构的结构分析复习重点1、机构及运动副的概念2、⾃由度计算平⾯机构:各运动构件均在同⼀平⾯内或相互平⾏平⾯内运动的机构,称为平⾯机构。
3.1 运动副及其分类运动副:构件间的可动联接。
(既保持直接接触,⼜能产⽣⼀定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平⾯运动副分为低副和⾼副两类。
3.2 平⾯机构⾃由度的计算⼀个作平⾯运动的⾃由构件具有三个⾃由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个⾃由度。
当⽤P L个低副和P H个⾼副连接组成机构后,每个低副引⼊两个约束,每个⾼副引⼊⼀个约束,共引⼊2P L+P H个约束,因此整个机构相对机架的⾃由度数,即机构的⾃由度为F=3n-2P L-P H (1-1)下⾯举例说明此式的应⽤。
例1-1 试计算下图所⽰颚式破碎机机构的⾃由度。
解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有⾼副,P H=0。
因此,由式(1-1)得该机构⾃由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平⾯机构⾃由度的注意事项应⽤式(1-1)计算平⾯机构⾃由度时,还必须注意以下⼀些特殊情况。
1. 复合铰链2. 局部⾃由度3. 虚约束例3-2 试计算图3-9所⽰⼤筛机构的⾃由度。
解机构中的滚⼦有⼀个局部⾃由度。
顶杆与机架在E和E′组成两个导路平⾏的移动副,其中之⼀为虚约束。
机械设计基础知识点整理

第0章绪论一、本课程研究的对象和内容1、研究的对象:机械的组成原理、机械运动学和动力学以及机械零件设计理论和计算方法机械:机器和机构的总称(1)机器:是根据某种使用要求而设计的一种人为实物组合的执行机械运动的装置,它可以用来变换或传递能量、物料、信息,以代替或减轻人类的劳动。
三个特征:①人为的实物组合(不是天然形成的);②各实物单元具有确定的相对运动;③能完成有用的机械功或转换机械能,可用来代替或减轻人类的劳动;一般机器包含四个组成部分:动力部分、传动部分、控制部分和执行部分。
(2)机构:能实现预期机械运动的各构件(包括机架)的基本组合体称为机构。
是一个具有相对机械运动的构件系统,用来传递与变换运动和力的可动装置。
它是机器的重要组成部分,具有机器的前两个特征。
分类:连杆机构、凸轮机构、齿轮机构、间歇机构。
机构只是一个构件系统,而机器除构件系统外,还包含电气、液压等其它系统。
构件:是运动的单元。
可以是单一的整体,也可以是由几个零件组成的刚性结构。
零件:是制造的单元。
2、研究内容:是研究机械的组成原理、运动学和动力学以及组成机械的零件(通用零件)设计等一般方法的学科。
第一章平面机构及其自由度一、运动副及其分类1、运动副:两个构件直接接触形成的一种可动联接。
(1)高副:点、线接触,应力高。
一个约束、相对自由度等于2。
(2)低副:面接触,应力低。
两个约束,一个自由度。
低副有转动副和移动副。
二、平面机构运动简图1、机构运动简图:用简单线条和规定的符号来表示构件和运动副,并按比例表示各运动副的相对位置。
用以说明机构中各构件之间的相对运动关系的简单图形。
机构示意图:仅以构件和运动副的符号表示机构而不按精确比例绘制的简图。
2、构件的分类:固定件、原动件、从动件3、绘制机构运动简图(1)应满足条件:①构件数目与实际相同;②运动副的性质、数目与实际相符;③运动副之间的相对位置以及构件尺寸与实际机构成比例(2)步骤:①分析清楚所要绘制机械的结构和动作原理;②从原动件开始,按照运动传递的顺序,仔细分析各构件相对运动的性质,确定运动副的类型和数目;③合理选择视图平面,通常选择与大多数构件的运动平面相平行的平面为视图平面;④选取适当的长度比例尺,按一定的顺序进行绘图,并将比例尺标注图上。
机械设计基础知识点整理

基础常识1、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)2、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求3、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。
确定疲劳极限时,应考虑应力的大小、循环次数和循环特征.4、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹5、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角6、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动7、螺旋机构的类型及应用:①变回转运动为直线运动,传力螺旋(千斤顶、压力机、台虎钳)、传导螺旋(车窗进给螺旋机构)、调整螺旋(测微计、分度机构、调整机构、道具进给量的微调机构)②变直线运动为回转运动8、螺旋机构的特点:具有大的减速比;具有大的里的增益;反行程可以自锁;传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大(具有自锁能力的的螺旋副效率低于50%)9、连杆机构广泛应用的原因:能实现多种运动形式的转换;连杆机构中各运动副均为低副,压强小、磨损轻、便于润滑、寿命长;其接触表面是圆柱面或平面,制造比较简易,易于获得较高的制造精度10、曲柄存在条件:①最短杆长度+最长杆长度≤其他两杆之和②最短杆为连架杆或机架。
11、凸轮运动规律及冲击特性:①等速:刚性冲击、低速轻载②等加速等减速:柔性冲击、中速轻载③余弦加速度:柔性冲击、中速中载④正弦加速度:无冲击、高速轻载12、齿轮传动的优缺点:①优点:适用的圆周速度和功率范围广;传动比精确;机械效率高;工作可靠;寿命长;可实现平行轴、相交轴交错轴之间的传动;结构紧凑;②缺点:要求有较高的制造和安装精度,成本较高;不适宜于远距离的两轴之间的传动13、渐开线的特性:①发生线在基圆上滚过的一段长度等于基圆上被滚过的弧长;②渐开线上任一点的法线必与基圆相切,且N点位渐开线在K点的曲率中心,线段NK为其曲率半径;③cosαk=ON/OK=rb/rk 渐开线上各点的压力角不等,向径rk越大,其压力角越大,基圆上压力角为零;④渐开线的形状取决于基圆大小,随着基圆半径增大,渐开线上对应点的曲率半径也增大,当基圆无限大时,渐开线成为直线,故渐开线齿条的齿廓为直线;⑤基圆以内无渐开线14、齿轮啮合条件:必须保证处于啮合线上的各对齿轮都能正确的进入啮合状态, m1=m2=m;α1=α2=α即模数和压力角都相等;斜齿轮还要求两轮螺旋角必须大小相等,旋向相反;锥齿轮还要求两轮的锥距相等;涡轮蜗杆要求蜗杆的导程角与涡轮的螺旋角大小相等,旋向相同15、正变位齿轮优点:可以加工出齿数小于Zmin而不发生根切的齿轮,使齿轮传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,从而提高一对齿轮传动的总体强度16、直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适合于高速传动17、轮系的功用:获得大的传动比(减速器);实现变速、变向传动(汽车变速箱);实现运动的合成与分解(差速器、汽车后桥);实现结构紧凑的大功率传动(发动机主减速器、行星减速器)18、弹性滑动与打滑:打滑:由于超载所引起的带在带轮上的全面滑动,可以避免;弹性滑动:由于带的弹性变形而引起的带在带轮上的滑动,不可避免19、螺纹连接的基本类型:螺栓连接(普通螺栓连接、铰制孔用螺栓连接)、双头螺柱连接、螺钉连接、紧螺钉连接20、螺纹连接的防松:摩擦防松(弹簧垫圈、双螺母、椭圆口自锁螺母、横向切口螺母)、机械防松(开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝)、永久防松(冲点法、端焊法、黏结法)21、提高螺栓连接强度的方法:避免产生附加弯曲应力;减少应力集中22、键连接类型:平键连接(侧面)、半圆键连接(侧面)、楔键连接(上下面)、花键连接(侧面)23、平键的剖面尺寸确定:键的截面尺寸b×h(键宽×键高)以及键长L24、联轴器与离合器区别:连这都是用来连接两轴(或轴与轴上的回转零件),使它们一起旋转并传递扭矩的器件,用联轴器连接的两根轴,只有在停止运转后用拆卸的方法才能将他们分离;离合器则可在工作过程中根据工作需要不必停转随时将两轴接合或分离25、联轴器分类:刚性联轴器(无补偿能力)和挠性联轴器(有补偿能力)26、轴承摩擦状态:干摩擦状态、边界摩擦状态、液体摩擦状态、混合摩擦状态;边界和混合摩擦统称为非液体摩擦27、轴的分类:心轴(转动心轴、固定心轴;只承受弯矩不承受扭矩)、转轴(即承受弯矩又承受扭矩)、传动轴(主要承受扭矩,不承受或承受很小弯矩)28、轴的计算注意:①轴上有键槽时,放大轴径:一个键槽3°--5°;两个键槽7°--10°②式中弯曲应力为对称循环变应力,当扭转切应力为静应力时,取α=0.3;当扭转切应力为脉动循环变应力时,取α=0.6;若扭转切应力为对称循环变应力时,取α=1(α为折合系数)29、轴结构设计一般原则:轴的受力合理,有利于满足轴的强度条件;轴和轴上的零件要可靠的固定在准确的工作位置上;轴应便于加工;轴上的零件要便于拆装和调整;尽量减少应力集中等30、滚动轴承类型选择影响因素:转速高低、受轴向力还是径向力、载荷大小、安装尺寸的要求等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nP tP αγCDABωP12δδths =12ωδt hv =2=a 21222δδt hs =12124δδωt h v =22124t h a δω=2122)(2δδδ--=t t h h s )(41212δδδω-=t t h v 22124t h a δω-=绪论:机械:机器与机构的总称。
机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。
机构:是具有确定相对运动的构件的组合。
用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。
构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。
是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。
零件:制造的单元。
分为:1、通用零件,2、专用零件。
一:自由度:构件所具有的独立运动的数目称为构件的自由度。
约束:对构件独立运动所施加的限制称为约束。
运动副:使两构件直接接触并能产生一定相对运动的可动联接。
高副:两构件通过点或线接触组成的运动副称为高副。
低副:两构件通过面接触而构成的运动副。
根据两构件间的相对运动形式,可分为转动副和移动副。
F = 3n- 2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。
复合铰链:三个或三个以上个构件在同一条轴线上形成的转动副。
由m 个构件组成的复合铰链包含的转动副数目应为(m-1)个。
虚约束:重复而不起独立限制作用的约束称为虚约束。
计算机构的自由度时,虚约束应除去不计。
局部自由度: 与输出件运动无关的自由度,计算机构自由度时可删除。
二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
优点:(1)面接触低副,压强小,便于润滑,磨损轻,寿命长,传力大。
(2)低副易于加工,可获得较高精度,成本低。
(3)杆可较长,可用作实现远距离的操纵控制。
(4)可利用连杆实现较复杂的运动规律和运动轨迹。
缺点:(1)低副中存在间隙,精度低。
(2)不容易实现精确复杂的运动规律。
铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。
整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。
构成:整转副是由最短杆及其邻边构成。
类型判定:(1)如果:lmin+lmax ≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。
双曲柄机构:以最短杆为机架。
双摇杆机构:以最短杆的对边为机架。
(2)如果: lmin+lmax >其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。
急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。
压力角:作用于C 点的力P 与C 点绝对速度方向所夹的锐角α。
传动角:压力角的余角γ,死点:无论我们在原动件上施加多大的力都不能使机构运动,这种位置我们称为死点γ=0。
解决办法:(1)在机构中安装大质量的飞轮,利用其惯性闯过转折点;(2)利用多组机构来消除运动不确定现象。
即连杆BC 与摇杆CD 所夹锐角。
三:凸轮: 一个具有曲线轮廓或凹槽的构件。
从动件: 被凸轮直接推动的构件。
机架: 固定不动的构件(导路)。
凸轮类型:(1)盘形回转凸轮(2)移动凸轮 (3)圆柱回转凸轮 从动件类型:(1)尖顶从动件(2)滚子从动件(3)平底从动件(1)直动从动件 (2)摆动从动件1基圆:以凸轮最小向径为半径作的圆,用rmin 表示。
2推程:从动件远离中心位置的过程。
推程运动角δt ;3远休止:从动件在远离中心位置停留不动。
远休止角δs ;4回程:从动件由远离中心位置向中心位置运动的过程。
回程运动角δh ;5近休止:从动件靠近中心位置停留不动。
近休止角δs ˊ;6行程:从动件在推程或回程中移动的距离,用 h 表示。
7从动件位移线图:从动件位移S2与凸轮转角δ1之间的关系曲线称为从动件位移线图。
1.等速运动规律:1、特点:设计简单、匀速进给。
始点、末点有刚性冲击。
适于低速、轻载、从动杆质量不大,以及要求匀速的情况。
2、等加速等减速运动规律: 推程等加速段运动方程: 推程等减速段运动方程:柔性冲击:加速度发生有限值的突变(适用于中速场合) 3、简谐运动规律:柔性冲击四:根切根念:用范成法加工齿轮时,有时会发现刀具的顶部切入了轮齿的根部,而把齿根切去了一部分,破坏了渐开线齿廓,如图这种现象称为根切。
根切形成的原因:标准齿轮:刀具的齿顶线超过了极限啮合点N 。
不根切的条件可以表示为: 不根切的最少齿数为:标准齿轮:指m 、α、ha*、c* 均取标准值,具有标准的齿顶高和齿根高,且分度圆齿厚s 等于齿槽宽e 的齿轮。
成型法:加工原理:成形法是用渐开线齿形的成形铣刀直接切出齿形。
加工:(a) 盘形铣刀加工齿轮。
(b)指状铣刀加工齿轮。
缺点:加工精度低;加工不连续,生产率低;加工成本高。
优点:可以用普通铣床加工。
范成法:加工原理:根据共轭曲线原理,利用一对齿轮互相啮合传动时,两轮的齿廓互为包络线的原理来加工。
加工:(a)齿轮插刀:是一个齿廓为刀刃的外齿轮。
(b)齿条插刀(梳齿刀):是一个齿廓为刀刃的齿条。
原理与用齿轮插刀加工相同,仅是范成运动变为齿条与齿轮的啮合运动。
(c)滚刀切齿:原理与用齿条插刀加工基本相同,滚刀转动时,刀刃的螺旋运动代替了齿条插刀的展成运动和切削运动。
九:失效:机械零件由于某种原因不能正常工作时,称为失效。
类型:(1)断裂。
在机械载荷或应力作用下(有时还兼有各种热、腐蚀等因素作用),使物体分成几个部分的现象,通常定义为固体完全断裂,简称断裂。
静力拉断、疲劳断裂。
(2)变形。
由于作用零件上的应力超过了材料的屈服极限,使零件本身发生的变形。
弹性变形、塑性变形(3)11PN PB ≤2sin sin *ααmz mh a ≤α2*minsin 2a h z =)]cos(1[212δδπt h s -=)sin(2112δδπδωπt t h v =)cos(2122122δδπδωπtt h a =零件的表面破坏。
腐蚀、磨损、接触疲劳(点蚀)。
(4)破化正常工作条件而引起的失效。
强度:零件的应力不超过允许的限度 1、名义载荷:在理想的平稳工作条件下作用在零件上的载荷。
2、载荷系数K:综合考虑零件在实际工作中承受的各种附加载荷所引入的系数。
3、计算载荷:载荷系数与名义载荷的乘积。
4、名义应力与计算应力:按照名义载荷用力学公式求得的应力称为名义应力;按照计算载荷求得的应力称为计算应力。
5、强度条件:σ≤[σ] ;σ-计算正应力, [σ] -零件材料的许用正应力:τ≤[τ];τ-计算切应力, [τ] -零件材料的许用切应力刚度:在载荷作用下,零件产生的弹性变形量,小于或等于机器工作性能所允许的极限值。
设计要求:具有预定功能的要求、具有经济性要求采用先进设计理论和方法,运用先进工具。
合理选用零件材料、降低材料费用。
设计中,尽量使重量系数下降。
用最少零件组成部件或机械,尽量采用价廉的标准件。
提高机器效率,降低能耗。
尽量降低包装、运输费用。
安装、拆卸方便。
、安全性要求机器中,必须配备各种防护装置和措施,如防护罩,安全联轴器等。
可靠性要求可靠度R。
零件可靠度R的计算公式。
机器的可靠度。
提高机器可靠度的措施。
标准:标准化就是要通过对零件的尺寸、结构要素、材料性能、设计方法、制图要求等,制定出大家共同遵守的标准。
标准化的益处:标准化有利于保证产品质量,减轻设计工作量,便于零部件的互换和组织专业化的大生产,以降低生产成本。
与设计有关的标准:国际标准ISO国家标准GB行业标准JB 地方标准DB企业标准等QB。
国标分为:强制标准和推荐标准。
强制性国家标准:代号为GB ××××(为标准序号) -××××(为批准年代)强制性国标必须严格遵照执行,否则就是违法。
推荐性国家标准:代号为GB/T ××××-××××,这类标准占整个国标中的绝大多数。
如无特殊理由和特殊需要,必须遵守这些国标,以期取得事半功倍的效果。
十一:失效形式:轮齿折断:一般发生在轮齿根部,指齿的大部分或整个齿的断落,是轮齿中最危险的失效形式。
齿面失效:齿面疲劳点蚀和表层剥落齿面磨损、齿面胶合、齿面塑性变形。
传动过程中,主要失效形式:通常对润滑良好的闭式齿轮传动主要发生齿面点蚀,齿根弯曲疲劳折断。
特殊情况,如严重的冲击或有相当大的短期过载时,须注意轮齿发生过载折断和齿面塑性变形的可能性。
高速重载而润滑条件受限制情况下,齿面胶合又可能成为主要失效原因。
开式齿轮传动的主要失效形式是磨粒磨损。
设计准则:对于闭式软齿面齿轮(HBS≤350):齿轮的失效形式以疲劳点蚀为主。
先按齿面接触疲劳强度公式进行计算,再用齿根弯曲疲劳强度公式进行校核。
2对于闭式硬齿面齿轮:齿轮的失效形式为轮齿折断;先按齿根弯曲疲劳强度作为设计公式,再用齿面接触疲劳强度进行校核。
3开式齿轮传动:齿轮的失效形式主要是齿面磨损;采用弯曲疲劳强度进行设计,并适当加大齿厚(加大模数)以延长其使用寿命。
开式齿轮不进行齿面接触疲劳强度计算。