浅谈求极限的方法与技巧
极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。
在求解极限的过程中,我们常常会使用一些常用的技巧和方法。
下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。
一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。
例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。
这种方法适用于函数在该点有定义且不产生未定义结果的情况。
二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。
主要有三种情况:有理化分母、有理化分子和有理化共轭。
1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。
例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。
接着我们可以直接代入计算。
2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。
例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。
接着我们可以直接代入计算。
3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。
例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
求极限的方法总结

求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。
在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。
下面将对常见极限的求解方法进行总结。
一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。
在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。
2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。
常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。
3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。
这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。
4. 极限存在性的判定在有些情况下,函数的极限可能不存在。
判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。
二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。
16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
浅谈求极限的方法

浅谈求极限的方法极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助.1 求极限的方法1.1 利用斯托兹定理 定理1[1](57)P (∞∞型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即∀n ∈N 有1n n x x +<),且lim n n x →∞=+∞,若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.证 )1( (a 为有限数)目的在于证明:0,0,ε∀>∃N >当n >N 时,有nny a x ε-<. ① 记 11n n n n n y y a x x α---≡--. ②按已知条件有lim 0n n α→∞=,即0,0,ε∀>∃N >当n ≥N 时,有2n εα<. ③现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得11()()n n n n n y y a x x α--=++- (再迭代使用此式)21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =⋅⋅⋅111()()()()n n n y a x x a x x ααN N+N+N -=++-+⋅⋅⋅++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+⋅⋅⋅+-+- 两边同时除以n x ,再同时减去a ,得111n n n n n n nx x x x y y ax a x x x ααN+N+N -N N -+⋅⋅⋅+---≤+22n n n n y ax y ax x x x x x εεN N N N N---<+<+将n 再进一步增大,因n x →+∞,故1∃N >N ,使得1n >N 时有2n y ax x εN N -<.于是 22n n y a x εεε-<+=. )2( (极限为+∞的情况)因已知11limn n n n n y y x x -→∞--=+∞-,所以11lim 0n n n n n x x y y -→∞--=-,利用(1)中的结论,只要证明n y 严↗+∞(严格单调上升趋向无穷大),则有lim0n n n x y →∞=,lim n n ny x →∞=+∞(问题得证).因n x 严↗,要证n y 严↗,只要证111n n n n y y x x --->-,事实上, 11limn n n n n y y x x -→∞--=+∞-,所以对1,0M =∃N >,当n >N 时,有111n n n n y y x x --->-,即 n >N 时,110n n n n y y x x --->-> ④ 所以当n >N 时, n y 严↗.④式中令1,2,,,n k =N +N +⋅⋅⋅然后相加, 可知k k y y x x N N ->-,令k →∞,知k y →∞,证毕.)3( (极限-∞的情况) 只要令n n y z =-,即可转化为)2(中的情况.注 11limn n n n n y y x x -→∞--=∞-,一般推不出lim n n nyx →∞=∞,如令n x n =,222{}{0,2,0,4,0,6,}n y =⋅⋅⋅,这时虽然 11limn n n n n y y x x -→∞--=∞-,但{}{0,2,0,4,0,6,}nny x =⋅⋅⋅并不趋向于无穷. 定理2[1](60)P (型Stolz 公式 ) 数列{},{}n n x y ,设n →∞时0n y →,n x 严↘0(严格单调下降趋向零) 若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.注 定理1是∞∞型,其实只要求分母n x ↗+∞,至于分子n y 是否趋向无穷大,无关紧要.定理2则是名副其实的型.因为定理条件要求分子,分母都以0为极限. 例1 1112lim ln n n n→∞++⋅⋅⋅+ 解 设1112n y n=++⋅⋅⋅+,ln n x n =.显然,n x 严格单调递增,且lim n n x →∞=+∞,11lim n n n n n y y x x -→∞--=-1lim ln1n n n n →∞-11lim lim 1ln ln(1)11n n n n n n n →∞→∞==+-- 11lim 111ln[(1)(1)]11n n n n →∞-==++-- 由斯托兹定理1, 1112lim ln n n n→∞++⋅⋅⋅+1= 例2 求(ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+ (K 为正整数).解 令(ln 2)(ln 3)(ln )n y n K K K=++⋅⋅⋅+,12n x n =++⋅⋅⋅+ ,显然,{}n x 单调递增,且lim n n x →∞=+∞,11lim nn n n n y y x x -→∞--=-()n n n K∞→ln lim 又1(ln )(ln )!limlim lim 0k k x x x x k x k x xx -→+∞→+∞→+∞==⋅⋅⋅==,由海涅定理()n n n K∞→ln lim 0= ,由斯托兹定理1, (ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+0=1.2 定义法 定义1[2](23)P 数列极限的""N ε-方法 设{}n a 为数列,a 为定数,lim 0,0,,.n n n a a n a a εε→∞=⇔∀>∃N >>N -<有定义2[2](4244)P - 函数极限的""N ε-方法 设f 为定义在[,)a +∞上的函数,A 为定数,lim ()0,()0,x f x a ε→∞=A ⇔∀>∃M ≥>使得当x >M 时有()f x ε-A <.函数极限的""εδ-方法 设函数f 在点0x 的某个空心邻域0(;)U x δ'内有定义,A 为定数.0lim ()0,()0,x x f x εδδ→'=A ⇔∀>∃<>使得当00x x δ<-<时有()f x ε-A <.例3[1](17)P 按极限定义(εδ-法)证明11x →= 证2711169x =≤-=-1611(43)(43)x x x x +-+- 再用分步法寻找δ,使上式右端继续扩大,此方法在操作上有较大的灵活性、自主性、多样性,并不要求一步到位,可以逐步缩小搜寻范围.此题因1x →,若要简化分子可先设11x -<即02x <<,则上式右端16313344x x ⋅-≤⋅-3((1;1)[,))4U +∞在成立,进一步设118x -<即 111188x -<<+,于是上式右端321x ≤-(在1(1;)8U 内成立).故0,ε∀>取1min{,}328εδ=,则当1x δ-<时, 就有1ε<.用定义证明极限存在,有一先决条件,即事先得知极限的猜测值A ,但通常只给定了数列}{n x ,或函数)(x f ,对其极限A 不得而知,我们只能根据具体情况进行具体分析和处理,不妨再参考一下1.1,1.5,1.7或1.10.1.3 利用四则运算法则 定理3(四则运算法则)[2](30)P 若{}n a 与{}n b 为收敛数列,则{}n n a b +,{}n n a b -,{}n n a b ⋅也都是收敛数列,且有lim n →∞(n n a b ±)=lim lim n n n n a b →∞→∞±,lim n →∞(n n a b ⋅)=lim lim n n n n a b →∞→∞⋅.若再假设0n b ≠及lim 0,n n b →∞≠则{}n na b 也是收敛数列,且有lim lim .lim nn n n n n n a a b b →∞→∞→∞=注 对指数运算亦成立.若n x 0>,⋅⋅⋅=,2,1n 且a x n n =∞→lim ,b y n n =∞→lim ,则 b y nn a x n=∞→lim .1.3.1 “∞+∞∞+∞”型.例4 求极限1(4)7sin lim57cos(1)n n n n n n n +→∞-+++++解 1(4)7sin lim 57cos(1)nn n nn n n +→∞-+++++4sin ()777lim 75cos(1)()177n nn n nn n →∞-++==+++ 1.3.2“∞-∞∞-∞”型 例5 求极限n解n=n =13112123lim ++++∞→nnn =32. 注 函数的四则运算法则同样成立,这里不再一一列出来.但必须强调的是函数极限四则运算法则的条件是充分而非必要的,所以,利用四则运算法则求函数极限时,要对所给的函数进行验证,看是否满足条件.满足条件者,方能利用极限四则运算法则进行求之.但并非不满足该条件的函数就没有极限,而是不再适用该方法,通常用一些简单的技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等.例6求极限lim x →+∞解lim x →+∞=limx=55limx +52=1.4 利用无穷小量的性质 1.4.1 无穷小量定义3 若lim 0,n n a →∞=则称n a 是n →∞时的无穷小量.定义4[2](59)P lim ()0,x x f x ︒→=则称()f x 是0x x →时的无穷小量.性质(1)有限个无穷小量的和、差、积为无穷小量.(2)有界量乘以无穷小量是无穷小量. 例7 求极限222(21)!!1lim[]sin cos (2)!!n n n n n→∞+解 222(21)!!1lim[]sin cos (2)!!n n n n n →∞+2222221sin(21)!!(21)lim()cos 1(2)!!n n n n n n n n →∞-+= 其中2(21)!!113355(23)(23)(21)(21)0()(2)!!224466(22)(22)22n n n n n n n n n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----≤=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅2210()(2)n n n -<→→∞,所以 2(21)!!lim()0(2)!!n n n →∞-=, 又22221sin(21)lim4141n n n n n →∞+=⋅=(有限数),2cos 1n ≤(有界量),根据无穷小量性质(2)得 原式0=,从而 222(21)!!1lim[]sin cos (2)!!n n n n n→∞+0=.1.4.2 等价无穷小量 定义5[2](61)P 设函数()f x ()g x ,0lim ()0x x f x →=,0lim ()0x x g x →=,且()0g x ≠,若0()lim1()x x f x g x →=,则称f 是g 当0x x →时的等价无穷小量.记为()fx 0()()g x x x →.常用的等价无穷小量有, 当0x →时, sinxx ,tanx x ,arctanx x ,ln(1)x+x ,(1cos )x-22x ,1xe-x11x n.例8[1](33)P求极限21cos)limn n -解因1n =,故原式2224111(1cos)n n n n n -==2212lim 1112n n n→∞==.所以21cos )n n -1=但是还应注意,等价无穷小求函数极限不要轻易代换,一般只在以乘除形式出现时使用,若以和差形式出现时,必须先变换形式才能用.例9 求极限302sin 2sin 4limx x xx →-解 32002sin 2sin 42sin 21cos 2lim lim x x x x x xx x x→→--=⋅=220222lim x x x x x →⋅⋅8= 错误的解法是302sin 2sin 4limx x x x →-=30224lim x x xx →⋅-0=错在对加减中的某项进行了等价无穷小代换.1.5 利用迫敛性定理1.5.1 数列及函数的迫敛性定理 定理4(数列的迫敛性定理)[2](30)P 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n >N 时有n n n a c b ≤≤则数列n c 收敛,且lim n n c a →∞=.定理5(函数的迫敛性定理)[2](49)P 设0lim ()x x f x →=0lim ()x x g x →=A ,且在某邻域0(;)U x δ内有()()()f x h x g x ≤≤,则0lim ()x x h x →=A .当极限不易直接求出时,可考虑将求极限的变量作适当的放大、缩小,使所得的新变量易于求极限,且二者的极限值相同,则原极限存在,且等于此公共值.例10 求极限lim[(1)]n n n αα→∞+- (01)α<<解 10(1)(1)n n n n nααααα≤+-=+-1((1)1)n nαα=+- 由1(1)xα+ (01)α<<的单调性知11(1)1x x α+<+,于是111(1)111n n nα+-<+-=所以 1110(1)((1)1)0n n n n nααααα-≤+-=+-<→ ()n →∞由迫敛性定理, lim[(1)]n n n αα→∞+-0=例11 求极限1,,m n a a ⋅⋅⋅其中为正数.解 记A =1max{,,},,m i a a a i ⋅⋅⋅=为某一整数则A =i a =≤≤=A A ()n →∞由迫敛性定理知 lim n =A例12 求极限lim n n x →∞,13(21)24(2)n n x n ⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅解 因几何平均值小于算术平均值,故分母中的因子1322+=> 3542+=>⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ (21)(21)22n n n -++=>由此可知, 13(21)0024(2)n n x n ⋅⋅⋅⋅⋅⋅-<=<→⋅⋅⋅⋅⋅⋅,故lim n n x →∞=0.注 迫敛性定理求极限应用十分广泛,优越性在于经过放大或缩小,可以把复杂的东西去掉,使问题化简,但应注意,放大不能放得过大,缩小也不能缩得过小,必须具有相同的极限.1.5.2 利用子列收敛定理定理6(子列收敛定理)[2](37)P 数列收敛的充要条件是:任何非平凡子列都收敛(且收敛于 同一个数).即A →n x (当∞→n 时)∀⇔子列}{k n x 有A →k n x (当∞→k ). 同样还有这样的结论:}{n a 收敛}{2k a ⇔,}{12-k a 都收敛且收敛于同一个数.(证明略)例13 }{n a 满足∑∞=1n na收敛,且n k a a 1000≤≤,(n k n 2≤≤)证明 ∞→n lim 0=n na .证明 n ∀,i n i 22≤≤(12,1,-⋅⋅⋅+=n n n i )所以,i n a a 10002≤≤(12,1,-⋅⋅⋅+=n n n i )把式子展开再对应相加,得 )(10001212-++⋅⋅⋅++≤≤n n n n a a a na从而有 )(200201212-++⋅⋅⋅++≤≤n n n n a a a na )(0∞→→n 得偶子列收敛于0. 同理 n ∀,212i n i ≤-≤(,1,21)i n n n =+⋅⋅⋅-所以, 210100n i a a -≤≤(,1,21)i n n n =+⋅⋅⋅-,把式子展开再对应相加, 得 211210100()n n n n na a a a -+-≤≤++⋅⋅⋅+从而有21211210(21)2200()n n n n n n a na a a a --+-≤-≤≤++⋅⋅⋅+0()n →→∞ 得奇子列收敛于0,从而 ∞→n lim 0=n na .1.6 利用单调有界定理 定理7(数列的单调有界定理)[2](35)P 在实数系中,有界的单调数列必有极限.即若单调递增数列有上界,则上确界便是它的极限;若单调递减数列有下界,则下确界便是它的极限.定理8(函数单侧极限的定理)[2](35)P ()f x 为定义在0()U x ︒+的单调有界函数,则右极限lim ()x x f x +→存在; ()f x 为定义在0()U x ︒-的单调有界函数,则左极限0lim ()x x f x -→存在. 例14设数列1x =2x =⋅⋅⋅,n x ,⋅⋅⋅,求极限lim n n x →∞.解 1) {}n x 为单调递增数列.事实上,12x x =<=,设1x x K -K <则由于1x K+=故,11x x K+K ==>,即10x x K+K >>,由归纳法知,数列{}n x 单调递增. 2) {}n x 有上界.13x =<,设3x K <,则13x K+=<=.由数学归纳法知{}n x 有上界.3) 由数列的单有界定理得lim n n x →∞存在.设lim n n x →∞=A,对n x = 两端关于n →∞求极限,则A=230⇒A =A ⇒A =或3A =,而}{n x 为正值数列,0=A 舍去.所以lim n n x →∞3=.1.7 柯西收敛准则定理9(数列的柯西收敛准则)[2](38)P数列{}n a 收敛⇔0,()0,,,n m n m a a εεε∀>∃N >∀>N -<使有.⇔0,()0,,,n n n a a εεε+P ∀>∃N >∀>N ∀P -<使正整数有.定理10(函数的柯西收敛准则)[2](54)P 函数()f x 定义在0(;)U x δ︒上,0lim ()x x f x →∃0,()0,εηδ⇔∀>∃<>使0,(;)x x U x η︒'''∀∈,有()()f x f x ε'''-<例15 数列{}n x ,0110,,0,1,2,2n nx x n x +>==⋅⋅⋅+,证明lim n n x →∞存在,并求值.证明 设0<0x <12,0<1x =012x +<12,假设0<n x <12,则0<1n x +=12n x +<12, 由数学归纳法,,n ∀0<n x <12. 111111112222n n n n n n n n x x x x x x x x +P--+P +P--+P----=-=++++ 112221144n n n n x x x x +P--+P--<-<-<⋅⋅⋅ 1111111111()()()44224n n n x x --P+-<-<⋅+=ε∀0>,要使11()4n ε-<取ln []2ln 4εN =+-,当n >N 时,有n n x x ε+P -<, 由柯西收敛准则{}n x 收敛,从而极限存在,不妨设为0x ,则对112n nx x +=+两边当n →∞时, 取极限得0012x x =+,解得01x =-,由数列极限的保不等式性,取正值01x =-,从而lim 1n n x →∞=-.1.8 利用海涅定理 定理11(海涅定理)[2](52)P (或称归结原则) 设()f x 在0(;)U x δ内有定义,lim ()x x f x →∃⇔{}n x ∀⊂ 0(;)U x δ,0lim ,n n x x →∞=都有lim ()n n f x →∞存在且相等.这个定理深刻地揭示了函数极限和数列极限的关系.例16求极限n nπ解 取{}{}n x n =,令lim n n x →∞=+∞,则原式⇔sin limlim0x x x xxπππ→+∞==. 由海涅定理n nπ0=.例17[3](37)P求极限lim(,(0,0)2nn a b →∞≥≥ 解 (1)当,a b 有一为0时,比如0a =,则n n →∞=lim 2n n b→∞0== ①(2)当0,0a b >>时,令1()2x x x a b y +=,则1ln ln 2x xa b y x +=.0limln x y →=0012ln ln lim lnlim 22x x x x x x x x a b a a b b x a b →→++=+1(ln ln )2a b =+=. 由海涅定理,当0,0a b >>时, lim(2nn →∞=② 再由①,②两式得lim(2nn →∞=1.9 利用重要极限即利用①0sin lim 1x x x →=[2](56)P ②1lim(1)x x ex→∞+=[2](56)P 和1lim(1)xx x e →+=,其中的x 都可以看作整体来对待.第一个重要极限是“00”型,第二个重要极限是“1∞”型. 例18 求极限 01cos cos 2cos3lim 1cos x x x xx →--解 这是“0”型,那么想办法把它凑成第一个重要极限的形式.原式01cos cos (1cos 2)cos cos 2(1cos3)lim 1cos x x x x x x x x→-+-+-=-00cos (1cos 2)cos cos 2(1cos3)1lim lim 1cos 1cos x x x x x x x x x→→--=++--2200223cos cos 22sin cos 2sin 21lim lim 2sin 2sin 22x x x x x x x x x→→⋅⋅⋅=++22222002223()sin ()sin 2221limcos 4limcos cos 293sin ()sin 222x x x x x x x x x x x x x →→=+⋅⋅⋅+⋅⋅⋅⋅ 14914=++=.例19[2](58)P 求极限211lim(1)n n n n→∞+- 解 这是“1∞”型的.显然要用第二个重要极限的形式.2111(1)(1)()n n e n n n n+-<+→→∞. 另一方面,当1n >时有2221112221111(1)(1)(1)n nn n n n n n n n n nn -------+-=+≥+,而由海涅定理,(取2,2,3,1n n x n n ==⋅⋅⋅-) 得 222112211lim(1)lim(1)n n n n n n n n n n ---→∞→∞--+=+=x x x)11(lim ++∞→=e . 所以,由数列极限的迫敛性得211lim(1)nn n n →∞+-e =. 1.10 利用定积分的定义求极限由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值,求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式.定义6 若()f x 在[,]a b 上连续,那么()baf x dx ⎰存在,01()lim ()nbi i ai f x dx f x ζT →==∆∑⎰110()lim ().()lim ().nn i n n i i b a b a f a n n i b a b a f a n n →∞=-→∞=--⎧+⋅⎪⎪=⎨--⎪+⋅⎪⎩∑∑ 取右端点 取左端点 例20 求极限22233333312lim()12n n n n n n →∞++⋅⋅⋅++++ 解 22233333312lim()12n n n n n n→∞++⋅⋅⋅++++ 2222333312()()()lim ()121()1()1()n nnn n n n n n n n→∞=++⋅⋅⋅++++231()1lim 1()nn i i n i n n→∞==⋅+∑21301x dx x =+⎰13301131dx x =+⎰1ln 23= 例21 求极限221lim1nn n →∞K=K+K +∑ 解 221(1)nn K =K +K +∑≤2211n n K =K +K +∑≤221nn K=K+K ∑ 左边 221(1)nn K =K +K +∑=22221111(1)(1)n nn n K=K=K +-+K ++K +∑∑ =222111111(1)1()nnn n n nK=K=K +-K ++K ++∑∑ 其中, 22211100(1)nn n K =≤≤→+K +∑ ()n →∞ lim n →∞211111()nn n nK=K +K ++∑=1201ln 212x dx x =+⎰所以, limn →∞221(1)nn K =K +K +∑ =1ln 22 右边 221nn K=K +K ∑=21111()nnn nK=KK +∑=1201ln 212x dx x =+⎰由迫敛性定理得 221lim 1nn n →∞K=K +K +∑=1ln 22 1.11 利用洛比达法则洛比达法则是计算不定式极限的重要方法,形如00,,0,,0,,10∞∞∞⋅∞∞-∞∞∞等七种未定式均可用洛比达法则求解.定理12(洛比达法则)[2](127)P 假设①函数()f x 和()g x 在x a =的某邻域()U a 可微,且()0g x '≠;②lim ()lim ()0x ax af xg x →→==(或为无穷大);③()lim()x af xg x →存在(或为无穷大);则 ()()limlim ()()x ax a f x f x g x g x →→'=' 如果用洛比达法则算不出结果,不等于极限不存在.只是因为它是充分条件,不是必要条件.但只要满足洛比达法则的条件就可进一步微分,也可多次使用该法则.例22 求极限30sin lim 7x x xx→- 解 这是一个“0”型的极限,满足洛比达法则的条件,注意两次使用洛比达法则,得30sin lim 7x x x x →-2001cos sin 1lim lim 214242x x x x x x →→-===. 例23 求极限1121cos 2lim4x x tdt x t→+∞⎰ 解 由于202cos 214lim 14t tt t →=所以112cos 24xtdt t→+∞⎰()x →+∞ 因此,原极限是∞∞型的,满足洛比达法则的条件. 所以 1121cos 2lim 4x x t dt x t →+∞⎰12122cos 21cos 2114lim lim 144()x x x t dt t x x x x→+∞→+∞-===⎰. 例24[1](45)P 求极限11cos0sin lim()xx x x-→解 首先像这样幂指函数较复杂,要考虑取对数后再求极限,那么求极限11cos0sin lim ln()xx x x-→, 11cos 0sin lim ln()xx xx-→01sin limln 1cos x xx x→=-20sin (ln)lim()2x xx x →'='20cos sin lim sin x x x x x x→-= 30(cos sin )lim ()x x x x x →'-='20sin lim 3x x x x →-=13=-,故原式13e -=. 1.12 利用函数的泰勒展式.泰勒公式的形式有很多种,但是在利用泰勒公式求极限的时候,通常用到的是皮亚诺型麦克劳林公式,因此在这里就只给出泰勒公式的这种特殊的形式:[2](136)P()2(0)(0)(0)()(0)()1!2!!n nn f f f f x f x x x o x n '''=+++⋅⋅⋅++下面是具体的常用皮亚诺型麦克劳林公式:[2](136)P231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++ ()x -∞<<+∞351212(1)sin ()3!5!(21)!n n n x x x x x o x n ---=-++⋅⋅⋅++- ()x -∞<<+∞24221(1)cos 1()2!4!(2)!n nn x x x x o x n +-=-++⋅⋅⋅++ ()x -∞<<+∞231ln(1)(1)()23nn n x x x x x o x n++=-++⋅⋅⋅+-+ (11)x -<≤ 2(1)(1)(1)(1)1()2!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++⋅⋅⋅++ (1)x <211()1n n x x x o x x=+++⋅⋅⋅++- (1)x < 例25求极限x x →解 2211()2xe x x o x =+++2211()2x o x =-+.所以22002211()12lim 122(1())2xx x x x o x x x o x →→+++--=--+222201()12lim ()2x x o x x o x →+==+. 例26 求极限2240cos limx x x e x -→-解 244cos 1()2!4!x x x o x =-++; 222224442()21()()1()22!28x x x x x e o x o x --=+-++=-++则2240cos lim x x x e x -→-=242444011()2!4!28lim x x x x x o x x→-+-+-+44401()112lim 12x x o x x →-+==-例27[1](46)P 222012lim (cos )sin x x x x e x→+- 解 利用泰勒展式,12244211(1)1()28x x x o x +=+-+,24241()2!x x e x o x =+++, 224sin ()x x o x =+,244cos 1()2!4!x x x o x =-++;代入原式,有222012lim (cos )sin x x x x e x→+-0lim x →=224424442424111(1())228(1()(1()))(())2!4!2!x x x o x x x xo x x o x x o x +-+-+-++-++++ 0limx →=44244241()8311(())(())224x o x x x o x x o x +--++=112- 综上所述,本文精选了十二种常用的求极限的方法,我们学生在解题时要根据具体的情形选用合适简洁的方法.另外,求极限的方法还有很多,比如求某种递推数列极限时要证明其存在用到的“压缩映像”原理和不动点方法,而这些方法又是比较难,在此就不一一列举了.适当的时候还可用变量代换法把一些复杂的式子简单化,再选用上述的十二种方法中的一种来求数列或一元函数的极限.2 一题多解有些求极限问题可以用多种方法来解决,下面我选择了一些题目运用上述方法进行求解. 例1 求极限1lim ((1))nn n e n→+∞-+解法1 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.101lim ((1))xx e x x →-+10(1)limxx e x x→-+==洛比达1ln(1)0lim((1))lim()x x xx x x e+→→''-+=-ln(1)0lim x xx e +→=-⋅2ln(1)1x x x x -++=连续性0ln(1)lim x x x e →+-⋅20ln(1)1lim x x x x x →-++ =洛比达e -⋅1()2-2e =,再由海涅定理1lim ((1))n n n e n →+∞-+2e=.解法2 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.利用泰勒展式,22()1ln(1)2(1)x x o x x xxxx ee-+++==1()2xo x e-+=,所以, 10(1)limxx e x x →-+1()()22001limlimxxo x o x x x e eee xx-+-+→→--===洛比达2e, 再由海涅定理 1lim ((1))nn n e n→+∞-+2e =. 解法3 1lim ((1))n n n e n→+∞-+1(1)lim1nn e n n→∞-+=, 令1(1)n n y e n =-+,1n x n =,lim lim 0n n n n x y →∞→∞==,1n n x x -<,11lim n n n n n y y x x -→∞---111(1)(1)1lim 111n nn n n n n -→∞+-+-=--12112(1)(1)lim (1)n n n n n n n n n n n ----→∞+--=- 11111(1)(1)1lim11(1)1n n n n n n n n n -→∞--+--=-- 到这里式子已经很复杂,也许可以再用洛比达法则和海涅定理来求出极限或者用泰勒展式求出极限,再由斯托兹定理得出所求值,也许它根本就没有极限值,或极限值不确定,那么就不能再用斯托兹定理求出所要的值.这里由于表达式很复杂,计算量很大,就不再写出过程,我们重在解题思想,所以选择适当的方法很重要.例2 ()f x 在[1,1]-上连续,恒不为0,求极限0x →解法1 由等价无穷小性质,31x-ln3(0)x x →,11()sin 3f x x . 故0x →001()sin sin ()3lim limln 33ln 3x x f x x x f x x x →→===(0)3ln 3f .解法2 ()f x 在[1,1]-上连续,因而()f x 在其上有界.11()sin ()3f x x o x =++,31ln 3()x x o x =++得0x →01()sin ()3lim ln 3()x f x x o x x o x →+=+01sin ()(1)3lim ln 3(1)x x f x o x o →+=+=(0)3ln 3f . 例3 设113(1)0,,1,2,3n n nx x x n x ++>==⋅⋅⋅+证明:此数列有极限,并求其极限值.解法1 由已知0n x >.)1(当1x >12113(1)63333x x x x +==->-=++16333n n x x -=->-=+213333n n nn n n x x x x x x ++---=+0n=<,1,n n n x x x +<,从而n x 收敛.)2(当0n x <≤160333n n x x -<=-≤-=+且1)03n n n n nx x x x x +-=≥+,即1n n x x +≥,n xn x 收敛.由)2(),1(知n x 必收敛,且13(1)lim lim3n n n n nx x x x +→+∞→+∞+==+,得3(1)3x x x +=+,23x =,由0n x >得x =lim n n x →∞=解法2 假设0n x >收敛,令lim n n x x →∞=由解法1知x =下用ε-N 证明n x0ε∀>取N ∈N,使N >,当n N >时,有13(1)3n n nx x x ++=+n =≤11n Nx x ε≤⋅⋅⋅≤-≤<.所以lim n n x →+∞=.有很多求极限的题目可以用多种方法来求解,这里不再一一举例.我们应选择最适当的方法,这样不仅可以使题简化,而且使我们的解题思路更加清晰,解题正确率高,节省时间,提高效率.极限是高等数学中一个基础而重要的概念,它贯穿高等数学的内容始终,是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的.希望我的论文能为正在学习和已经学过数学分析的人提供一些有益的视觉.。
浅谈极限的求解方法毕业论文

浅谈极限的求解方法毕业论文1000字一、引言极限是微积分中最基本的概念之一,也是微积分理论的重要组成部分。
求极限可以帮助我们对函数的性质有更全面的了解,进而掌握一些更深入的微积分及数学分析知识。
本文将从定义、性质和求解方法三个方面进行讨论,希望能够帮助读者深入理解极限的概念和应用。
二、极限的定义在微积分中,极限是用来描述一个函数在某一点处的趋势性质的。
一般来说,我们将自变量不断逼近某一个值时,对应的函数值是否会逐渐趋近于一个确定的数,就称这个数为函数在该点的极限。
严格来说,极限的定义应该满足以下要求:(1)函数在无穷远点时也应有极限;(2)左极限等于右极限;(3)如果函数有极限,那么极限值应该是唯一确定的。
三、极限的性质(1)极限的唯一性:如果一个函数在某一点处有极限,那么它的极限值应该是唯一的。
这个性质可以通过反证法来证明。
假设一个函数f在某一点x0处有两个不同的极限L1和L2,那么我们就可以得到一个矛盾。
如果L1≠L2,那么我们就可以找到一个足够小的邻域,使得f(x)与L1的距离和f(x)与L2的距离之和小于某一个正数e。
但这与L1和L2不相等的前提矛盾,即假设不成立。
(2)局部有界性:如果一个函数在某一点x0处有极限,那么它在该点的某个邻域内是有界的。
因为如果函数在x=x0处有极限,那么意味着随着x越来越靠近x0,f(x)与L的差距会越来越小,也就是说函数值的范围将会越来越集中在一个很小的区域内。
(3)保号性:如果一个函数在某一点x0处有极限且不等于0,那么在该点的某个邻域内,函数与极限值之间的关系将会有一个明确的规律。
具体来说,如果极限值L>0,那么在一个充分小的邻域内,函数值将始终大于0;如果极限值L<0,那么在一个充分小的邻域内,函数值将始终小于0。
四、极限的求解方法(1)初值法:初值法又称数列逼近法,是一种基本的极限求解方法。
这个方法的具体过程是,我们先找到一个充分靠近极限的初始点,然后不停地不断逼近目标值,直到误差达到所需精度。
浅谈恒等变形在求极限运算中的技巧与方法

浅谈恒等变形在求极限运算中的技巧与方法
恒等变形在求极限运算中是一种常用的技巧和方法,可以有效帮助研究人员优化研究设计,提高极限的精度。
恒等变形法的基本思想就是从某个求极限运算的角度,对某个参数满足恒等变形要求,间接得出极限结果。
恒等变形法定义为所求函数f (x )在x处的前限和后限,当且仅当f (x )的概率分布与实际赋值极限的概率分布谱相等时,定义的前限和后限就是极限的值,才具有证明可行性。
也就是说,只有在恒等变形关系成立的时候,极限的值才能够被定义,这也是求极限精度较高的关键。
恒等变形法是利用满足某种条件,从函数f (x )拉格朗日变换中可以求出极限的唯一解,同时还可以用拉格朗日变换中的变量作为求解极限的变量,从而达到优化研究设计的目的。
由于满足恒等变形要求,研究人员可以把重点放在求解极限的关键点上,把变量从函数f (x )中提取出来,使用边界条件,消除无用功能点,从而控制算法的准确性来提高运算精度。
此外,恒等变形法不仅可以提高极限运算的精度,还可以提高运算速度。
因为满足恒等变形要求的变量可以在较短的时间内求得极限的结果,且算法的准确性也得到相应的提高,从而节省大量的运算资源。
因此,恒等变形在求极限运算中可以说是一种非常有效的技巧和方法。
一定的满足恒等变形要求,不仅可以对变量重新定义,也能够提高求极限运算的精度和速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录中文摘要 (2)外文摘要 (3)引言 (4)1.求极限的相关技巧与方法 (4)1.1 利用极限的四则运算法则求极限 (4)1.2 利用函数的连续性求极限 (5)1.3 利用无穷小的性质求极限 (6)1.4 利用等价无穷小的代换求极限 (6)1.5 利用两个重要极限求极限 (7)1.6 利用两个极限存在准则求极限 (9)1.7 利用L'Hospital法则求极限 (10)1.8 利用泰勒展式求极限 (11)1.9 利用积分求极限 (13)1.10 利用Lagrange中值定理求极限 (14)1.11 利用微分中值定理来求极限 (15)1.12 用Stolz法求极限 (16)1.13 用代数函数方法求极限 (17)2.多种极限方法的综合运用 (19)参考文献 (22)致谢 (23)浅谈求极限的方法与技巧陶习满指导老师:胡玲(黄山学院数学系,黄山,安徽 245041)摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。
然而求极限的方法很多,本文总结几种常用的求极限的方法。
关键词:极限;技巧;方法。
Of Getting The Methods And TechniquesLimitTao XimanDirector : Hu Ling(The mathematics department of huangshan university,Huangshan,Anhui,245041)Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference.Key Words: Limit; skills; method.引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。
掌握好求极限的方法对学好高等数学是十分重要的。
因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。
然而求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。
1.求极限的相关技巧与方法 1.1 利用极限的四则运算法则求极限定理:若 A x f x x =→)(lim 0B x g x x =→)(lim 0(1)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(2)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(3)若 0≠B ,则BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(4)cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者,方能利用极限四则运算法则进行求之;不满足条件者,不能直接利用极限四则运算法则求之。
但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之,而对函数进行恒等变形时,通常运用一些简单技巧如拆项,分子分母同乘某一因子,变量替换、分子分母有理化等等。
例1 求2lim →x 352-+x x解 2lim →x 352-+x x =732323lim lim 5lim lim 222222-=-+=-+→→→→x x x x x x例2 求)13(lim 22x x x x x +-++∞→解)13(lim 22x x x x x +-++∞→=xx x x x x +++++∞→221312lim=xx x xx 1113112lim2+++++∞→=21.2 利用函数的连续性求极限)()](lim [))((lim )()(lim )]([)()()(lim )()(000a f x f x f a u u f a x x f ii x f x f x x x f i x x x x x x x x ======→→→→ϕϕϕϕ则处连续,在且是复合函数,又若处连续,则在若因为一切初等函数在其定义区间内都是连续的,所以如果)(x f 是初等函数,且0x x =是)(x f 的定义区间内的点,则).()(lim 0x f x f ox n =→例1 求612arcsinlim 1+→x x 解 因为复合函数612arcsin+x 是初等函数,而1是其定义区间内的点,极限值就等于该点处的函数值。
因此6π21arcsin 6112arcsin 612arcsin==+⨯=+x 例2 求下列函数的极限)1ln(15cos lim )1(20x x x e x x -+++→ xx x )1ln(lim)2(0+→()1ln ))1(lim ln()1ln(lim )1ln(lim )1()1ln()1ln()2(6)0()1ln(15cos lim )1ln(15cos )(0)1(1010011202==+=+=++=+=+==-+++-+++==→→→→e x x xx x x x x x f x x x e x x x e x f x x x x x x xxx x x 故有:令由有:故由函数的连续性定义的定义域之内。
属于初等函数由于解:ϕ1.3 利用无穷小的性质求极限定理:若自变量在同一变化过程中(0x x →或∞→x )(1)如果已知数)(x f 为无穷大量则)(1x f 为无穷小量。
(2)如果已知数)(x f 为无穷小量且0)(≠x f ,则)(1x f 为无穷大量。
因为有界量与无穷小的乘积仍为无穷小;有限个无穷小的和仍为无穷小;在自变量的同一变化过程中无穷大量的倒数为无穷小,利用这些性质可以使我们的计算得以简化。
例1 xx x 1sinlim 20→ 解 因为当0→x 时,2x 是无穷小,而1|1sin |≤x ,所以01sin lim 20=→xx x例2 4532lim21+--→x x x x解 因为分母的极限04151)45(lim 221=+⨯-=+-→x x x ,不能应用商的极限的运算法则,但因03124151lim 3245lim2121=-⨯+⨯-=-+-→→x x x x x ,故∞=+--→4532lim 21x x x x 1.4 利用等价无穷小的代换求极限定理:若自变量在同一变化过程中αβαβαβββαα''=''''lim lim lim~~存在,则且、 利用等价无穷小代换求函数的极限时,一般只在以乘除形式出现时使用,若以和、差形式出现时,不要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数,故此慎用为好。
还应该熟悉一些常用的等价无穷小,如当0=x 时有如下等价无穷小:,2~cos 1),1ln(~,1~,arctan ~tan ~,arcsin ~sin ~2x x x x x x x x x x x x e-+-x x αα~1)1(-+等等。
例1 求 )1ln()1(cos 1lim0x e xx x +--→解 因为当0→x 时有,)1ln(~,1~,2~cos 12x x e x x x x +--,所以)1ln()1(cos 1lim 0x e x x x +--→=212lim 20=⋅→x x x x例2 求302sin sin 2limx xx x -→解 11lim )cos 1(2sin lim 2sin sin 2lim2202030=⨯=-=-→→→xx x x x x x x x x x x 错误的解法是:302sin sin 2limx x x x -→=022lim 30=-→xxx x 错在对加减中的某一项进行了等价无穷小代换。
例3 求)12(lim+-+∞→x x x x解 xx x x x 11211)12(+++=+-+2111211lim)12(lim =+++=+-+∴∞→∞→xx x x x x x1.5 利用两个重要极限求极限1sin lim)(0=→x x A x e xB x x =+∞→)11(lim )(变形:))((,))(11lim()()0)((,1)()(sin lim)()(''∞→=+→=x e x B x x x A x ϕϕϕϕϕϕ在此即利用① 1sin lim 0=→x x x , ②e x x x =+→10)1(lim 和e xx x =+∞→)11(lim ,其中的x 都可以看作整体来对待。
其中第一个重要极限是“”型;第二个重要极限是“∞1”型,在“0”型中满足“外大内小,内外互倒”。
在利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限的标准型或它们的变形,这就要抓住它们的特征,并且能够根据它们的特征,辨认它们的变形。
例1 求20cos 1limx xx -→解 20cos 1limx xx -→=21)2(2sin 21lim 2sin 2lim220220==→→x xx x x x例2 求xa x x 1lim 0-→解 )1ln(ln 1 ln )1ln( ,1u au x a a u x u a x x+=-+==-于是则令 a u auu a u a u xa u x uu u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 010000=+=+=+=-→→→→→→故有:时,又当例3 求xx xx 10)121(lim +-→解 为了利用极限e x xx =+→10)1(lim ,故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外的指数互为倒数进行配平。