极限的常用求法及技巧.

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,它描述了函数在某个点或者趋向某个点时的变化规律。

求函数极限的方法与技巧有很多,下面将详细介绍。

1. 直接代入法直接代入法是求函数极限最简单的方法之一。

当函数在某一点或者趋向某一点时,可以直接将该点代入函数中进行计算。

如果得到的结果是有限值,则函数在该点的极限存在且等于该有限值;如果得到的结果是无穷大或者不存在,则函数在该点的极限也相应不存在。

要求函数f(x)在x=1时的极限,可以直接计算f(1)的值,如果得到的值是有限的,那么f(x)在x=1时的极限存在且等于f(1)的值;如果得到的值为无穷大或者不存在,那么f(x)在x=1时的极限也相应不存在。

2. 夹逼定理夹逼定理是求函数极限的重要方法之一,它适用于求极限存在的情况。

夹逼定理的思想是通过找到一个比较“简单”的函数序列,将要求的函数夹在这些函数之间,从而利用这些函数的极限值来判断原函数的极限是否存在。

夹逼定理的具体步骤是:(1) 找到两个函数序列g(x)和h(x),它们分别比要求的函数f(x)小和大;(2) 当x趋向某一点a时,g(x)和h(x)的极限分别为L和M;(3) 如果L=M,则函数f(x)在x趋向a时的极限存在且等于L=M。

要求函数f(x)=x^2sin(1/x)在x=0时的极限,可以采用夹逼定理。

我们知道-1≤sin(1/x)≤1,因此-x^2≤x^2sin(1/x)≤x^2,而当x趋向0时,-x^2和x^2两个函数的极限都为0。

根据夹逼定理,可以得到f(x)在x=0时的极限存在且等于0。

3. 分式分解法对于一些复杂的函数,可以通过将其进行分式分解来求解极限。

分式分解法的思想是将函数表示为分子、分母分别进行分解,并利用极限的四则运算性质来求得要求的极限。

要求函数f(x)=(x^2-1)/(x-1)在x=1时的极限,可以将f(x)进行分解得到f(x)=x+1,从而得到函数在x=1时的极限为2。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧求函数极限是微积分的重要内容之一,也是数学分析中的基本问题。

求函数极限需要掌握一定的方法与技巧,下面将从常用的方法、典型的技巧和注意事项等方面进行详细介绍。

1. 代入法代入法是求函数极限最简单的方法之一。

当函数在极限点附近没有特殊的性质时,可以通过直接代入极限值来求解极限。

求函数f(x)=2x-1在点x=3处的极限,直接代入x=3,即可得到f(3)=2*3-1=5,所以极限值为5。

2. 分式化简法对于复杂的函数极限,通常可以利用分式化简法来解决。

将函数化为分式形式,通过合并同类项或者提取公因式等方法,将分式化简至最简形式,然后再进行极限运算。

这样可以简化计算,并且更容易得到极限值。

3. 夹逼准则夹逼准则也是求解极限常用的方法之一。

夹逼准则是一种利用不等式来求解极限的方法,通常用于求解无穷小的极限。

利用夹逼准则可以将复杂的极限问题转化为相对简单的不等式推导问题,从而更容易求得极限值。

4. 极限换元法极限换元法是求解函数极限的一种有效方法,也是求极限的一个经典技巧。

通过将变量进行适当的换元,可以将原来复杂的极限问题转化为相对简单的形式,从而更容易求解极限值。

常见的换元方式包括三角换元、指数换元、对数换元等。

二、典型的技巧1. 分步求解有些复杂的函数极限问题可以通过分步求解来进行,先将函数进行分解或者阶段性的处理,然后逐步求解各个部分的极限值,最后将结果进行合并得到整体的极限值。

这样可以降低计算的复杂度,更容易求得极限值。

2. 极限的运算法则在进行极限运算时,可以利用极限的运算法则来简化计算。

其中包括加减法法则、乘法法则、除法法则、幂函数法则、复合函数法则等,这些运算法则可以在极限计算中起到一定的简化作用,并帮助求得极限值。

3. 利用对称性对称性在求解函数极限中也是一种常用的技巧。

对于对称性的函数或者函数的特殊性质,可以利用对称性来简化极限计算,例如利用奇偶性、周期性等性质,从而简化计算过程,更容易求得极限值。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

函数极限的求法及技巧总结

函数极限的求法及技巧总结

函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。

在计算函数极限时,需要掌握一些求法和技巧。

本篇文章将对此进行总结。

1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。

例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。

因此,f(x)在x = 1处的极限为6。

2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。

3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。

夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。

4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。

例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。

因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。

5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。

泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,在解决实际问题和进行理论推导时经常需要用到。

在计算函数极限时,常常使用一些方法和技巧可以简化计算过程。

下面将介绍一些常用的函数极限计算方法和技巧。

一、代数运算法则1. 乘积运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)g(x)]=AB。

2. 商运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B且B≠0,则lim(x->a)[f(x)/g(x)]=A/B。

3. 加法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)+g(x)]=A+B。

4. 减法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)-g(x)]=A-B。

以上的代数运算法则可以简化函数极限的计算过程,通过运用这些法则可以将一个复杂的函数极限问题转化为多个简单的函数极限问题。

二、夹逼准则夹逼准则也是常用的一种函数极限计算方法。

如果存在函数g(x)和h(x),使得对于x 在a的某个去心邻域内,有g(x)≤f(x)≤h(x),并且lim(x->a)g(x)=lim(x->a)h(x)=L,则lim(x->a)f(x)=L。

夹逼准则利用了三个函数之间的大小关系,将复杂的函数极限问题转化为两个较为简单的函数极限问题。

三、分子有理化和分母有理化在计算函数极限时,有时候分子或分母不是有理式,而是含有根号、分数等形式。

这时可以利用分子有理化和分母有理化的方法将其化简为有理式,再进行运算。

当计算lim(x->0)(sinx/x)时,可以将其改写为lim(x->0)(sinx)/(x/x)的形式,然后再利用等式lim(x->0)(sinx)/x=1来计算极限。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限的计算是数学中常见且重要的问题,对于深入理解函数行为和解决实际问题具有重要意义。

以下是一些计算函数极限的常见方法和技巧:1. 代入法:当函数只有一个变量的时候,可以通过将变量代入函数中来计算极限。

这种方法适用于简单的函数和简单的极限问题。

2. 四则运算法则:对于复杂的函数,可以利用四则运算法则简化极限计算。

四则运算法则包括加法、减法、乘法和除法,通过对函数表达式进行合理的变形和简化,可以得到更简单的极限计算形式。

3. 夹逼定理:夹逼定理也称为挤压定理,是一种计算极限的重要方法。

当一个函数在某个点附近夹在两个已知函数之间时,可以利用这个夹逼关系来求函数的极限。

4. 分数分解法:对于含有分数的函数,可以利用分数分解法将其分解为分子和分母的极限,然后分别计算两个极限。

5. 洛必达法则:洛必达法则是计算极限的一种重要方法。

当求函数的极限遇到不确定型的形式(如0/0或∞/∞)时,可以利用洛必达法则,将函数转化为两个函数的极限比值,然后再进行计算。

6. 泰勒展开法:泰勒展开是一种将函数在某一点附近用多项式逼近的方法。

当函数在某一点处极限求解困难时,可以用泰勒级数展开来近似计算极限。

7. 对数换底法:对数换底法是计算一些特殊形式的极限的一种有效方法。

当函数中含有对数函数,并且指数不同底时,可以通过换底公式将其转化为更简单的形式。

8. 常用极限:熟记一些常用的函数极限是计算极限的一个重要技巧。

常用的函数极限包括指数函数、对数函数、三角函数等的极限,可以通过记忆和推导得到。

计算函数极限的方法和技巧很多,选择合适的方法和技巧对于解决极限问题非常重要。

需要根据具体的函数形式和问题特点选取合适的方法,并在计算中灵活应用各种技巧,从而有效地计算函数的极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限的常用求法及技巧引言极限是描述数列和函数在无限过程中的变化趋势的重要概念。

极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。

极限如此重要,但是运算题目多,而且技巧性强,灵活多变。

极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结,我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。

函数的极限等等。

本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通。

1数列极限的常用求法及技巧数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。

数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。

1.1利用定义求数列极限利用定义法即利用数列极限的定义 设{}n a 为数列。

若对任给的正数N,使得n 大于N 时有ε<-a a n则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞→或)(,∞→∞→n a n读作当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a 例证明2322n lim -∞→n n 解 由于)3n 93n 9323222≥≤-=--(nn n 因此,对于任给的ε>0,只要ε<n9,便有 ε<--33322n n即当nε9>时,(2)试成立。

又因为(1)式是在3≥n 的条件下也成立,故应取.9,3max ⎭⎬⎫⎩⎨⎧=εN在利用数列的N -ε定义时,应意识到下几点1.ε的任意性 定义中的正数ε的作用在于衡量数列通项{}n a 与定数a 的接近程度,ε越小,表示接近的愈好;而正数ε可以任意的小,说明{}n a 与a 可以接近到任何程度。

然而,尽管ε有其任意性,但已经给出,就暂时的被确定下来了,以便依靠它来求出N.又1.2 利用极限的四则运算极限的四则运算法则若{n a }与{n b }为收敛数列,则{n n a b +},{n n a b -},{n n a b •}也都是收敛数列,其有lim()lim lim()lim lim n n n nn n n n n nn n n a b a b a b a b →∞→∞→∞→∞→∞±=±•=例求n 解==由111()n n+→→∞ 得1lim 2n n == 1.3利用单调有界定理单调有界定理即在实数系中,有界的单调数列必有极限,单调数列即 若数列{}n a 的各项关系式,)(11++≥≤n n n n a a a a则称{}n a 为递增(递减)数列。

递增数列和递减数列统称为单调数列。

有界性即M 存在使得对于一切正整数n,有M a n ≤这一方法是利用极限理论基本定理:单调有界数列必有极限,其方法为:(1)判定数列是单调有界的,从而可设其极限为A 。

(2)建立数列相邻两项之间的关系式。

(3)在关系式两端取极限,得以关于A 的方程,若能解出A,问题就可以解决了。

一般利用单调有界原理求极限的题目都给出了第n 项和第n+1项的关系式。

首先应用归纳法或“差法”,“比法”等方法证明其单调性,再证明其单调性,有界性(或先证有界,再证单调)。

由单调有界定理得出极限的存在性,然后对关系式两端求极限,a a a++其中(a>0)极限解: 设0x,1x ==11,1,2...)n x n +==则{n x }是单调有界数列,它必有极限,设其极限为A在1n x +=A =20A A a --=所以A =A>0所以A =即1lim 2n n x →∞=例设x 0>0, a >0,x 1n +=21(x n +x na ), n=0,1,2….z 证明数列{}x n 的极限存在,并求之。

证明:易见x n >0,n=0,1,2….所以有x 1n +=21(x n+x na )≥xn.xna=ax 1n +=21(x n +x n a )≥21(x n +x x nn 2)=x n=)(1)(1121a a a ll n-+--+由0<l<1,故lim n ∞→0)(-=n l ,从而lim n ∞→=a n lim n ∞→a n 1+=l l la a a a a ++=+-+1121121 aann n 1lim+∞→=11lim lim limn =+∞→∞→∞→a a nn n n1.4利用迫敛法则利用迫敛法则求极限主要利用放缩法将其同时放大或缩小成俩个已知数列。

(已知数列的极限相同)即设数列{}n a ,{}n b 都以a 为极限,且存在0N ,使得当n>0N 时b c a n n n ≤≤则数列{}n c 收敛,且a c n n =∞→lim 。

由迫敛法则可得所求极限与已知数列极限相等例 求limn ∞→)n 26.4.21-n 25.3.1()(解 :记x n =)n 26.4.21-n 25.3.1()( ,yn=)1n 27.5.32(6.4.2+()n 显然x n <yn,n=1.2…,所以即数列{}x n 单调递减有下界,极限存在。

记lim n ∞→x n =A , 对关系式x 1n +=21(x n +x na ) 令n→∞取得极限得到A =a .(其中A=-a <0,因不合舍去) 例 设 a i﹥0(i=1,2,3…m),记 M=ma x(a 1,a 2,…a m )。

证明limn ∞→a n 1+a n 2+…a m n=M n证明:因M n<a n1+a n2+…a m n<m Mn→M (n→∞)即 limn ∞→a n1+a n2+…a m n=M n1.5利用递推关系有些题目中数列的单调性不易证得时就不能应用单调有界定理,此时可尝试采用递推关系应用压缩原理去解决.这些题目一般都给我们一个递推式)(1n n a f a =+,但单调性不易或根本无单调性,例 设 a 1,a 2为任意取定的实数,且a 12+a 22≠0,定义a a a n n n l k 11-++=① 其中,k ,l 为正数,且,1=+l k n=1,2….试求aa nn n 1lim +∞→证明 由,1=+l k 即0< k<1,0<l <1.由①式得l a a a a n n n l 21n 1)(-=--=-+()()12121a a la a n n n -=----a a a a a a a an n n n n 112111)()()(+-+-+-=-++=a a a l l l n n 11221))](1)()[(+++-++-+--- 所以有0<x n 2<x nyn=1n 21+ 即0<xn<1n 21+→0,(n →∞) 故lim n ∞→xn=01.6利用上下极限一个有界数列未必存在极限,但它一定有上下极限,且有界数列极限存在的充要条件是其上下极限相等。

对于一个有界数列{}n a 取掉它的最初K项以后,剩下来的仍旧是一个数列,记这个数列的上确界为k β ,下确界为k α亦即k β={}{} 32,1kn ,sup sup +++>=k k k n a a a ak α={}{} 32,1,inf inf +++>=k k k n kn a a a a可见k α< k β, 3,2,1=k 令于是可以得到一列{}k β和一列{}k α,显然{}k β是单调递减的,{}k α是单调递增的,所以这两个数列的极限都存在,我们称{}k β的极限为数列{}n a 的上极限,{}k α为数列{}n a 的下极限。

我们可根据上下极限处理一些极限问题 例 设lim n ∞→x n =A.求证limn ∞→=+++nn n x x x n 1322121 A证明 由lim n ∞→x n =A,知对任给0>ε,存在N ,使得当n>N 时,有 A-ε<x n <A+ε于是y n =n n nx x x n1322121+++ =)121(1)1N N 3221(1121x x x x x nN N n nN N n n ++++++++++ ≤))(n (1)1N N 3221(121ε+-+++++A N nn x x x N两边取上极限得ε+≤∞→A ny n lim同理可证ε-≥∞→A y nn lim _____于是ε-≥∞→A y nn lim _____于是≤-εA y nn lim _____∞→≤limn ∞→y n≤ε+≤∞→A n y n lim由ε的任意性得limn ∞→A y=n亦即limn ∞→=+++nn nx x x n 1322121 A1.7利用stolz 定理Stolz 定理 若所求极限为x y nn 型,且{}y n是单调增加的无穷大量.。

且limn ∞→yy x x n nn n 11----=a 则limn ∞→xy nn =a或 {}n x ,{}n y 都是无穷小量,且{}n y 是严格单调减少数列,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞),则n lim n nxa y →∞=证明{}n y 是严格单调增加的正无穷大量,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞)则n limnnx a y →∞= 证:(1) 考虑a = 0的情况由1n 1lim 0n n n n x x y y -→∞--=-,有11,,(),n n n n x x N n n N y y εε---∀∃∀><-即ﻩﻩﻩ11n n n n x x y y ε---<-则 1121n n n n n N N N x x x x x x x x ---+=-+-++-+ﻩ 1121n n n n N N N x x x x x x x ---+≤-+-++-+ﻩ1121n n n n N N N y y y y y y x ε---+≤⎡-+-++-⎤+⎣⎦n y 是严格单调增加的,因此1121N n n n n n N Nn nnx x y y y y y y y y y ε---+-+-++-≤+N n n Nn n n x x y y y y y ε-≤+ N nn nx x y y ε≤+ n y 是正无穷大量ﻩﻩﻩ22,(),Nnx N n n N y ε∃∀>< 取'2N max(,)1N N =+,'()n n N ∀>有2nnx y ε≤ 所以n lim0nnx y →∞= (2) 当a是非零有限数时,令'nn n x x ay =-,于是由 ''11n n 11lim lim 0n n n n n n n n x x x x a y y y y --→∞→∞----=-=-- 得到'n lim 0n n x y →∞=,从而'n n lim lim n nn nx x a a y y →∞→∞=+=(3) a =+∞的情况首先'11,(),n n n n N n n N x x y y --∃∀>->-说明{n x }也严格单调增加,且从n N n N x x y y ->-可知{n x }是正无穷大量将前面的结论应用到n n y x ⎧⎫⎨⎬⎩⎭,得到ﻩ ﻩ11limlim 0n n n n n n n n y y y x x x -→∞→∞--==- 因而 ﻩn limnnx y →∞=+∞ (4) 对于a =-∞的情况,证明方法类同2. {}n x ,{}n y 都是无穷小量,且{}n y 是严格单调减少数列,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞),则n limnnx a y →∞= 证: a 为有限量因11n n 11limlim n n n n n n n n x x x x a y y y y +-→∞→∞+---==--,所以11,,(),22n n n n x x N n n N a a y y εεε++-∀∃∀>-<<+-,其中10n n y y +->111()()()()22n n n n n n a y y x x a y y εε+++--<-<+-采用类似定理1的证明,可以得到()()()()22n n p n n p n n p a y y x x a y y εε+++--<-<+-令p →+∞,且0n p x +→,0n p y +→利用Stol z定理时,应注意验证题目所给数列是否满足定理的内容 例 求极限lim n ∞→nnk kk 1k21+++解 经检验分母1n +k ∞→,时,∞→n 且单调递增,所以满足条件。

相关文档
最新文档