历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

合集下载

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

历届中国数学奥林匹克(全国中学生数学冬令营)试题解答

√1 42
.
则|zk| = x2k + yk2 |xk| + |yk|.
n
∴ |xk| + |yk| 1.
k=1
∴ | xk| + | xk| + | yk| + | yk| 1.
xk 0
xk <0
yk 0
yk <0
其中必有一项不小于
1 4
,不妨设为第一项,则
|
xk |
1 4
.
xk 0
∴|
zk| = |
1 4
.

2xk .

xk
zk√∈A
而4 2 < 6,
√1 42
.∴
∴|
|
zk| =
zk ∈A
zk |
1 6
.
|
xk
zk ∈A
+
i
yk |
zk ∈A
zk ∈A
即A中复数之和的模不小于
1 6
.证毕.
另证:设zk = xk + yki(xk, yk ∈ R, k = 1, 2 . . . , n)
xk
zk ∈A
最后一步是由于x2, x3, . . . , xn > 0, (x2 + · · · + xn)2 = x22 + · · · + x2n +
xixj
2 i<j n
逆命题的证明:对于任意的1
i<j
n,令xi
=
xj
=
1 2
,其余xk均等于0.则
1 2
(ai
+
aj )

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题1987第二届年中国数学奥林匹克1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整除。

2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。

已知i.A、B、C三点上放置的数分别为a、b、c。

ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。

试求3.放置最大数的点积放置最小数的点之间的最短距离。

4.所有结点上数的总和S。

3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。

结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。

4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。

5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们两两相切。

如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。

6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

1.设a1, a2, ... , a n是给定的不全为零的实数,r1, r2, ... , r n为实数,如果不等式r1(x1-a1)+r2(x2-a2)+...+r n(x n-a n)≦√(x12+ x22+ ... + x n2) + √(a12+ a22+ ... + a n2)对任何实数x1, x2, ... , x n成立,求r1, r2, ... , r n的值。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

2013CMO试题

2013CMO试题

(第二十八届全国中学生数学冬令营)第一天2013年1月12日8:00∼12:30辽宁沈阳题1.如图1,两个半径不相等的圆K 1与K 2交于A ,B 两点,C ,D 两点分别在K 1,K 2上,且线段CD 以A 为中点;延长DB 交K 1于点E ,延长CB 交K 2于点F .设线段CD ,EF 的中垂线分别为l 1,l 2.证明:(1)l 1与l 2相交;(2)若l 1与l 2的交点为P ,则三条线段CA ,AP ,P E 能构成一个直角三角形.A BC DEF PO 1O 2K 1K 2图1题2.确定所有由整数构成的非空集合S ,满足:若m,n ∈S (m,n 可以相同),则3m −2n ∈S .题3.求一切正实数t ,具有下述性质:存在一个由实数组成的无限集合X ,使得对任意x,y,z ∈X (这里x,y,z 可以相同),以及任意实数a 与正实数d ,均有max { x −(a −d ) , y −a , z −(a +d ) }>td .(第二十八届全国中学生数学冬令营)第二天2012年1月13日8:00∼12:30辽宁沈阳题4.给定整数n ⩾2.设n 个非负有限集A 1,A 2,···,A n 满足:对任意i,j ∈{1,2,···,n },有 A i ∆A j = i −j .求 A 1 + A 2 +···+ A n 的最小值.(这里, X 表示有限集合X 的元素个数;对于集合X,Y ,规定X ∆Y ={a a ∈X,a /∈Y }∪{a a ∈Y,a /∈X }.)题5.对正整数n 及整数i (0⩽i ⩽n ),设C i n ≡c (n,i )(mod 2),其中c (n,i )∈{0,1},并记f (n,q )=n ∑i =0c (n,i )q i .设m,n,q 为正整数且q +1不是2的方幂.证明:若f (m,q ) f (n,q ),则对任意正整数r ,有f (m,r ) f (n,r ).题6.给定正整数m,n ,求具有下述性质的最小整数N (⩾m ):若一个N 元整数集含有模m 的完全剩余系,则它有一个非空子集,其元素和被n 整除.。

中国数学奥林匹克(第二十一届全国中学生数学冬令营)试题及解答.doc

中国数学奥林匹克(第二十一届全国中学生数学冬令营)试题及解答.doc

中国数学奥林匹克(第二十一届全国中学生数学冬令营)第一天福州 1月12日 上午8∶00~12∶30 每题21分一、 实数12,,,n a a a 满足120n a a a +++=,求证:()122111max ()3n k i i k n i n a a a -+≤≤=≤-∑.证明 只需对任意1k n ≤≤,证明不等式成立即可.记1,1,2,,1k k k d a a k n +=-=-,则k k a a =,1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----, 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++,把上面这n 个等式相加,并利用120n a a a +++=可得11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=.由Cauchy 不等式可得()2211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------11222111k n k n i i i i i i d ---===⎛⎫⎛⎫≤+ ⎪⎪⎝⎭⎝⎭∑∑∑111222111(1)(21)6n n n i i i i i n n n i d d ---===--⎛⎫⎛⎫⎛⎫≤= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑ 31213n i i n d -=⎛⎫≤ ⎪⎝⎭∑, 所以 ()122113n ki i i na a a -+=≤-∑.二、正整数122006,,,a a a (可以有相同的)使得200512232006,,,a a a a a a 两两不相等.问:122006,,,a a a 中最少有多少个不同的数?解 答案:122006,,,a a a 中最少有46个互不相同的数.由于45个互不相同的正整数两两比值至多有45×44+1=1981个,故122006,,,a a a 中互不相同的数大于45.下面构造一个例子,说明46是可以取到的. 设1246,,,p p p 为46个互不相同的素数,构造122006,,,a a a 如下:11213231434241,,,,,,,,,,,,,,p p p p p p p p p p p p p p , 11221,,,,,,,,,,,k k k k k k k p p p p p p p p p p --,14544454345452451,,,,,,,,,,p p p p p p p p p p , 4645464446462246,,,,,,,,p p p p p p p p ,这个正整数满足要求.所以122006,,,a a a 中最少有46个互不相同的数.三、正整数m ,n ,k 满足:23mn k k =++,证明不定方程22114x y m +=和 22114x y n +=中至少有一个有奇数解(,)x y .证明 首先我们证明如下一个 引理:不定方程22114x y m += ①或有奇数解00(,)x y ,或有满足00(21)(mod )x k y m ≡+ ②的偶数解00(,)x y ,其中k 是整数.引理的证明 考虑如下表示(21)x k y ++ ,x x y ≤≤0为整数,且,02y ≤≤,则共有()112m ⎛⎫⎡++> ⎪⎣ ⎪⎣⎦⎝⎭个表示,因此存在整数12,0,x x ⎡∈⎣,12,0,y y ⎡∈⎢⎣⎦,满足1122(,)(,)x y x y ≠,且1122(21)(21)(mod )x k y x k y m ++≡++,这表明(21)(mod )x k y m ≡+, ③这里1221,x x x y y y =-=-。

中国数学奥林匹克竞赛试题

中国数学奥林匹克竞赛试题

中国数学奥林匹克竞赛试题中国数学奥林匹克竞赛(China Mathematical Olympiad,CMO)是中国最高水平的中学生数学竞赛,也是参加国际数学奥林匹克竞赛的选拔赛之一。

以下是一些历年的CMO试题:2002年CMO试题:1)证明:$\sum_{k=1}^{n}\frac{1}{k(k+1)(k+2)}=\frac{n(n+3)}{4(n+1)(n +2)}$。

2)已知三个球$A, B, C$,半径分别为$R, R, r$。

在三个球外接正四面体$ABCD$中,球$A$与面$BCD$相切,球$B, C$相切于点$E$,球$A, C$相切于点$F$。

求$R$和$r$之比。

3)设$a_0=0, a_1=1, a_{n+1}=\sqrt{2a_n+2\sqrt{a_n^2-1}}(n\ge1)$。

证明:$\lfloor a_{2^n}\rfloor$是$2^n$次整系数多项式的唯一正实数根。

2.2009年CMO试题:1)设$P(x)$为实系数多项式,且对于任意实数$x$,都有$P(x^2+1)=P(x)^2+1$。

证明:$P(x)$是一个偶多项式。

2)已知$n$个点按逆时针顺序排列为$P_1, P_2, \cdots,P_n$。

定义$A(P_i, P_{i+1}, P_{i+2})$为由三点$P_i, P_{i+1}, P_{i+2}$所组成的三角形的面积。

求$\sum_{i=1}^{n-2}A(P_i,P_{i+1}, P_{i+2})$。

3)设$S$为所有$n$元实数组$(x_1, x_2, \cdots, x_n)$的集合,且满足对于任意$S$中的元素$(x_1, x_2, \cdots, x_n)$,都有$\sum_{i=1}^{n}x_i=0$,$\sum_{i=1}^{n}x_i^2=1$。

求$\sum_{(x_1, x_2, \cdots, x_n)\in S}x_1x_2x_3$。

中国数学奥林匹克冬令营试题

中国数学奥林匹克冬令营试题

中国数学奥林匹克冬令营试题
赵小云
【期刊名称】《中学教研:数学版》
【年(卷),期】1992(000)005
【总页数】4页(P38-41)
【作者】赵小云
【作者单位】杭州大学数学系
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.2004年中国数学奥林匹克冬令营试题 [J],
2.第24届中国数学奥林匹克冬令营试题及解答 [J], 无
3.2006年中国数学奥林匹克(第21届全国中学生数学冬令营)试题解答 [J],
4.2003年中国数学奥林匹克暨第18届全国中学生数学冬令营试题 [J],
5.2004年中国数学奥林匹克冬令营试题解答 [J], 陶平生
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 a1 x2 1 + a2 x2 + · · · + an xn ; 2 2 a1 x2 1 + a2 x2 + · · · + an xn
0(i = 1, 2, . . . , n),则显然有a1 x1 + a2 x2 + · · · + an xn 0, ai −a1 > 0(i = 2, 3, . . . , n). ∴
√ √ √ m2 −122 −5 5
×
12 m 12 m
12 m
< 1;
m2 −122 −5 5 m2 −122 −5 5
× ×
= 1; > 1.
2028 119 时,∠A为锐角;
2028 119 时,∠A为直角; 2028 119 时,∠A为钝角.
3.设z1 , z2 , . . . , zn 为复数,满足 |z1 | + |z2 | + · · · + |zn | = 1. 求证:上述n个复数中,必存在若干个复数,它们的和的模不小于 1 6. 证明:设zk = xk + yk i(xk , yk ∈ R, k = 1, 2 . . . , n) 将所有的zk 分为两组X,Y.若|xk | 再将X中的复数分为两组A,B.若xk 则
面积减小,归为情形(2). (2)不妨设P1 在AB 上,P2 在AC 上,P3 , P4 在BC 上,P3 在P4 C 上. (2.1)若P1 P2 上的高的长度. ∴S
P1 P2 P3
1 BC ,设 AP AB =
AP2 AC
= λ,P1 P2 = λBC .P1 P2 到BC 的距离为(1−λ)h,h为三角形ABC 中BC 边
∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
+ aj ).
0,即任两数之和非负.证毕.
2.在三角形ABC 中,BC 边上的高AD = 12,∠A的平分线AE = 13,设BC 边上的中线AF = m,问m在什 么范围内取值时,∠A分别为锐角,直角,钝角? 解:设O为 ABC 的外心,不妨设AB > AC ,∠B 为锐角. 则OF 垂 直 平 分 线 段BC ,由 外 心 的 性 质,∠C 为 锐 角 时,∠OAB = ∠OBA =
√ sin ∠F AE FE AD 由正弦定理 sin AE 2 − AD2 = 5, ∠DAE = DE × AF .其中DE = √ √ F E = F D − DE = AF 2 − AD2 − DE = m2 − 122 − 5 > 0. ∴ m > 13, 且∠A为锐角等价于 ∠A为直角等价于 ∠A为钝角等价于 解得当13 < m < 当m = 当m >
zk ∈A
|yk |,则将zk 放入X中;若|yk | 0,则将zk 放入A中;若xk
1 4.
|xk |,则将zk 放入Y中. 其中必有一组中 0,则将zk 放入B中. 其中必有一组中的
所有复数模长之和不小于 1 2 .不妨设为X.
1 所有复数摸长之和不小于 4 .不妨设为A.
|zk |
而对于zk ∈ ∴ xk
1 ◦ 2 (180 1 ◦ 2 (180
− ∠AOB ) =
− 2∠C ) = 90◦ − ∠C .
又因为AD ⊥ BC ,∴ ∠CAD = 90◦ − ∠C ,∴ ∠OAB = ∠DAC . 类似地,当∠C 为直角或钝角时也有∠OAB = ∠DAC . 由AE 平分∠BAC ,∠BAE = ∠CAE .∴ ∠OAE = ∠DAE .(由于F, D在E 两侧). ∠A为锐角时,O, A在BC 同侧,∠F AE < ∠OAE = ∠DAE ; ∠A为直角时,O, F 重合,∠F AE = ∠OAE = ∠DAE ; ∠A为钝角时,O, A在BC 异侧,∠F AE > ∠OAE = ∠DAE . 1
过P2 作 平 行 于BC 的 直 线
EP2 P3 . ABC .证毕.
DP2 P3 ,也就不大于S
5.能否把1,1,2,2,. . . ,1986,1986这些数排成一行, 使得两个1之间夹着1个数,两个2之间夹着2个数,. . . , 两 个1986之间夹着1986个数.请证明你的结论. 解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972. 当n为奇数时,两个n的编号奇偶性相同;当n为偶数时,两个n的编号奇偶性不同. 而1到1986之间有993个 偶数,所以一共有2k + 993个编号为偶数的数.(k ∈ N∗ ) 但是1到3972之间有1986个偶数,k = 496.5.矛 盾.所以不能按要求排成这样一行. √ 6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的
中国 数 学奥 林 匹 克 (CMO) 历届试题及解答
1986-2005
第一届中国数学奥林匹克(1986年)
天津 南开大学
1.已知 a1 , a2 , . . . , an 为实数, 如果它们中任意两数之和非负,那么对于满足 x1 + x2 + · · · + xn = 1 的任意非负实数 x1 , x2 , . . . , xn , 有不等式 a1 x1 + a2 x2 + · · · + an xn 成立.请证明上述命题及其逆命题. 证明:原命题的证明:由0 (1)若ai 以ai + a1 xi 1, xi − x2 i 0, xi x2 i (i = 1, 2, . . . , n).
xk <0
yk | + |
yk <0
yk |
1. xk |
1 4.
其中必有一项不小于 1 4 ,不妨设为第一项,则 | ∴|
xk 0Βιβλιοθήκη xk 0 1 4zk | = |
xk 0
xk + i
xk 0
yk |
|
xk 0
xk |
>1 6 .证毕.
4.已知:四边形P1 P2 P3 P4 的四个顶点位于三角形ABC 的边上. 求证:四个三角形 P1 P2 P3 , 的四分之一. 证明:有两种情况:(1)四个顶点在两条边上;(2)四个顶点在三条边上. (1)不妨设P1 , P4 在AB 上,P2 , P3 在AC 上,P1 , P2 分别在AP4 , AP3 上. 将B 移至P4 ,C 移至P3 ,三角形ABC 的 2 P1 P2 P4 , P1 P3 P4 , P2 P3 P4 中,至少有一个的面积不大于 ABC 的面积
zk ∈A 2 , yk A,x2 k 4 2 1 √
1 4 ,即
2 x2 k + yk 2 x2 k + yk

2xk . yk |
zk ∈A zk ∈A
.∴ |
zk ∈A
zk | = |
zk ∈A 1 6.
xk + i
xk
zk ∈A √ 而4 2 < 6, ∴ |
1 √ . 4 2
zk |
zk ∈A
+1 ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n2 θ sin θ 2 + 1) = 0. +1 sin(n + 1)θ − sin nθ = 2 cos 2n2 θ sin θ 2 = 0. +1 +1 1 θ ∴ cos 2n2 θ = 0, sin 2n2 θ = ±1, sin θ 2 = ± 2 , 设 2 = ϕ. π (1)sin ϕ = 1 2 ,sin(2n + 1)ϕ = −1. ϕ = 2kπ + 6 或2kπ + 5π 6 ,k
+

3 6 2 i, z
= 1, |z | = 1.
√ 3 2 i)
−e
iπ 3
− 1 = (1 2 −
− (− 1 2 −

3 2 i)
− 1 = 0.
− z − 1 = 0有模为1的复根.
若z n+1 − z n − 1 = 0有模为1的复根eiθ = cos θ + i cos θ. 则z n+1 − z n − 1 = (cos(n + 1)θ − cos nθ − 1) + i(sin(n + 1)θ − sin nθ) = 0.
即A中复数之和的模不小于 1 6 .证毕. 另证:设zk = xk + yk i(xk , yk ∈ R, k = 1, 2 . . . , n) 则|zk | = ∴ ∴|
xk 0 n k=1 2 x2 k + yk
|xk | + |yk |. 1. xk | + |
yk 0
|xk | + |yk | xk | + |
(2)否 则 至 少 存 在 一 个ai < 0,由 对 称 性 不 妨 设a1 < 0. 又 因 为a1 , a2 , . . . , an 中 任 两 数 之 和 非 负,所
2 2 a1 x1 + a2 x2 + · · · + an xn − a1 x2 1 − a2 x2 − · · · − an xn 2 2 = a1 (x1 − x2 1 ) + a2 (x2 − x2 ) + · · · + an (xn − xn ) 2 2 a1 (x1 − x2 1 ) + (−a1 )(x2 − x2 ) + · · · + (−a1 )(xn − xn ) 2 2 = (−a1 )(x2 1 − x2 − · · · − xn − x1 + x2 + · · · + xn ) 2 2 = (−a1 )(x2 1 − x1 + (1 − x1 ) − x2 − · · · − xn ) 2 = (−a1 )((1 − x1 )2 − x2 2 − · · · − xn ) 2 = (−a1 )((x2 + · · · + xn )2 − x2 2 − · · · − xn )
相关文档
最新文档