高中数列知识大总结(绝对全)

合集下载

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

(完整版)高中数学数列知识点整理

(完整版)高中数学数列知识点整理

1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。

S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。

⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。

⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。

3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。

反之不一定成立。

数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156n n a n N n =∈+,则在数列{}na 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

完整版)数列知识点归纳

完整版)数列知识点归纳

完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。

因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。

特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。

7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列(知识点很全)

数列一、 知识梳理概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n na a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比. 2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列) 1)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==nS a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。

存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。

2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。

数列知识点总结高考

数列知识点总结高考

数列知识点总结高考一、数列的概念数列是指有限或无限个数的有序排列,以逗号分隔,记作{an}。

其中an称为数列的通项。

常见的数列有等差数列、等比数列等。

二、等差数列1. 等差数列的定义若一个数列中任意两项之间的差都相等,则这个数列称为等差数列。

其中,差值称为公差,记作d。

2. 等差数列的通项公式设等差数列的首项为a1,公差为d,则等差数列的通项公式为:an = a1 + (n-1)d3. 等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a1 + an) * n / 24. 等差数列中的常见问题等差数列中的常见问题包括求首项、公差、通项、前n项和以及数列的性质等。

三、等比数列1. 等比数列的定义若一个数列中任意两项之间的比值都相等,则这个数列称为等比数列。

其中,比值称为公比,记作q。

2. 等比数列的通项公式设等比数列的首项为a1,公比为q,则等比数列的通项公式为:an = a1 * q^(n-1)3. 等比数列的前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - q^n) / (1 - q)4. 等比数列中的常见问题等比数列中的常见问题包括求首项、公比、通项、前n项和以及数列的性质等。

四、数列的性质1. 有限数列的性质有限数列的性质包括首项、末项、公差或公比、前n项和等。

2. 无限数列的性质无限数列的性质包括首项、公差或公比、极限等。

3. 数列的通项公式数列的通项公式是数列的重要性质,通过通项公式可以求得数列的任意项。

五、利用数列解决实际问题数列在实际问题中的应用十分广泛,例如等差数列可以用来描述等距离的运动过程,等比数列可以用来描述成倍增加的现象等。

总结:通过学习数列的知识,我们可以得到多种数学问题的解决方法,通过分析数列的性质和通项公式,可以更好地理解数学问题的本质。

因此,数列是数学学习中一个重要的基础知识。

以上就是数列的相关知识点总结,希望对你的学习有所帮助。

高中数学数列知识点总结5篇

高中数学数列知识点总结5篇

高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。

数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。

数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。

掌握数列的基本概念对于后续的学习至关重要。

二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。

在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。

等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。

等比数列的特点是任意两项之比都相等。

在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。

等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。

四、数列的极限数列的极限是描述数列变化趋势的重要概念。

当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。

掌握数列极限的概念和计算方法是分析数列性质的重要工具。

五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。

例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。

掌握数列的应用对于解决实际问题具有重要意义。

除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。

这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。

七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。

这些证明方法在证明数列的性质和解决问题时非常有用。

掌握这些证明方法有助于提升数学思维和逻辑推理能力。

综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 数列重难点击本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。

注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。

知识网络第一课时 数列四、数列通项n a 与前n 项和n S 的关系1.∑==++++=ni in n aa a a a S 13212.⎩⎨⎧≥-==-2111n S S n S a n n n课前热身3.数列{}n a 的通项公式为 n n a n 2832-=,则数列各项中最小项是( B )A .第4项B .第5项C .第6项D .第7项4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2,则实数λ的取值范围是),3(+∞-5.数列{}n a 的前n 项和142+-=n n S n ,,则⎩⎨⎧≥-=-=25212n n n a n数列与正整数集关系等差数列等比数列特殊数列求和方法公式法倒序相加法 错位相减法 裂项相消法n 定义通项公式中项前项的和递推公式通项公式 数列题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,…⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为),110(97-⨯),110(972-)110(973-,,)110(97-n⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。

可得数列的通项公式为2)1(1nn n a -++=点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。

题型二 应用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 求数列通项例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式.⑴23-=nn S解析:⑴当123,1111=-===S a n 时, 当)23()23(,211---=-=≥--n nn n n S S a n 时132-⋅=n又11=a 不适合上式,故⎩⎨⎧≥⋅==-)2(32)1(11n n a n n三、利用递推关系求数列的通项【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141,21211-+==+n a a a n n 解析:⑴因为14121-+=+n a a n n ,所以 )121121(2114121+--=-=-+n n n a a n n所以)3111(2112-=-a a)5131(2123-=-a a43111()257a a -=-…,…,1111()22321n n a a n n --=---以上)1(-n 个式相加得 )1211(211--=-n a a n即:24342411--=--=n n n a n点拨:在递推关系中若),(1n f a a n n +=+求n a 用累加法,若),(1n f a a nn =+求n a 用累乘法,若q pa a n n +=+1,求n a 用待定系数法或迭代法。

课外练习3设1212111++++++=n n n a n ,(*∈N n ),则n n a a 与1+的大小关系是( C )A .n n a a >+1B .n n a a =+1C .n n a a <+1D .不能确定 解:因为221321113212211<+-+=+-+++=-+n n n n n a a n n所以n n a a <+1,选C. 二、填空题5.已知数列{}n a 的前n 项和,142+-=n n S n 则⎩⎨⎧≥-=-=)2(,52)1(,2n n n a n7.已知数列{}n a 的通项9998--n n (*∈N n ),则数列{}n a 的前30项中最大项和最小项分别是910a a ,解:构造函数99989919998--+=--=x x x y由函数性质可知,函数在)99(,-∞上递减,且1<y 函数在),+∞99(上递增且1>y最小最大,),又910921301211101109(99a a a a a a a a a ∴>>>>>>>>>∴∈ 三、解答题6.2等差数列知识要点2.递推关系与通项公式m n a a d n a a d d n a a d m n a a d n a a d a a mnn n m n n n n --=--=--=-+=-+==-+1;)1()()1(1111变式:推广:通项公式:递推关系:为常数)即:特征:m k m kn n f a d a dn a n n ,(,)(),(1+==-+=),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

3.等差中项:若c b a ,,成等差数列,则b 称c a 与的等差中项,且2c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。

4.前n 项和公式2)(1na a S n n +=; 2)1(1dn n na S n -+=),()(,)2(22212为常数即特征:B A Bn AnS BnAn n f S n d a n d S n n n +=+==-+=是数列{}n a 成等差数列的充要条件。

5.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。

⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2⑷n n n n n S S S S S 232,,--仍成等差数列。

6.判断或证明一个数列是等差数列的方法:①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法: )221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k b kn a n +=⇒{}n a 是等差数列④前n 项和公式法: ),(2为常数B A BnAnS n +=⇒{}n a 是等差数列课前热身2.等差数列{}n a 中,)(31,1201191210864C a a a a a a a 的值为则-=++++A .14B .15C .16D .171651203232)(32)2(31318999119=⋅==-=+-=-a d a d a a a a解。

3.等差数列{}n a 中,12910S S a =>,,则前10或11项的和最大。

解:0912129=-=S S S S ,003011111121110>=∴=∴=++∴a a a a a a ,又,,∴{}n a 为递减等差数列∴1110S S =为最大。

4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,前10项的和为10100=S11022101010010221029101010011010100110-=-⋅++=∴+=--=∴=⨯⨯+⨯∴)(又,S DS S S D D10210102)10(29840242)1(129850max 22==+--=-+-=⎥⎦⎤⎢⎣⎡⨯-+--=y n n n n n n n n y 时,所以当 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,, ①求出公差d 的范围,②指出1221S S S ,,, 中哪一个值最大,并说明理由。

d )(n f a n =n n a n S {}n a "2"≥n解:①)(6)(610312112a a a a S +=+=3724308240)82(213)(2132)(1372407240)72(63113131133-<<--<∴<+∴<+=+=+=->∴>+∴>+=d d d d a a a a a S d d d a 从而又②最大。

,6677137612000130)(6S a a a S a a S ∴><∴<=>+=课外练习 一、 选择题1. 已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( D )32313132....D C B A --2. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于( A ) A .15 B .30 C .31 D .64151212497=∴+=+a a a a a 解:二、填空题3. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==544. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则5. 设F 是椭圆16722=+yx的右焦点,且椭圆上至少有21个不同点,),2,1(321F P F P F P i P i ,,使=组成公差为d 的等差数列,则d 的取值范围为⎥⎦⎤⎝⎛⋃⎪⎭⎫⎢⎣⎡-10100101,, 解:椭圆的焦点F 到椭圆上的点最大、最小距离分别为)和(17)17(-+,由题意得: 1010010101012011217)117≤<<≤-∴≠≤∴≥--=∴+=-+-d d d d n n d d n 或,又()(三、解答题6. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,①求通项n a ;②若n S =242,求n 解:d n a a n )1(1-+=102212501930950301112010+=∴⎩⎨⎧==∴⎩⎨⎧=+=+==n a d a d a d a a a n 解方程组,由2)1(1dn n na S n -+=,n S =242舍去)或解得(221124222)1(12-===⋅-+∴n n n n n7. 甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 解:①设n 分钟后第一次相遇,依题意有:舍去),解得(2077052)1(2-===+-+n n n n n n故第一次相遇是在开始运动后7分钟。

相关文档
最新文档