集成电路运算放大器介绍
集成 放大器

第一节 心脏除颤仪
再次观察除颤效果,是否恢复窦性心律, 以及神志、生命体征、皮肤情况,若恢复 窦性心律, 给予持续心电监护。
8. 协助病人取适宜体位,清洁皮肤,安慰 病人,整理床单位。
9. 关闭电源,开关置OFF位置,清洁电极 板和仪器,充电备用。洗手、记录。
上一页 返回
9.2 放大电路中的负反馈
9. 2. 1反馈的基本概念
1.反馈的概念 前面各章讨论放大电路的输人信号与输出信号间的关系时.只
涉及输人信号对输出信号的控制作用.这称做放大电路的正向 传输作用。然而.放大电路的输出信号也可能对输人信号产生 反作用。简单地说.这种反作用就叫做反馈。 引入反馈的放大电路称为反馈放大电路.它由基本放大电路、 反馈网络、输出取样、输人求和四部分组成一个闭合环路.称 为反馈环路只有一个反馈环路组成的放大电路.称为单环反馈 放大电路.如图9-4所示。其中.x1是输人信号;x0是输出信 号;xF是反馈信号;xID是净输人信号。这些电量可以是电压. 也可以是电流。
R波无关,放电由人工控制,可发生在心
动周期的任何时期,按下放电开关即可放
电。心脏除颤仪开机后自动默认为非同步
状态,室颤、室扑急救时切记采用非同步
模式。
上一页 下一页 返回
第一节 心脏除颤仪
心搏骤停(sudden cardiac arrest, SCA)是临床急救医学中最紧急、最严重 的心脏急症,就心搏骤停时的ECG表现形 式而言,72%~80%以上为心室颤动。电 除颤是抢救因室颤而致心搏骤停病人最有 效的方法。而电除颤的时机是治疗心室颤 动的关键,每延迟除颤时间1min,复苏 的成功率将下降7%~10%。在心搏骤停 发生1min、5min、7min、9min、 12min分钟内行电除颤,病人存活率分别 为90%、50%、30%、10%和上一2页%下~一5页%。返回
集成电路运算放大器的定义

集成电路运算放大器的定义1. 引言集成电路运算放大器是当今电子电路中最重要的基本器件之一。
它是一种高增益、差分放大器,广泛应用于模拟电路、信号处理、自动控制等领域。
本文将介绍集成电路运算放大器的定义、基本原理、特性以及应用。
2. 定义集成电路运算放大器,简称运放(Op-Amp, Operational Amplifier),是一种差分放大器,它能够将输入信号放大到较高的增益水平。
运放通常由差动输入级、差动放大级、输出级和电源级组成。
它的输入有两个端口:非反馈输入端(inverting input)和反馈输入端(non-inverting input),输出端则以电压方式输出。
3. 基本原理3.1 差分放大器运放的核心是差分放大器,它是由两个晶体管组成的差分对(differential pair)。
差分放大器具有高增益、高输入阻抗和低输出阻抗等特点。
当在非反馈输入端和反馈输入端施加电压时,差分放大器将两个输入信号进行差分放大,并输出差分放大的结果。
3.2 负反馈运放的一个重要特点是负反馈(negative feedback)。
负反馈通过将输出信号的一部分反馈到输入端,使得运放的输出与输入之间达到稳定的关系。
负反馈降低了运放的增益,但提高了稳定性和线性度。
4.1 增益运放具有非常高的开环增益,通常在105到106范围内。
通过负反馈可以调节运放的增益,使其适应不同的应用需求。
4.2 输入阻抗和输出阻抗运放的输入阻抗非常高,通常在105到1012欧姆之间,使其能够接受较小的输入信号。
输出阻抗通常比输入阻抗小得多,可以提供较低的输出阻抗。
4.3 带宽运放的带宽指的是它能够工作的最大频率范围。
通常,在低频时运放的增益较高,而在高频时增益会逐渐降低。
带宽取决于运放的内部结构和电容等元件。
运放的工作温度和环境温度对其性能有一定影响。
温度变化会引起运放增益的变化,这种现象称为温漂。
通过合适的补偿电路和工艺可以减小温漂的影响。
集成运算放大器相关知识

集成运算放大器相关知识集成运算放大器(Operational Amplifier,简称Op Amp)是一种电子设备,可以放大输入信号并输出放大后的信号。
它在电子电路中广泛应用,是现代电子技术的重要组成部分。
本文将介绍集成运算放大器的基本原理、特性和应用。
一、基本原理集成运算放大器是由多个晶体管和其他电子元件组成的集成电路芯片。
它的核心部分是差分放大器,由输入级、中间级和输出级组成。
差分放大器能够将输入信号放大并进行相位反转,使得放大后的信号与输入信号之间具有特定的幅度和相位关系。
集成运算放大器具有两个输入端和一个输出端。
其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
通过调节输入端的电压,可以控制输出端的电压。
当输入端的电压差为零时,输出端的电压为零;当输入端的电压差增大时,输出端的电压也相应增大。
二、特性1. 增益:集成运算放大器具有很高的增益。
通常情况下,它的增益可达几万甚至几十万倍。
这使得它能够将微弱的输入信号放大到足够大的幅度,以便进行后续处理或驱动其他设备。
2. 输入阻抗:集成运算放大器的输入阻抗很大,通常为几兆欧姆。
这意味着它可以接受来自外部电路的信号而对其产生很小的影响,从而保持信号的稳定性。
3. 输出阻抗:集成运算放大器的输出阻抗很小,通常为几十欧姆。
这意味着它能够提供足够大的输出电流,以驱动其他负载电路。
4. 带宽:集成运算放大器的带宽是指它能够放大的频率范围。
一般来说,带宽越大,放大器能够处理的高频信号越多。
常见的集成运算放大器的带宽在几百千赫至几百兆赫之间。
5. 偏置电压:集成运算放大器的输入端存在一个偏置电压。
当输入信号为零时,输出信号也不为零,而是存在一个偏置电压。
这是由于集成运算放大器内部元件的不匹配造成的。
三、应用1. 模拟电路:集成运算放大器常用于模拟电路中,如滤波器、放大器、振荡器等。
它可以对信号进行放大、滤波、调制等处理,使得信号能够适应不同的应用场景。
电工电子学_集成运算放大器

24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
运算放大器(简称运放)是一种包含许多晶体管的集成电路,它是目前

if
Rf
R2 R1
i u
u0
u1
由虚断路: i 0
u u0 Rf u1 u R1
i f i1 i2 i3
u2 u R2 u0 Rf u3 u R3 u1 R1 u2 R2 u3 R3
由虚短路:
u 0
u0 R f (
u1 R1
u2 R2
u3 R3
)
若选择: R1 R2 R3 R f 则: u0 (u1 u2 u3 )
该电路为加法器
2、计算题(二)
求:图示理想运算放大器电路中输出电压与输入电压的比u2/u1=?。
g5
g1
1
解:
应用结点电压法:
u1
g4
g3
2 3
g2
u2
( g3 g 4 )un 2 g 4un1 g3u2 0
运算放大器简称运放是一种包含许多晶体管的集成电路它是目前晶体管放大器集成运放运放电路运放电路分析单电源运放运放芯片轨到轨运放运放跟随比较器和运放的区别
运算放大器
摘要 :
运算放大器(简称运放)是一种包含许多晶体管的集成电路,它 是目前获得广泛应用的一种多端元件。 一般放大器的作用就是把输入电压放大一定倍数后再输送出 去,其输出电压与输入电压的比值称为电压放大倍数或电压 增益。 运放是一种高增益(可达几万倍甚至更高)、高输入电阻、 低输出电阻的放大器。
u1 R2 u2 R2 u0 R3
u0
R3 R1
u1
R3 R2
u2 3u1 0.2u2
R3
3 0 .2
R2 50k
模拟电子技术 第十章 集成运算放大电路

I I 0
虚断
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
19
什么情况下放工作于非线性区?
运放在非线性区的条件:
电路开环工作或引入正反馈! iF
ui
UO RF UOPP U+-U-
iI
R1
i+ + i- -
Auo
uO
R
-UOPP
20
实际运放 Auo ≠∞ ,当 u+ 与 u-差值比较小时, 仍有 Auo (u+ u- ),运放工作在线性区。
在运算电路中,无论输入电压,还是输出电压, 均是对“地”而言的。
23
一、比例运算电路
作用:将信号按比例放大。 类型:反相比例放大、同相比例放大。 方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环放大倍
数无关,与输入电压和外围网络有关。
24
一、比例运算电路
1.反相比例运算电路
虚短 虚断
2. 理想运放的输入电流等于零。
对于工作在线性区的应用电路,“虚短”和“虚断”是 分析其输入信号和输出信号关系的基本出发点。
17
如何使运放工作在线性区?
理想运放的线性区趋近于0,为了扩大运放的线性区 或使其具有线性区,需给运放电路引入负反馈: 运放工作在线性区的条件: 电路中有负反馈!
但线性区范围很小。
uO
例如:F007 的 UoM = ± 14 V,Auo 2 × 105 , 线性区内输入电压范围
实际特性
0 u+u
U OM u u Auo 14 V 2 105 70 μV
非线性区
简单的集成电路运算放大器

第21讲6.3 简单的集成电路运算放大器主要内容:本节主要介绍了集成电路运算放大器。
基本要求:了解集成运放的内部结构及各部分功能、特点。
教学要点:1.集成电路运算放大器的组成集成电路运算放大器是一种高电压增益、高输入电阻和低输出电阻的多级直接耦合放大电路,它的类型很多,电路也不一样,但结构具有共同之处,一般由四部分组成。
(1)输入级一般是由BJT、JFET或MOSFET组成的差分式放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能,它的两个输入端构成整个电路的反相输入端和同相输入端。
(2).电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成(3).输出级一般由电压跟随器或互补电压跟随器所组成,以降低输出电阻,提高带负载能力。
(4)偏置电路是为各级提供合适的工作电流。
此外还有一些辅助环节,如电平移动电路、过载保护电路以及高频补偿环节等2.简单的运算放大器简单运算放大器的原理电路如图所示。
(1)T1,T2对管组成差分式放大电路,信号双端输入、单端输出。
(2)复合管T3,T4组成共射极电路,形成电压放大级,以提高整个电路的电压增益。
(3)T5,T6组成两级电压跟随器,构成电路的输出级,它不仅可以提高带负载的能力,而且可进一步使直流电位下降,以达到输入信号电压v id=v i1-v i2为零时,输出电压v O=0的目的。
(4)R7和D组成低电压稳压电路以供给的基准电压,它与T9一起构成电流源电路以提高T5的电压跟随能力。
(5)电路符号:由此可见,运算放大器有两个输入端(即反相输入端1和同相输入端2),与一个输出端3。
在运算放大器的代表符号中,反相输入端用"-"号表示,同相输入端用"+"表示。
器件外端输入、输出相应地用N,P和O表示。
(6)输入和输出的相位:利用瞬时极性法分析可知,当输入信号电压v i1从反相输入端输入时(v i2=0),如v i1的瞬时变化极性为(+)时,各级输出端的瞬时电位极性为:v C2(+)→v O2(–)→v B6(–)→v O(–)则输出信号电压v o 与v i1反相;同时,当输入信号电压从同相端输入v i2(v i1=0)时,可以检验,输出电压v o与v i2同相。
集成电路运算放大器的术语

集成电路运算放大器的术语引言集成电路运算放大器(Operational Amplifier,简称Op Amp)是一种广泛应用于电子电路中的基本器件。
它具有高增益、高输入阻抗、低输出阻抗等特点,能够在模拟电路中起到放大、滤波、比较等作用。
本文将介绍一些与集成电路运算放大器相关的术语,帮助读者更好地理解和应用该器件。
1. 基本术语•运算放大器(Operational Amplifier):是一种具有高增益、高输入阻抗、低输出阻抗等特点的电子放大器,可用于放大、滤波、比较、积分、微分等各种功能。
•输入端(Input):运算放大器的输入端包括非反馈输入端(非反相输入端)和反馈输入端(反相输入端)。
•输出端(Output):运算放大器的输出端是放大的信号输出端。
•开环增益(Open-loop Gain):运算放大器在无反馈情况下的增益。
•反馈(Feedback):将输出信号的一部分馈入到输入端的过程,用来控制运放的放大特性。
•共模电压(Common Mode Voltage):在运放的非反向和反向输入端之间的电压差。
•差模电压(Differential Mode Voltage):在运放的非反向和反向输入端之间的电压差。
•共模信号(Common Mode Signal):施加在运放输入端的电压信号。
•差模信号(Differential Mode Signal):施加在运放输入端的差分电压信号。
2. 输入和输出特性•输入偏置电压(Input Offset Voltage):在输入端没有任何输入信号时,输出电压不为零的电压差。
•输入偏置电流(Input Bias Current):在输入端没有任何输入信号时,进入输入端的漏电流。
•输入失调电流(Input Offset Current):在输入端没有任何输入信号时,进入输入端的漏电流之间的差异。
•输入电压范围(Input Voltage Range):运算放大器正常工作的输入电压范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路运算放大器概述 集成电路中的电流源 差分式放大电路 集成电路运算放大器的主要参数
*6.5 专用型集成电路运算放大器 *6.6 放大电路中的噪声与干扰
6.1 集成运算放大器概述
集成电路:
将整个电路的各个元件做在同一个半 导体基片上。
集成电路的优点:
工作稳定、使用方便、体积小、重量轻、 功耗小。
2. 直接耦合放大电路 存在的问题
a. 零 点 漂 移 :输入短路时,
输出仍有缓慢变化的电压产生。
温度每升高1度时,输出漂移电压按电压增益 温漂指标: 折算到输入端的等效输入漂移电压值。 b.前后级Q点相互影响
主要原因: 温度变化引起,也称温漂(电源电压波动也是原因之一
例如 假设
漂移
10 mV+100 uV
调制解调方式。如“斩波稳零放大器”
4. 差分式放大电路中的一般概念
vid = vi1 vi2 差模信号
差模信号输出 1 vic = (vi1 vi2 ) 共模信号 +
+ vid -
差放
AVD
AVC
共模信号输出 vod = 差模电压增益 vid voc = 共模电压增益 vic
2
vi1
-
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
集成电路内部结构的特点
1. 电路元件制作在一个芯片上,元件参数偏差 方向一致,温度均一性好。 2. 电阻元件由硅半导体构成,范围在几十到20 千欧,精度低。高阻值电阻用三极管有源元件 代替或外接。 3. 几十 pF 以下的小电容用PN结的结电容构成、 大电容要外接。
直流等效电阻小,交流等效电阻很大,且具有良好的 恒流特性。 (电流源的恒流特性决定于电流源输出电阻的大小, 输出电阻越大,恒流效果越好)
1. 镜像电流源
恒流特性
VBE2 = VBE1 I C2 = I C1 I REF I E2 = I E1
VCC VBE VCC = R R IC2看作IREF的镜像。
对于此电路 Rc 就是镜 像电流源的交流电阻,
因此增益为
RL AV = rbe
放大管
比用电阻Rc作负载时提高了。
end
例题
定性分析电路,说明T1,T2在电路中的作用.
6.3 差分式放大电路
6.3.1 概述
直接耦合放大电路 零点漂移
差分式放大电路中的一般概念
6.3.2 基本差分式放大电路
反映差放抑制共模信号的能力
4. 二极管一般用三极管的发射结构成。
运算放大器的方框图
输入端
输入级
中间级
输出级
输出端
偏置电路
对输入级的要求:尽量减小零点漂移,尽量提高 KCMRR , 输入阻抗 ri 尽可能大。
对中间级的要求:足够大的电压放大倍数。
对输出级的要求:主要提高带负载能力,给出足 够的输出电流io 。即输出阻抗 ro小。
电路组成及工作原理 主要指标计算 抑制零点漂移原理 几种方式指标比较
6.3.3 FET差分式放大电路 6.3.4 差分式放大电路的传输特性
6.3.1 概述
1. 直接耦合放大电路
既可放大直流信号 ,也可放 大交流信号 鉴于集成工艺难以制作电感 和较大的电容,集成运算放 大器都要采用直接耦合方式
漂移 1 V+ 10 mV
AV1 = 100, AV2 = 100, AV3 = 1 。
若第一级漂了100 uV,
则输出漂移 10 mV 。
若第二级也漂 了100 uV,
漂了 100 uV 漂移 1 V+ 10 mV
则输出漂移 1V+10 mV 。 第一级是关键 3. 减小零漂的措施
用非线性元件进行温度补偿 采用差分式放大电路
所以IC2也很小
3. 多路电流源
IE Re IREF Re IE 1 Re 1 IE 2 Re 2
IC 1 IE1 IREF Re/ Re 1,
IC 2 IE 2 IREF Re/ Re 2
4. 电流源作有源负载
镜像电流源
共射电路的电压增益为:
( Rc // RL ) o AV = rbe Vi
+ vi2 -
+ vo -
+
+ vo2 -
vo1
-
差分式放大电路输入输出结构示意图
总输出电压 vo
= vod voc AVD vid AVC vic
vid vi1 = vic 2
根据上面两式有
K CMR
AVD KCMR (dB) = 20lg AVC
AVD = 共模抑制比 AVC
vid vi2 = vic 2
由图可知,
I REF IC 1 2 I B
IC 2 2 IC 2 2 IC 2 (1 )
越大,集电极电流 I C 2 与基准电流的偏差越小。 例, =100时,两者的偏差为2%
1. 镜像电流源
交流电阻 (可由小信号等效 电路计算) V Ro = T IT 由于 T2 的集电 极电 流基本不变。所以交流量 0 I
通用型集成电路运算放大器
简化电路
end
运放的特点:
ri 大: 几十k 几百 k KCMRR 很大
理想运放: ri
KCMMRR
ro 小:几十 几百 A o 很大: 104 107
运放符号: u- u+
ro 0 Ao
-+
+
Ao
uo
u- u+
-
+
uo
国际符号
国内符号
6.2 集成电路中的恒流源
镜像电流源
微电流源
多路电流源 电流源作有源负载
电流源电路不仅可用作各种放大电路的恒流偏置
(为放大电路提供稳定的偏置电流), 而且可用它取代电阻作为放大器的负载,是集成 运放中应用最广泛的单元电路之一。
电流源的要求:有足够大的动态内阻;对温度的敏感 度极低;能对抗电源电压或其他外因的变化。归纳起 来就是电流源电路应具有不受外界因素影响的恒流特 性。 电流源种类很多,但有一个共同的特点即
T
V Ro = T IT
一般Ro在几百千欧以上
1. 镜像电流源
精度更高的镜像电流源
由于增加了 T3,
减小 IB 对 IREF 的分流 ,
提 高 了 IC2 与 IREF 互 成
镜像的精度。
2. 微电流源
I C2 I E2
VBE1 VBE2 Re2 VBE Re2
由于 VBE 很小,