BlackScholes期权定价模型(2)

合集下载

bs模型定价公式

bs模型定价公式

bs模型定价公式一、布莱克 - 斯科尔斯(Black - Scholes,BS)模型定价公式概述。

1. 公式的基本形式。

- 对于欧式看涨期权的定价公式:C = S_0N(d_1)-Ke^-rtN(d_2)- 对于欧式看跌期权的定价公式:P = Ke^-rtN( - d_2)-S_0N( - d_1)- 其中:- S_0是标的资产的当前价格。

- K是期权的执行价格。

- r是无风险利率(连续复利)。

- t是期权的到期时间(以年为单位)。

- σ是标的资产价格的波动率。

- N(x)是标准正态分布的累积分布函数,x = d_1或者d_2。

- d_1=frac{ln(S_0 / K)+(r+frac{σ^2}{2})t}{σ√(t)}- d_2 = d_1-σ√(t)2. 公式中各参数的意义。

- 标的资产当前价格S_0- 这是在当前时刻标的资产(如股票、期货等)的市场价格。

它是确定期权价值的基础,如果标的资产价格上涨,看涨期权价值可能增加,看跌期权价值可能减少(在其他条件不变的情况下)。

- 执行价格K- 是期权合约中规定的,在到期日时可以按照该价格买入(对于看涨期权)或卖出(对于看跌期权)标的资产的价格。

执行价格与标的资产当前价格的相对关系对期权价值有重要影响。

当S_0> K(对于看涨期权)时,期权处于实值状态,有更大的内在价值。

- 无风险利率r- 无风险利率反映了资金的时间价值。

在BS模型中,无风险利率越高,执行价格的现值Ke^-rt越低,对于看涨期权价值有正向影响,对看跌期权价值有反向影响(因为看涨期权持有者希望以更低的现值购买资产,而看跌期权持有者希望以更高的现值出售资产)。

- 到期时间t- 期权距离到期日的剩余时间。

一般来说,到期时间越长,期权的价值越高(在其他条件不变的情况下)。

对于看涨期权,较长的到期时间给予标的资产更多的时间上涨超过执行价格;对于看跌期权,给予更多时间下跌低于执行价格。

- 标的资产价格的波动率σ- 波动率衡量了标的资产价格的波动程度。

期权定价及风险参数或希腊字母计算公式一览

期权定价及风险参数或希腊字母计算公式一览

期权定价风险参数/希腊字母计算公式一览一、Black —Scholes 期权定价模型Black —Scholes 期权定价模型适用于无红利欧式期权的定价,看涨期权定价公式如下:)()(2)(1d N Ke d SN C t T r ---=其中:t T t T r K S d --++=σσ))(2()ln(21;t T d d --=σ12。

二、风险参数/希腊字母Delta :对标的物价格进行一阶求导,反映的是期权价格对标的物价格的敏感程度。

)(1d N Delta C =;1-)(1d N Delta P =Gamma对标的物价格进行二阶求导,反映的是期权价格对Delta 的敏感度。

t T s d N Gamma Gamma P C -)(1σ'==Vega对波动率进行一阶求导,反映的是期权价格对标的物波动率的敏感程度。

t T S d N Vega Vega P C -'==)(1Theta对时间进行一阶求导,反映的是期权价格对时间流逝的敏感程度。

)(2)(2)(1d N rKe tT S d N Theta t T r C ----'-=σ )-(2)(2)(1d N rKe tT S d N Theta t T r P --+-'-=σ Pho对无风险收益率进行一阶求导,反映的是期权价格对无风险收益率的敏感程度。

)()(2)(d N e t T K ho t T r C ---=ρ)-()(-2)(d N et T K ho t T r P ---=ρ 此外,极值波动率的计算公式为: ∑==N i i i l h N 12)ln(2ln 41σ。

布莱克—舒尔斯期权定价模型

布莱克—舒尔斯期权定价模型

布莱克—舒尔斯期权定价模型期权定价是现代金融学中一项非常重要的内容,同时也是一个比较复杂、难度较大的问题。

目前关于期权定价主要有两种方法:(1)二项式模式;(2)布莱克—舒尔斯期权定价模型(B-S 模型)。

较为适用的是布莱克—舒尔斯期权定价模型。

布莱克—舒尔斯期权定价模型是美国经济学家布莱克—舒尔斯于1973年提出来的。

这是现代金融学金融衍生工具研究领域的一个重大突破,布莱克—舒尔斯因此获得了1997年诺贝尔经济学奖。

1、 基本原理:(模型建立的基础)期权的完全套期保值功能,即期权具备完全消除股票投资组合中市场风险的套期保值功能。

2、 假设条件:(1) 市场是无摩擦的:即不计佣金费用,无交易成本,没有卖空限制,可以根据市场情况经常地调整套期保值的比率,调整期权与股票的比率。

(2) 在期权到期前,股票不支付股利。

(3) 在期权到期前,无风险利率r 和股票收益的方差2σ保持不变。

(4) 股票价格变化是连续的,不会发生突然及大的波动。

3、 基本公式:在上述原理及假设条件的基础上,布莱克—舒尔斯提出了这样一个公式:TTr X S T d d TTr X S d d N Xe d N S C rT σσσσσ)5.0()/ln()5.0()/ln()()(20122012100-+=-=++=-=-其中:其中:0C 为期权价格;0S 为股票当前的价格;)(d N 为服从于标准正态分布的随机变量小于d 的概率;即:}{)1,0(,N Y d y P -<X 为协定价格;e 为2.71828;r 为无风险利率(以连续复利计算) t 为距离到期日所剩的时间,单位为年 σ为股票收益率的标准差。

在这个公式中,)(1d N 、)(2d N 代表期权到期是处于实值的概率,也就是能够执行给投资者带来实质性收益的概率。

如果假定1)()(21==d N d N ,也就是看涨期权极其有可能被执行。

公式的解释:期权价值=内在价值+时间价值期权到期前处于三种状态,虚值—平价—实值时间价值虚值 协定 实值 价格(平价) 从这个图形可以看出,随着股价的进一步升高,期权到期被执行的可能性越来越大,相应地,期权的内在价值越来越大,其价格波动的可能性即时间价值越来越小。

Black-Scholes期权定价模型和特性

Black-Scholes期权定价模型和特性

Black-Scholes期权定价模型和特性Black-Scholes期权定价模型是一个广泛应用于金融市场的数学模型,它被用来计算欧式期权的价格。

该模型是由美国经济学家费希尔·布莱克(Fischer Black)和莱蒙德·斯科尔斯(Myron Scholes)于1973年开发的,并获得了1997年诺贝尔经济学奖。

Black-Scholes模型基于一些假设,包括市场无摩擦、标的资产价格服从几何布朗运动、无风险利率恒定不变、期权可以无限制地买卖等。

它利用随机微分方程和偏微分方程来描述期权价格的变化以及与标的资产价格和时间的关系。

Black-Scholes模型的公式如下:C = S*N(d1) - X*e^(-r*T)*N(d2)P = X*e^(-r*T)*N(-d2) - S*N(-d1)其中,C代表期权的买入价格,P代表期权的卖出价格,S代表标的资产的当前价格,X代表期权的行权价格,r代表无风险利率,T代表期权的时间,在期权到期日之间的年份,N(d1)和N(d2)代表标准正态分布的累积分布函数。

Black-Scholes模型的特性有以下几点:1. 理论完备性:Black-Scholes模型是一个完备的期权定价模型,可以通过输入特定的参数来计算期权的价格。

它提供了一种可行的方法,用来解决期权定价的问题。

2. 自洽性:Black-Scholes模型是自洽的,意味着如果市场满足了模型的所有假设条件,那么模型计算的期权价格将与实际市场价格一致。

3. 敏感性分析:Black-Scholes模型可以用来分析期权价格对各个因素的敏感性。

通过改变模型中的参数,例如标的资产价格、无风险利率、期权行权价格和时间等,我们可以研究它们如何影响期权的价格。

4. 适用性:Black-Scholes模型广泛适用于欧式期权的定价,包括股票期权、货币期权和商品期权等。

然而,对于美式期权和一些特殊类型的期权,Black-Scholes模型可能不适用。

期权二叉树定价模型

期权二叉树定价模型

期权二叉树定价模型期权二叉树定价模型是一种常用的金融衍生品定价模型,用于计算期权合约的公平价格。

该模型基于二叉树的数据结构,将时间分为离散的步长,在每个步长上模拟期权的价格变化。

在期权二叉树定价模型中,二叉树的每个节点表示期权的一个可能价格,树的每一层表示时间的一个步长。

从根节点开始,根据期权的流动性和到期前可执行的次数,构建二叉树模型。

在每个节点上,计算期权的价值,以确定其合理价格。

在构建二叉树模型时,需要考虑期权的标的价格、波动率、到期时间和无风险利率等因素。

这些因素将被用来计算每个节点上的期权价格。

在每个步长上,通过向上或向下移动树的节点,模拟标的价格的波动,从而更新节点上的期权价格。

在二叉树的叶子节点上,期权的价值是已知的,可以直接计算。

在其他节点上,通过对未来价格的概率分布进行加权,计算期权的合理价格。

树的最后一层即为到期时间,即期权到期时的状态。

根据到期状态计算出期权的现值,并通过向根节点回溯,确定期权的公平价格。

期权二叉树定价模型的优点在于能够在离散时间步长上快速确定期权的价格,并且可以灵活地应用于不同类型的期权合约。

此外,该模型对于包含多个期权合约的复杂结构,如欧洲期权、美式期权和亚洲期权等,也具有较高的适用性。

然而,期权二叉树定价模型也存在一些局限性。

首先,该模型假设标的价格的波动服从几何布朗运动,这在实际市场中并不成立,因此模型的有效性有一定的限制。

其次,通过选择适当的步长数和树的深度来平衡精确度和计算效率是一个挑战。

总的来说,期权二叉树定价模型是一个常用且有效的金融工具,可以用于估计期权合约的公平价格。

该模型基于二叉树的数据结构,通过离散时间步长模拟期权的价格变化,并通过回溯计算确定期权的公平价格。

虽然该模型存在一定的局限性,但在实际应用中仍被广泛应用。

期权二叉树定价模型是一种基于离散时间步长和二叉树结构的金融衍生品定价模型。

它是Black-Scholes模型的一种改进方法,通过模拟期权价格的变化来计算期权的公平价格。

对期权定价模型的偏微分方程分析--Black-Scholes期权定价模型

对期权定价模型的偏微分方程分析--Black-Scholes期权定价模型

对期权定价模型的偏微分方程分析--Black-Scholes期权定
价模型
Black-Scholes(BS)期权定价模型是20世纪70年代由Fisher Black、Myron Scholes和Robert Merton独立发明和发展的。

BS模型将期权定价问题转化为偏微分方程问题,并提供了一种通过经济因素来解决期权定价的方法。

BS模型假设股票价格服从几何布朗运动,并使用随机微分方程来描述它们的漂移和随机波动性。

该模型还假定期权的价格服从Black-Scholes PDE:
$$\\frac{\\partial V}{\\partial
t}+\\frac{1}{2}\\sigma^2S^2\\frac{\\partial^2 V}{\\partial S^2}+rS\\frac{\\partial V}{\\partial S}-rV=0$$
其中,$V(S,t)$是期权价格,$S$是标的资产价格,
$\\sigma$是波动率,$r$是无风险利率,$t$是时间。

该方程可以被解释为投资组合在动态套利环境中的漂移和随机波动性,其中投资组合由一单股票和一个期权组成。

该方程的求解需要使用特殊函数,如Black-Scholes方程的解析解。

这个解析解有助于我们理解期权价格如何受到各种因素的影响,例如股票价格、波动率、时间和无风险利率。

总之,BS模型的偏微分方程分析提供了一种方法,使我们能够根据标的资产价格、波动率、时间和无风险利率来定价期权。

Black-Scholes期权定价模型

Black-Scholes期权定价模型

Black-Scholes 期权定价模型我们在第五章用二叉树定价方法介绍了动态无套利均衡分析方法并引入了风险中性假设。

本章将通过介绍Black-Scholes 期权定价模型来深化这些概念。

在该模型中我们假设标的资产遵循几何布朗随机过程(这是一个特殊的马尔可夫过程)。

因此在讨论之前,我们必须作一些有关概念和数学知识的准备。

一、预备知识(一)正态和对数正态分布1、均值为μ,方差为σ2的正态分布随机变量x 的密度函数为:)2)(exp(21)(22σμσπ--=x x f ⑴ 如果正态变量的均值为0,方差为1,则称为标准正态随机变量,它的密度于分布函数分别为n(x )和N (x )表示,这里2221)(x ex n -=π dt e x N x t ⎰∞--=2221)(π2、如果x 是均值为x μ,方差为2x σ的正态分布变量,那么称x e Z =是对数正态分布的,其中)2exp(2xx Z σμμ+=且]1))[exp(2exp(222-+=x x x Z σσμσ。

证明:由于x ~),(2x x N σμ,则x 的密度函数为)2)(exp(21)(22xx xx x f σμσπ--=又因为x e Z =,则Z 的密度函数为 )2)(ln exp(21])([ ))(()(2211xx x Z ZZ g Z g f Z g σμσπ--='=--。

Z 的截断均值,定义为):(a Z Z E >,其值为:)ln ()2exp()(1)2exp( )22)]([exp(21)2)(exp(2 )( )():(2ln 222ln 24222ln 22x xx xx a xxx xxx axxx x x x xa xx x x x aaN dx x n dx x dx x e e Z dZ Z Zg a Z Z E σσμσμσσμσσμσσσμσμσπσμσπ+-+=--+=--+--=--===>⎰⎰⎰⎰∞+∞+∞++∞当0→a 时,截断均值成为普通的均值,则对数正态变量Z 的均值即为:)2exp(2xx Z σμμ+= (2)其中)()(x N x n 和分别表示为标准正态分布的密度和分布函数。

第十一章Black-Scholes-Merton期权定价模型

第十一章Black-Scholes-Merton期权定价模型
3
Myron Scholes
(1941-)
由于他给出了著名的Black-Scholes期权定价公式, 该法则已成为金融机构涉及金融新产品的思想方法, 由此获得1997年的诺贝尔经济学奖。
求学与供职简历:
1941年出生于加拿大;1962年在Mc-Master大学 获学士学位;1964年获芝加哥MBA学位;1968年获 芝加哥大学商学院金融学博士学位;1969年获芝加哥 大学经济学博士学位;1972-1983执教芝加哥大学; 1983年至今执教斯坦福大学。
d xa (x,t)d t b (x,t)d z(11.6)
其中,dz仍为标准布朗运动;a和b是变量x和t 的函数,变量x的漂移率为a,方差为b2。
在此基础上,伊藤进一步推导出,若变量x遵 循伊藤过程,则变量x和t的函数G(x,t)将遵循如下 过程:
14
d G ( G xa G t1 2 2 x G 2b2)d t G xb d z (11.7)
8
根据伊藤引理(ItôLemma,1961),当股票价格 符合几何布朗运动时,作为股票衍生品的期权价 格f将服从:
d f ( f S f 1 2fSFra bibliotek t 2 S 2
2 S 2 )d t f S d z S
(11.2)
可以发现,影响期权价格的随机因素也体现在等式 右边的第二项的dz上,所以,股票价格及其衍生产品— —期权价格都只受到同一种不确定性的影响,其区别在 于随机因素dz前面的系数不同,也就是随机因素变化的 反应程度不同。
5
第一节 B-S-M期权定价模型的基本思路
6
本章涉及到随机过程等较为复杂的概念,为了便 于理解,我们首先对B-S-M模型的整体思路做一个 简要的归纳,以便大家更好的掌握期权定价的内 容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征2:对于任何两个不同时间间隔Δt ,Δz的值相互独立。
特征的理解
特征1: z N 0, t ;方差为t。
特征2: 马尔可夫过程:只有变量的当前值才与未来的预测有关, 变量过去的历史和变量从过去到现在的演变方式与未来的预测 无关。标准布朗运动符合马尔可夫过程,因此是马尔可夫过程 的一种特殊形式。
adt为确定项,它意味着x的期望漂移率是每单位时间为a。 第二项bdz是随机项,它表明对x的动态过程添加的噪音。这 种噪音是由维纳过程的b倍给出的。
可以发现,任意时间长度后,x值的变化都具有正态 分布特征,其均值为aT,标准差为 ,方差为b2T.
bT
2020/10/7
7
Ito过程和Ito引理
伊藤过程(Ito Process):
2020/10/7
5
标准布朗运动(续)
考察变量z在一段较长时间T中的变化情形:
z(T)-z(0)表示变量z在T中的变化量
又可被看作是在N个长度为Δt的小时间间隔中z的变化总量,其中
N=T/ Δt 。
N
很显然,这是n个相互独立的正态分布的和:z(T ) z(0) i t
i 1
因此,z(T)-z(0)也具有正态分布特征,其均值为0,方差为N Δt
研究变量运动的随机过程,可以帮助我们了解 在特定时刻,变量取值的概率分布情况。
2020/10/7
3
随机过程
随机过程是指某变量的值以某种不确定的方式 随时间变化的过程。
随机过程的分类
离散时间、离散变量 离散时间、连续变量 连续时间、离散变量 连续时间、连续变量
2020/10/7
4
几种随机过程
基本假设:证券价格所遵循的随机过程:
dS Sdt Sdz或 dS dt dz
S
其中,S表示证券价格,μ表示证券在单位时间内以连续复利 表示的期望收益率(又称预期收益率),σ2 表示证券收益 率单位时间的方差,σ表示证券收益率单位时间的标准差, 简称证券价格的波动率(Volatility),z遵循标准布朗运动。 一般μ和σ的单位都是年。
当Δt 0时,我们就可以得到极限的标准布朗运动 dz dt
2020/10/7
6
普通布朗运动
变量x遵循普通布朗运动: dx adt bdz
其中,a和b均为常数,z遵循标准布朗运动。 这里的a为漂移率(Drift Rate),是指单位时间内变量x均值
的变化值。
这里的b2为方差率(Variance Rate),是指单位时间的方差。 这个过程指出变量x关于时间和dz的动态过程。其中第一项
在股票价格遵循的随机过程和衍生证券价格遵循的随机过程中, Black-Scholes发现,由于它们都只受到同一种不确定性的影响,如 果通过买入和卖空一定数量的衍生证券和标的证券,建立一定的 组合,可以消除这个不确定性,从而使整个组合只获得无风险利 率。从而得到一个重要的方程: Black-Scholes微分方程。
Black-Scholes期权定价模型
2020/10/7
1
Black-Scholes期权定价模型的基本思路
期权是标的资产的衍生工具,其价格波动的来源就是标的资产价 格的变化,期权价格受到标的资产价格的影响。
标的资产价格的变化过程是一个随机过程。因此,期权价格变化 也是一个相应的随机过程。
金融学家发现,股票价格的变化可以用Ito过程来描述。而数学家 Ito发现的Ito引理可以从股票价格的Ito过程推导出衍生证券价格所 遵循的随机过程。
标准布朗运动(维纳过程 )
起源于物理学中对完全浸没于液体或气体中,处于大量微小 分子撞击下的的小粒子运动的描述。
设Δt代表一个小的时间间隔长度,Δz代表变量z在Δt时间 内的变化,遵循标准布朗运动的Δz具有两种特征:
特征1: z t
其中,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分 布)中取的一个随机值。
很显然,这是一个漂移率为μS、方差率为σ2S2的伊藤过程。 也被称为几何布朗运动
2020/10/7
9
为什么证券价格可以用几何布朗运动 表示?
一般认同的“弱式效任何对预测证券价格未来变动有用的信 息。
马尔可夫过程:只有变量的当前值才与未来的预测有关,变量过去 的历史和变量从过去到现在的演变方式与未来的预测无关。
求解这一方程,就得到了期权价格的解析解。
2020/10/7
2
为什么要研究证券价格所遵循的随机 过程?
期权是衍生工具,使用的是相对定价法,即相 对于证券价格的价格,因此要为期权定价首先 必须研究证券价格。
期权的价值正是来源于签订合约时,未来标的 资产价格与合约执行价格之间的预期差异变化, 在现实中,资产价格总是随机变化的。需要了 解其所遵循的随机过程。
几何布朗运动的随机项来源于维纳过程dz,具有马尔可夫性质, 符合弱式假说。
投资者感兴趣的不是股票价格S,而是独立于价格的收益率。投资 者不是期望股票价格以一定的绝对价格增长,而是期望股票价格 以一定的增长率在增长。因此需要用百分比收益率代替绝对的股 票价格。
其中,dGz遵(循Gx a一 个Gt 标 12准2xG布2 b朗2)dt运 动Gx 。bdz由于a 和b都是x和t的函 数,因此函数G也遵循伊藤过程,它的漂移率为
方差率为
( G )2 b2 x
G x
a
G t
1 2
2G x2
b2
2020/10/7
8
证券价格的变化过程
目的:找到一个合适的随机过程表达式,来尽量准确 地描述证券价格的变动过程,同时尽量实现数学处理 上的简单性。
=T,标准差为 T 。
为何定义为:
z t而非z t
当我们需要考察任意时间长度间隔中的变量变化的情况时,独立的
正态分布,期望值和方差具有可加性,而标准差不具有可加性。这 样定义可以使方差与时间长度成比例,不受时间划分方法的影响。
相应的一个结果就是:标准差的单位变为 年
连续时间的标准布朗运动:
普通布朗运动假定漂移率和方差率为常数,若把变量x的漂 移率和方差率当作变量x和时间t的函数,我们就得到
dx a(x,t)dt b(x,t)dz
其中,z遵循一个标准布朗运动,a、b是变量x和t的函数, 变量x的漂移率为a,方差率为b2都随时间变化。这就是伊藤 过程。
Ito引理
若变量x遵循伊藤过程,则变量x和t的函数G将遵循如下过程:
相关文档
最新文档