vasp计算参数设置

合集下载

VASP参数设置详解(精)

VASP参数设置详解(精)

VASP参数设置详解计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

VASP参数设置详解解读

VASP参数设置详解解读

VASP参数设置详解计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

VASP参数设置详解

VASP参数设置详解

VASP参数设置详解计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

VASP参数设置详解

VASP参数设置详解

VASP参数设置详解VASP(Vienna Ab initio Simulation Package)是一种用于计算材料和表面的第一性原理分子动力学(MD)和电子结构计算的软件程序。

它是一个功能强大且广泛应用的工具,可用于研究诸如能带结构、电子密度、总能量、力和应力等性质。

为了得到准确的计算结果,合适的参数设置非常重要。

以下是一些关键的VASP参数,以及它们的详细解释。

1.ENCUT(截断能)ENCUT是用于计算波函数的能量截断值。

它控制VASP计算中所使用的平面波基组的能量截断。

较高的截断能可提高计算结果的准确性,但同时也会增加计算的时间和资源消耗。

通常,ENCUT的值应在200到800eV之间选择,并根据体系的特点进行调整。

2.ISMEAR(态的展宽)ISMEAR参数用于控制态的展宽,即Gaussian函数用于展宽费米面附近的电荷分布。

它通常选择为0(对金属材料)或-5(对绝缘体和半导体材料)。

同时,SIGMA参数也需被设置为一个适当的值,以控制态的展宽。

3.IBRION(晶格弛豫类型)IBRION参数用于控制晶格弛豫的类型。

对于静止的体系,IBRION应设置为-1;对于晶胞形状和体积的弛豫,使用2;对于原子位置的弛豫,使用1、此外,ISIF参数用于指定对称性约束的条件,可以根据需要进行设置。

4.NSW(步数)NSW参数用于控制分子动力学(MD)计算中的步数。

步数越大,计算的结果越准确,但计算时间也会随之增加。

根据研究需求,可以选择适当的步数进行计算。

5.EDIFFG(势场截止值)EDIFFG参数用于控制在每个步骤中结构优化时原子之间相对位移的收敛标准。

它表示两个连续构型之间最大原子位移的标准,较小的值通常会导致更精确的结果。

6.KPOINTS(k点网格)KPOINTS参数用于控制在计算布里渊区积分时所使用的k点网格。

它决定了计算的精度和效率。

理想情况下,应选择一个高度对称的k点网格,以保证准确性。

VASP全参数设置详解

VASP全参数设置详解

VASP参数设置详解软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

如何用VASP计算晶格常数

如何用VASP计算晶格常数

如何用VASP计算晶格常数VASP是一款常用的第一性原理计算软件,可用于计算各种物理和化学性质,包括晶格常数。

本文将通过详细的步骤指导如何使用VASP计算晶格常数。

1.准备工作:在使用VASP计算晶格常数之前,需要准备以下文件:-INCAR文件:包含所有计算参数的输入文件。

- POSCAR文件:包含体系的原子坐标和晶格常数的输入文件。

可以使用外部软件生成,例如Materials Studio、VESTA等。

-POTCAR文件:包含原子势能信息的文件。

-KPOINTS文件:用于定义k点网格,用于计算能带结构。

可以使用自动生成工具进行生成。

2.设置INCAR文件:打开INCAR文件,设置以下参数:-ENCUT:截断能。

一种势能截断参数,对计算结果影响较大。

可通过多次计算逐渐增大其值,直到结果收敛为止。

- ISMEAR:用于定义电子占据数的方法。

常用的选项有Gaussian和Methfessel-Paxton。

- SIGMA:在使用ISMEAR选项为Gaussian时,用于定义宽度的参数。

一般选择小于0.2 eV。

- PREC:定义计算的精度级别。

常用的设置有Low、Normal和High。

-NSW:定义离子进行多少步的迭代。

-ISTART和ICHARG:对于初始的计算,将其设置为0。

-EDIFF:收敛判据。

设置一个合适的值,使得计算结果收敛。

3.设置POSCAR文件:打开POSCAR文件,设置晶体的结构参数。

可以手动输入原子的坐标,或者复制其他软件生成的文件内容。

4.设置POTCAR文件:在VASP的安装目录中,找到POTCAR文件夹,并将需要使用的原子势能文件复制到当前工作目录中。

注意保持POTCAR文件的顺序和POSCAR文件中原子的顺序一致。

5.设置KPOINTS文件:打开KPOINTS文件,在其中设置k点的信息。

k点的密度对计算结果的精度有一定影响,可以根据具体需求进行调整。

在这里,我们将只计算晶格常数,因此可以选择较低的k点密度。

VASP参数设置详解要点

VASP参数设置详解要点

VASP参数设置详解要点VASP(Vienna Ab initio Simulation Package)是一种第一原理计算程序,用于计算材料性质和从头计算材料结构。

在进行VASP模拟时,合理设置参数非常重要,它们决定了模拟的准确性和效率。

下面将详细讨论几个关键的VASP参数设置要点。

1.设置能量截断(ENCUT):ENCUT是控制计算中的平面波能量截断的参数。

它应该尽量接近真实波函数的动能截断,以保证计算结果的准确度。

选择合适的ENCUT值非常关键,过低的值可能导致计算不收敛,过高的值则会造成计算时间过长。

一般建议从400eV开始进行尝试,然后根据计算的收敛性和计算结果调整。

2.设置k点密度(KPOINTS):k点密度是控制倒空间采样的参数。

k点密度越高,计算结果越准确,但计算时间也会增加。

为了在准确性和效率之间取得平衡,可以根据材料的对称性和大小进行合理的选择。

一般情况下,对于晶体,k点密度可以使用Reciprocal Space的自动生成程序,对于分子系统,可以使用Gamma Point + Monkhorst Pack方案。

3.设置电子步的最大迭代次数(NELM):NELM是控制电子步迭代收敛性的参数。

它决定了算法进行多少次最大迭代。

在计算过程中,电子步的总数是非常关键的。

如果电子步的迭代次数不足,可能会导致计算不收敛。

通常可以从60次开始进行尝试,如果计算结果不收敛,可以增加NELM的值。

4.设置计算精度(PREC):PREC参数是控制计算精度的参数。

该参数取值从粗到细分别为Low,Medium,High和Accuracy。

选择适当的计算精度可以在减少计算时间和提高计算结果准确性之间取得平衡。

一般情况下,可以从Medium开始尝试。

5.设置自洽迭代的收敛判据(EDIFF):EDIFF是控制自洽迭代收敛性的参数。

当自洽迭代前后两次总能量的变化低于EDIFF时,认为自洽迭代收敛。

合理设置EDIFF可以保证计算结果的准确性。

VASP参数设置详解(精)

VASP参数设置详解(精)

VASP参数设置详解计算材料 2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:l对所计算的体系进行注释:SYSTEMl定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAVl定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFFl定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFGl定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBITl其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:l 对所计算的体系进行注释:SYSTEMl 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA Vl 定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFFl 定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW–分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFGl 定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBITl 其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

主要参数说明如下:SYSTEM:该输入文件所要执行的任务的名字。

取值:字符串,缺省值:SYSTEMNWRITE:输出内容详细程度。

取值:0~4,缺省值:2如果是做长时间动力学计算的话,最好选0或1(首末步/每步核运动输出),短时运算用2,选3则会在出错的时候给出说明信息。

ISTART:决定是否读取W A VECAR文件。

取值:0~2,缺省0/1 for 无/有前次计算的WA VECAR(波函数)0:begin 'from scratch',根据INIWA V初始化波函数1:restart with constant energy cut-off,从WA VECAR读取波函数(重定义平面波集)2:restart with constant basis set,从W A VECAR读取波函数(平面波集不变)ICHARG:决定如何建立初始电荷密度。

取值:0~2,缺省值: if ISTART=0 2 else 00:由初始波函数计算电荷密度1:从CHGCAR文件读取电荷密度2:使用原子电荷密度的叠加+10 非自洽计算ISPIN:是否进行spin polarized calculation。

取值:1,2(1-no,2-yes),缺省值:2MAGMOM:在ICHARG=2或在CHGCAR中未包含磁化密度(ICHARG=1)时,指定每个原子的初始磁化时刻。

取值:实数数组,缺省值: 对ISPIN=2 NIONS*1.0,对非共线型磁化体系3*NIONS*1.0INIWAV 如何设置初始波函数,只在ISTART=0时使用。

取值:0,1(0-最低动能的平面波,1-随机数),缺省值:1。

IDIPOL 控制计算单极、偶极和四极修正。

取值:1~4。

1~3 只计算第一/二/三晶矢方向,适于厚板(slab)的计算4 所有方向都计算,适于计算孤立分子PREC 进动(precession)。

取值:low/medium/high/normal/ accurate/single),缺省值: Normal(V ASP.4.X);Medium(V ASP.5.X)V ASP4.5+采用了优化的accurate来替代high,所以一般不推荐使用high。

不过high可以确保“绝对收敛”,作为参考值有时也是必要的。

同样受推荐的是normal,适于作为日常计算选项。

受PREC影响的参数有四类:ENCUT;NGX,NGY,NGZ;NGXF,NGYF,NGZF;ROPT。

如果设置了PREC,这些参数就都不需要出现了,当然直接设置相应的参数也有同样效果。

具体影响效果见p53~54。

ENCUT 平面波基组的截断能量(eV)。

取值:实数,缺省值:受PREC设置影响,从POTCAR文件中找出相应的ENMAX/ENMIN值来设置。

PREC = Low Medium Accurate NormalENCUT = ENMIN ENMAX ENMAX ENMAXSingle HighENMAX ENMAX*1.3对于多个元素不同的ENMAX/ENMIN,都取最大值。

该参数非常重要,最好不要手工去设置,除非文献告诉你要用多少,或者经过结果可靠性的验证。

当然,为了测试一下提交的任务,也不妨先设个较小的值。

NGX,NGY,NGZ:控制FFT网格在三个晶矢方向上的格点数量。

NGFX,NGFY,NGFZ:控制第二次更精确的FFT网格的格点数量。

也是两类重要的最好不要去动的参数。

在未指定的情况下将根据PREC的设置从POTCAR 中自动读取。

PREC=High/Accurate,基组中向量的2倍值,用来避免wrap around errors,得到精确解。

PREC=Low/Medium/Normal,基组中向量的3/4倍值(已足够精确到1 meV/atom)。

LREAL: 决定投射是在实空间还是倒易空间进行。

取值:.TRUE.(实空间)/.FALSE.(倒易空间),缺省值:.FALSE.用于求解赝势的非局域部分用到的一个积分,在倒格空间里采用平面波基组求解,在实空间里则采用积分球求解。

其他还有两个选项:O or On,A or Auto。

On和.TRUE.的差别在于是否使用King-Smith算法优化,设为Auto则进行自动选择,推荐使用。

ROPT: 在LREAL=Auto or On时,优化控制每个核周围的积分球内的格点数。

取值:实数数组For LREAL=OnPREC=Low, 700 points in the real space sphere (ROPT=0.67)PREC=Med, 1000 points in the real space sphere (ROPT=1.0)PREC=High, 1500 points in the real space sphere (ROPT=1.5)For LREAL=AutoPREC=Low, accuracy 10-2 (ROPT=0.01)PREC=Med, accuracy 2*10-3 (ROPT=0.002)PREC=High accuracy 2*10-4 (ROPT=2E-4)NELM, NELMIN and NELMDL:控制电子自洽循环步数。

取值:整数NELM:电子自洽循环最大次数。

缺省值:60NELMIN:电子自洽循环最小次数。

缺省值:2NELMDL:弛豫次数。

缺省值:if ISTART=0, INIWA V=1, and IALGO=8,-5,if ISTART=0, INIWA V=1, and IALGO=48,-12,else 0NELMDL可以取负值。

如果初始波函数采用随机赋值,即ISTART=0,INIWA V=1,那么很可能开始的值比较离谱,那么在第一步核运动循环之前采用NELMDL(负值)步的非自洽(保留初始的H)步计算将减少计算所需的时间。

EDIFF:指定电子自洽循环的全局中断条件,用于控制收敛精度。

取值:实数,缺省值:10-4注意,即使EDIFF=0,NELM步电子自洽循环也会执行。

EDIFFG:指定离子弛豫循环的中断条件,用于控制核运动的收敛精度。

取值,实数,缺省值:10*EDIFFEDIFFG>0 在两个离子步的总自由能之差小于EDIFFG时停止EDIFFG<0 在所有的力都小于EDIFFG时停止。

EDIFFG=0 在NSW步弛豫后停止此参数不支持MD,仅用于弛豫。

NSW:给出最大离子步数。

取值:整数,缺省值:0。

NBLOCK,KBLOCK:取值:整数,缺省值:NBLOCK = 1,KBLOCK = NSW在NBLOCK离子步后对成对相关函数和DOS进行计算,并且把离子配置写入XDATCAR 文件。

在KBLOCK*NBLOCK步主循环后平均的成对相关函数和DOS被写入PCDA T和DOSCAR 文件。

IBRION:决定离子怎样更新和运动。

取值:-1~3,5~8(-1-无更新,0-MD,1-RMM-DIIS,2-共轭梯度算法,3-Damped MD,5,6:有限差分,7,8:密度函数扰动理论),缺省值:if NSW=0/1,-1,else 0这个参数是和ISIF, IALGO/ALGO一起决定怎么算的最重要的参数。

1~3 是三种弛豫的方法,根据ISIF决定是否固定离子位置、晶胞大小和形状,在INCAR中必须设置参数POTIM。

0 是标准的ab-initio MD,不受ISIF影响,即不改变晶胞大小和形状。

5~8支持Hessian Matrix和phonon frequency的计算以及部分固定的MD。

POTIM:IBRION=0时,给出MD每步步长(fs),IBRION=1~3时,给出最小化的度量常量。

取值:实数,缺省值:IBRION=0 无缺省,必须指定,IBRION=1,2,3 0.5ISIF:决定是否计算应力张量以及弛豫中晶胞变化的自由度。

取值:0~6,缺省值:if IBRION=0(MD) 0 else 2ISIF│calculate│calculate │ relax │ change │change│ force │stress tensor │ ions│ cell shape │cell volume----┼-------┼-----------┼------┼---------┼---------0 │yes │ no│ yes│ no│ no1 │yes │ trace only │ yes│ no│ no2 │yes │ yes│ yes│ no│ no3 │yes │ yes│ yes│ yes│ yes4 │yes │ yes│ yes│ yes│ no5 │yes │ yes│ no│ yes│ no6 │yes │ yes│ no│ yes│ yes7 │yes │ yes│ no│ no│ yestrace only means that only the total pressure is correctIWA VPR:决定波函数和/或电荷密度怎样从一个离子配置向下一个离子配置进行推测。

相关文档
最新文档