测井资料地质解释-第2章
第2章普通电阻率测井(Ra)

2.判断岩性、确定渗透层及 其有效厚度
3.确定冲洗带电阻率和泥饼 厚度
4.辅助划分沉积环境
目的:掌握对于薄或薄互层状地层中渗透层的划分方
法及高阻渗透层及非渗透层的区分。
*思考题:视电阻率测井与自然电位测井组
合如何区分高电阻渗透层与非渗透层。
微梯度L=0.0375 微电位L= 0.05 探测范围:微电位8-10cm,微梯度4-5cm;
2.测量原理
二、微电极测井曲线特征
曲线重叠法原则 正、负差异 1.渗透性砂岩:中、均、正 2.泥岩:一级低值,直线 3.致密层:曲线重叠,阻值高 4.灰岩:阻值一级高值 5.岩盐、膏岩:重叠
三、微电极测井应用
Ra=k•⊿UMN/I0 Ra=f(Rt,Ri,Rm,Rs,D,d,h,L等) 1.装置系数k,来自于仪器本身,I
是否恒定。 2.仪器类型(顶、底) 3.地层厚度:
h大,测量精度高,h小,精度差. 4.井径d:
d大,对测井不利,d越大,泥浆 多。 5.泥浆电阻率:
淡水泥浆,有利 盐水泥浆,不利
四、地质应用(4)
c-d段: RMN=R1 R2
j
MN
c=
j
d MN
Rac>R1 Rad>R1
d-e段: RMN=R2
j MN jo
Ra>R2
e点及其附近: j MN = jo RMN=R2
Ra=R2
e-f段 : j MN < jo RMN=R2
Ra<R2 f-g段: I’=2R2·I/(R1+R2)
Ra=常数
第二章 普通电阻率测井(Ra)
介绍视电阻率概念,讨论影响因素,研究测井原理及曲线特征及 应用
地球物理测井重点知识

第一章自然电位1 石油钻井中产生自然电场的主要原因是什么?扩散电动势ED扩散吸附式电动势EDA和过滤电动势EF产生的机理和条件是什么?自然电位形成原因:由于泥浆与地层水的矿化度不同,在钻开岩层后,在井壁附近两种不同矿化度的溶液发生电化学反应,产生电动势,形成自然电场.一般地层水为NaCL溶液,当不同浓度的溶液在一起时存在使浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移,这种过程叫离子扩散.在扩散过程中,各种离子的迁移速度不同,如氯离子迁移速度大于钠离子(后者多带水分子),这样在低浓度溶液一方富集氯离子(负电荷)高浓度溶液富集钠离子(正电荷),形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势记为Ed同样离子将要扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成扩散吸附电动势记为Eda此外还有过滤电动势,这种电动势是在压力差作用下泥浆滤液向地层渗入时产生的,只有在压力差较大时才考虑过滤电动势的影响.2 影响SP曲线幅度的因素是什么?想想在SP曲线解释过程中,如何把影响因素考虑进去,从而得到与实际相符的结论?在自然电位测井时一般把测量电极N放在地面上,电极M用电缆放在井下,提升M电极,沿井轴测量自然电位(M电位)随深度变化的曲线叫自然电位曲线(SP).影响因素:1 溶液成分的影响;2岩性的影响砂岩泥岩3温度的影响;4地层电阻率的影响5地层厚度影响厚度增加SP增加6井眼的影响井径扩大截面积增加,泥浆电阻变小,SP变小3 SP的单位是什么?毫普第二章普通电阻率测井1 岩石的电阻率和岩性有什么关系?沉积岩属于什么导电类型?沉积岩石在水中沉淀的岩石碎屑或者矿物经胶结压实而成,其结构可视为矿物骨架与空隙中流体的组合。
地球物理测井方法 第二章 声波测井

(5)声衰减系数 (平面波:只有物理衰减)
p p0e l
为声衰减系数,它与介质的声速、密度 及声波的频率有关
GaoJ-2-1
17
五、井内声波的发射和接收
换能器(探头): 压电陶瓷晶体 可以将电磁能转换为声能,又可以将声能 转换为电磁能的器件。
压电效应:晶体在外力作用下产生变形时,会引 起晶体内部正、负电荷中心发生位移而极化,导 致晶体表面出现电荷累积(声-电)。
Wavelength
GaoJ-2-1
质点振动
波传播方向
8
介质振动模式与声波类型
垂直传播
SH水平振动
SV水平振动
P垂直振动
SH水平振动
GaoJ-2-1
SV垂直振动
水平传播
P水平振动
9
快慢横波和横波分离
Propagation Direction
R
S
GaoJ-2-1
10
井眼中的声波类型及特点
纵波(P波):Compressional Wave
本科生课程 《地球物理测井方法》
第 2 章 声波测井
(Acoustic Logging) 前 言 声波测井基础 第1节 声波速度测井 第2节 声波幅度测井
声波测井
➢研究的对象:井孔周围地层或其它介质的声学 性质(速度、幅度(能量)、频率变化等)
➢物理及地质基础:不同介质的弹性力学性质不 同,使其声波传播速度、衰减(幅度)规律不同
A V
岩石体变模量定义:岩石受均匀静压力作用时,所加
静压力的变化∆P与体应变 的比值:
K= -∆P/
体变模量的单位为N/m2。
(5)拉梅系数λ和 (Lame Coefficient)
测井地质学-第二章(地层倾角测井)

测
原始数据表
井 ①打印成数据表
地
解释成果表
质
矢量图
学
杆状图
②进行图形显示
施密特图
明德笃志、博学创新
方位频率图
①数据表
原原始始测测井井图图
包括的信息?
深度 1号极板的方位角(μ) 1号极板的相对方位角(β) 井斜角(δ) 井径d13、井径d24 4个高程Z1、Z2、Z3、Z4
①数据表
包 括 的 信 息 ?
矢量图颜色模式
蓝蓝色色模模式式
将方位角大体一致、倾 角随深度增加而减小的一组 矢量用蓝色笔勾画出来,称 蓝色模式。
蓝色模式与沉积构造有 关,可以指示古水流方向。
矢量图颜色模式
杂杂乱乱模模式式
难以用上述颜色 模式勾画出来。断层 破碎带、地层倒转点 附近通常为杂乱模式。
矢量图颜色模式
例
CAL
红色模式
由于沉积岩沉积时,各沉 积单元之间的界面基本上是 水平的,受构造运动后产生 的倾角和倾斜方位角也基本 一致。所以,绿色模式反映
了构造倾角。
矢量图颜色模式
红红色色模模式式
将方位角大体一致、倾 角随深度增加而增加的一组 矢量用红色笔勾画出来,称 红色模式。
红色模式矢量图配合其 它测井曲线可以指示断层、 褶皱、砂坝、河床沉积、岩 礁等。
四臂倾角测井仪测量原理图
③Ⅰ号极板方位角曲线AZ(μ)
在柱状坐标系中,根据地层层 面在仪器平面上的四个点:
测 M1( d13 /2,μ,Z1)
井 地
M2(
d24
/2,
μ+π/2,Z2)
质 M3( d13 /2, μ+π ,Z3) 学 M4( d24 /2, μ+3π/2,Z4)
地球物理测井:第02章 电阻率测井

I
MN I
I
电位: MN ,则 AN / MN 1, UMN UM
Ra 4 AM AN UMN 4 AM UM
MN
I
I
电极互换原理:
保持电极系中各电极之间的相对位置不变,只改变其功能(供电或 测量),则当测量条件不变时所测曲线完全相同,称为电极互换原理。
补充:理论计算一般用AMN;实际生产中小尺寸电极系用双极供电, 大尺寸电极系用单极供电减小干扰。
深:
Rd LL3
反映原状地层Rt
浅:
Rs LL3
反映侵入带Ri
(3)探测特性
➢ 纵向分辨率:主电流厚度(绝缘环中点O1O2间距),约0.2 m ➢ 探测半径:横向探测深度,深rd≈1.0 m,浅rs≈0.3 m
2021/7/31
中国石油大学(华东)
23
A0:主电极(供主电流Io) A1、A2:屏蔽电极(供屏蔽电流Is,与Io同极性) M1、M1、M2、M2 :监督电极 B1、B2:回路电极; N:对比(参考)电极,无穷远处
中国石油大学(华东)
8
有关阿尔奇公式
➢ 意义:将孔隙度测井与电阻率测井联系起来,用于计算 流体饱和度,是测井定量解释油水层的基础。
➢ 适用条件:纯岩石(不含泥质)或含泥质很少的岩石。
➢ 用法:孔隙度测井 + 电阻率测井 + 阿尔奇公式,在水 层(电阻率测井得出R0)可求出Rw;在油层可求出其R0 并进而确定Sw。
电阻率或电导率都是描述物质导电性质的物理量,
电阻率:单位是欧姆米(Ωm),测井上用符号R表示;(Resistivity) 电导率:单位是姆欧/米( /m),标准单位是西门子/米(S/m),测
井上用符号σ表示。 (Conductivity)
测井地质学

测井地质学第一章绪论1.测井地质学的基本含义:以测井学、地质学和岩石物理学理论为指导,综合运用各种测井信息来解决地层学、沉积学、构造地质学、石油地质学以及油田地质学中的各种地质问题的一门学科。
2.主要研究内容:基础地质研究、石油地质研究、钻井和油藏工程地质研究。
(1)基础地质研究的首要任务是充分利用地质资料、测井资料和地震资料相配合进行地层层序划分和标定,建立区域统一的地层层序,确定沉积体系域,找出不同体系域的测井曲线相应,进行井间层序与体系域的分析.主要研究地层、地质构造、和测井沉积学。
(2)石油地质研究:研究生油岩,确定生油岩有机质含量和生烃潜力;研究盖层的封盖性能;进行储集层综合研究;进行油气藏静态、动态描述。
(3)钻井和油藏工程地质研究:在油气田勘探和开发的生产实践中,将多种测井信息用于地震解释设计、钻井设计、油井压裂、试油过程中的泥浆配制、固井质量检查、套管的损伤和变形、油层保护等工程地质的研究,是测井地质研究的又一领域。
3.研究方法:测井地质学工作方法的核心是“地质刻度测井” ,或称“岩心刻度测井”,针对地质任务建立精细解释模型。
第二章倾角成像测井方法1.测井资料地层对比:通过对相邻井的测井曲线进行分析,根据曲线形态的相似性,进行井与井之间地层追踪的过程。
岩性对比方法,在开发中、后期,随着开发的深入和井点的增加,测井曲线对比在地层对比中占有绝对优势。
测井曲线的形态特征是岩性、物性和所含流体的综合反映。
主要用于:区域地层对比和油层对比(小层对比)。
域地层对比:以区域地质研究为重点,在油区范围内对比大套地层,目的是确定地层层位关系。
油层对比:以油层研究为重点,在一个油气藏范围内,对区域地层对比时的油层进行划分和对比,确定油气层主要关系。
举例:利用标准层对比油层组,利用沉积旋回对比砂岩组,利用岩性和厚度对比单油层。
2.用测井资料主要研究井筒内可见的小型规模的地质构造。
(1).测井资料的褶皱解释:(2).测井资料的断层解释:断层类型不同,倾角模式组合不同。
第二章地层对比和划分

它能在已确定油层组界线的基础上,配合次一级旋回特征划分 砂层组和单油层。
C建立标准剖面
油田(藏)综合柱状剖面图就是该油田(藏)的标准剖面。 它是进行油层划分对比的标尺和依据,是全油田进行新井分 层和全区统层的标准。
从几口钻遇油层较全、录井取心资料和测井资料丰富的井中, 挑选有代表性的油层组合汇编成综合柱状剖面图
§1 地层对比
(5)某些矿物的热释光
油藏地质研究
碎屑矿物如石英等受热激发时,以光的形式释放出 的聚集的部分能量特性作为对比标志。
热释光现象分为天然热释光和人工热释光两种。
§1 地层对比
油藏地质研究
二、油层对比
1.油层对比的概念
在邻井之间和研究区范围进行油层的横向连续性追踪。 油层对比是研究油层空间展布和连通情况的基础。
常见标志层: 碎屑岩中夹有的致密薄层灰岩、稳定泥岩、油页岩或化石层; 碳酸盐剖面中石膏夹层或泥岩夹层; 冲积沉积中的煤层、古土壤层、火山灰等; 含有特殊矿物的地层; 上下层段间某种特征(地层水矿化度、放射性物质含量)的差异
§1 地层对比
油藏地质研究
b.岩性及岩性组合
岩性特征:岩层的颜色、成分、结构、构造等岩石学特征,它们都是沉积环境 的物质反映。
由若干相邻的单油层组合而成。同一砂层组 的岩性特征基本一致,其上下应有较为稳定 的隔层分隔。
由若干油层特性相近的砂层组组合而成。 其顶底应有较厚的泥岩作盖层和底层,并且 分布在同一岩相段内,其岩相的顶底即为油 层组的顶底界。
由若干油层组组合而成。同一含油层系内 油层的沉积成因、岩石类型相近,油水特征 基本一致。含油层系的顶、底界与地层时代 的分界线基本一致。
§1 地层对比
油藏地质研究
b.地震
测井地质学 资料

1.测井地质学:将测井资料同地质现象紧密结合起来,用测井手段来研究沉积学和地质学等方面的问题,实现预测和圈定一定范围油气资源、最终达到查明油气分布规律的目的。
2.沉积相:为沉积环境及在该环境下形成的沉积物(岩)特征的综合。
包含了沉积环境和沉积特征两个方面内容。
进一步划分为亚相、微相。
3.测井相:表示沉积物特征,并可使该沉积物与其它沉积物区别开的一种测井响应。
4.标准层:具有等时性,分布广泛、容易识别的岩性层或岩性界面、5.烃源岩:能够生成石油和天然气,并能排出、聚集成工业油气藏的岩石,称为生油(气)岩或烃源岩。
6.三角洲:在河流入海(湖)盆地的河口区,因坡度减缓,水流扩散,流速降低,逐将携带的泥沙沉积于此,形成近于顶尖向陆的三角形沉积体,称为三角洲。
7.相序定律:只有现在看得到而彼此相邻的相或相区,才能在垂向上依次重叠而无间断,这个定律在研究沉积相时有重要意义。
相序定律强调垂向相序的连续性。
8.相标志:相标志,也叫做成因标志:把反映沉积环境条件的沉积岩(物)特征要素的综合,相标志,也叫做成因标志。
9.沉积环境:是物理、化学、生物特征相对均匀的微环境及在该环境下形成的沉积物(岩)特征的综合。
10.沉积模式:沉积模式或称相模式是指沉积相空间组合,它是在综合古代和现代沉积相特征基础上,对沉积相特征的高度概括。
3、简述冲积扇测井特征。
冲积扇组成:可分为扇根、扇中辨状河道、扇端、侧翼四个亚相。
⑴扇根:①泥石流沉积:为泥质支撑砾岩,大小混杂,分选性差,渗透性差,多期叠置、末期转化为稳流性泥石流甚至是洪水泥,因此向上渗透性变好,曲线特征为一套低幅反向齿形,齿中线上倾、平行,呈前积式幅度组合。
②主河道沉积:主河道沉积发育在泥石流沉积之上水流中刷搬运能力强,沉积有滞留的碎屑支撑砾岩,底部常有残留的泥石流层,单层厚度不大,曲线特征为中幅正向或对称齿形,齿中线下倾或水平。
⑵扇中辨状河道:在此部位水浅流急,河道迁移快,以含砾砂岩为主,有时几期河道叠置成一厚层,曲线特征为中幅厚层,常由几个齿叠加而成具箱形或钟形外貌,齿中线水平或下倾相互平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 根据测井确定岩石成分 1 元素成分的确定
1) 自然伽马能谱测井(NGS): 提供: 铀(U) (ppm)、钍(Th)(ppm)、 钾(K) (%) 含量
2) 次生伽马能谱测井(GST):
提供: 碳(C) 、氧(O)、 硅(Si) 、铁(Fe)、 钙(Ca)、硫(SElectronics Heat Sink Internal Dewar Flask
剥谱处理
元素产额 干元素比重
Si, Ca, Fe, S, Ti, Gd
闭合氧环分析
谱岩性分析
干岩性比重
泥、碳酸盐岩、QFM、硬石膏、。。。
2 矿物成分的确定 岩石矿物成分的正确确定,决定于:
(1)矿物模型和测井特征参数的选择; (2)对测井响应方程求解的结果。
3、变质岩
由其它岩石在高温、高压作用下通过化学的、矿物的、 结构的和构造的转变而形成。
在大类的基础上,一般岩石的分类是根据 1)岩石的主要矿物成分(石英、长石、……) 2)结构(晶体或者颗粒大小、排列、……) 认识: 岩石是由矿物组成的。不同类型的岩石由少数矿物组合构 成;每一种矿物具有特有的特性,具有特有的百分比;具有 特有的结构和分子式。 不同类型的岩石由少数矿物组合构成。 在沉积岩中,20种矿物构成岩石的99%. 沉积岩往往由至多4种矿物或主要组分组成。
ECS 的伽马能谱 非弹性散射与俘获
Gd H Si Cl In e la s t ic
非弹性散射
0 50 100 150 200 250
Log Scale
Fe
ECS 仪器和数据处理流程
AmBe Source
BGO Crystal and PMT Boron Sleeve
6.6 ft
• 测速: 1800 ft/hr • 纵向分辨率: 1.5 ft • 井眼流体: 任何流体 • 仪器尺寸: 5.0 in O. D. • 长度: 6.6 ft • 最大温度: 350 oF(175 oC) • 最大压力: 20,000 psi • 最小井眼尺寸: 6.00 in
3 不同岩石的区分(岩性的确定) 根据不同岩性的岩石在测井响应上的差异。
岩性识别
ECS识别岩性
彩44井岩性识别图版(Fe-Si-clay)
横轴为硅曲线,纵轴为铝曲线,Z轴为铁曲线, 图中彩色点由蓝到红的变化,表示铁值由小到大的变化,反映岩性 由砂岩到泥岩的变化。图中右下角的点为煤层的反映。
501
第2章 岩石成分的确定
2.1 岩石的分类
按形成模式将岩石分为3大类:
1、火成岩或侵入岩
来自呈熔融状态岩浆体的凝固。在深部进行的凝固叫做深成 岩(或侵入火成岩),在地表进行的凝固叫做火山岩(或喷出 火成岩)。 深成岩没有孔隙特征,其晶体紧密地成叠瓦状排列,但深成 岩可产生蚀变和破裂破裂,有利于储层发育。
彩501井岩性识别图版(Fe-Si-clay)
彩45井岩性识别图版(Fe-Si-clay)
DEN/g/cm3
GR/API
玄武岩与玄武质角砾岩分开
2、沉积岩
1)碎屑岩:风化剥蚀产生的各种各样的碎屑,经过风、水等 的搬运、然后沉积形成的。 陆源碎屑岩:由地表露头侵蚀和蚀变剥落的岩石碎屑堆积 而形成。 火成碎屑岩:由岩浆碎屑堆积而成。 生物碎屑岩 2)化学岩和生物化学岩:由于溶解作用、或压力、温度的 变化、或生物活动而形成。 碳酸盐岩、蒸发岩、硅酸盐岩、……
3) 元素测井(地层元素俘获能谱测井)(ECS):
ECS测井简介
元素俘获能谱测井(Element Capture Spectroscopy),简称为ECS测井。 它是斯仑贝谢公司推出的一种新型测井仪器,这种仪器的测量原理与其早先推 出的次生γ能谱仪(GST)和储层饱和度探测仪(RST)相类似,但ECS测井速度快, 并同时测量记录非弹性散射与俘获时产生的瞬发γ射线。 通过解谱和氧化物闭合模型得到地层中主要造岩元素(Si 、Ca、Fe、Al、S、 Ti、Cl、Cr、Gd等)的相对百分含量,并应用聚类分析、因子分析等方法定量求 解地层的矿物含量。
对于矿物模型,应该具有:
(1)构成其矿物成分性质的准确概念; (2)流体性质。
测井测量值决定于:
(1)岩石中存在的每种矿物特有的特性; (2)每种矿物在研究岩石中所占百分比; (3)占据孔隙空间的流体性质和百分比。
矿物模型的选择有二种方法:
(1)根据测井资料本身,通过交会图技术等; (2)岩屑、岩心、区域地质等。