fMRI:磁共振功能成像概述
中医医院麻醉科功能磁共振成像(fMRI)在麻醉领域中的进展

中医医院麻醉科功能磁共振成像(fMRI)在麻醉领域中的进展(一)fMRI的原理当局部脑区的神经元活动增加时,血流量也会增加,因为局部脑氧耗量增加不明显,所以氧供增加要远大于氧耗,从而导致该区域去氧血红蛋白水平下降而氧合血红蛋白水平增加,即去氧血红蛋白与氧合血红蛋白的比例发生改变。
氧合血红蛋白与去氧血红蛋白有着不同的磁化性质,其比例的改变会造成磁场信号的强度发生改变。
fMRI正是通过检测这种变化对脑组织实行实时的功能成像,对生理或病理状态下的功能活动实行有效的评价。
fMRI 的最大优点是空间分辨率高,能够达到0∙55mπι°除此之外,fMRI不需要注入任何外源性的放射性示踪剂,受试者能够在同一成像系统里完成各种实验条件下的不同任务。
(二)fMRI在麻醉领域中的应用虽然fMRI应用于麻醉期间给予任务刺激时脑功能活动及探讨全麻作用机制的研究前景十分诱人,但这方面的工作尚处于起步阶段。
因为全身麻醉的特殊性,研究手段多从听觉、痛觉、视觉、嗅觉等途径入手。
1.听觉听觉是麻醉过程中最后一个消失和最先一个出现的感觉,是术中病人知晓的主要来源。
现已证实,临床满意的麻醉深度下大脑仍能接收听刺激,并在一个相当复杂的水平处理这些听信息,但麻醉状态下大脑高级认知功能与听觉之间的关系却不十分明朗。
研究七氟烷麻醉过程中听觉刺激对脑活动的影响时,Kerssens发现清醒状态(O.0vol%)下左右前题、额部、顶叶皮质、右枕叶皮质、左右丘脑、纹状体、海马及小脑均有明显变化,浅麻醉时(1.0vol%)左右颗上回、右侧丘脑、左右顶叶皮质、左额皮质、右枕叶皮质被显著抑制,而深麻醉(2.OvoBO对听刺激无影响。
同年,Ramani用0.25MAC的七氟烷对受试者实行试验,观察到听觉刺激对联合皮质区的影响比初级皮质大得多,推测这可能与视皮质区有较高浓度的GABA受体相关。
应用fMRI观察丙泊酚麻醉下听觉皮层对简单、复杂刺激的变化发现,浅麻醉期给予简单语句刺激后额区活动消失而双侧颗叶仍然存有活动,给予复杂听刺激后初级和联合听觉皮层都有反应,但对听觉刺激高水平的分析能力却丧失,并证实丙泊酚麻醉只能减弱而不能阻断血氧水平依赖听觉皮层的活动。
FMRI脑功能磁共振成像的原理及应用进展

FMRI脑功能磁共振成像的原理及应用进展功能磁共振是在磁共振原理的基础上根据人脑功能区被信号激活时血红蛋白和脱氧血红蛋白两者之间比例发生改变,随之产生局部磁共振信号的改变而进行工作的。
凭借其具有较高的空间、时间分辨率,无辐射损伤以及可在活体上重复进行检测等优点已广泛应用于脑功能的研究。
1 磁功能磁共振概述磁共振功能成像(function magnetic resonance imaging,FMRI)是目前脑功能研究中的一个热点。
20世纪90年代后,BOLD(blood oxygenation level dependent)磁共振功能成像已广泛应用于脑功能的研究。
其优点是就有较高的空间、时间分辨率,无辐射损伤以及可以在活体上重复进行检测。
理论上讲,凡以反映器官功能状态成像为目标的磁功能成像技术都应称之为功能磁共振成像。
目前,临床上已较为普遍使用的功能成像技术有:各种弥散加权磁共振成像技术(diffusion-weighted imaging,DWI),各种灌注加权磁共振成像技术(perfusion weighted imaging,PWI),磁共振波谱和波谱成像技术(blood oxygenation level dependent,BOLD)。
观察脑神经元活动和神经通路的成像技术时,这种成像技术应叫做脑功能磁共振成像(FMRI),它一般包括水平依赖成像;脑代谢测定技术成像;神经纤维示踪技术如弥散张量和磁化转移成像。
1.1 FMRI的基本原理:FMRI的方法很多,主要包括注射照影剂、灌注加权、弥散加权及血氧水平依赖(blood oxygenation level dependent,BOLD)法,目前应用最广泛的方法为BOLD法:血红蛋白包括含氧血红蛋白和去氧血红蛋白[1],两种血红蛋白对磁场有完全不同的影响,氧合血红蛋白是抗磁性物质,对质子弛豫没有影响,去氧血红蛋白是顺磁性物质,其铁离子有4个不成对电子,可产生横向磁化磁豫缩短效应(preferential T2 proton relaxation effect,PT2PRE)。
脑功能成像(fMRI)技术

第四节脑功能成像技术1语言神经认知机制研究是语言科学研究的重要内容,它主要研究语言与大脑的关系,简单的说就是研究语言在人脑中的理解与产生的过程。
但是人脑被一层厚厚的颅骨所包围,因此仅凭肉眼无法判断大脑处理语言时的情况。
认知语言学通过语言理论的假设来构建语言认知模型,心理语言学则通过行为学方法,通过测试量表来研究具体语言结构的反应时间和正确率。
但是,这两种研究方向都不能直接观察大脑实时处理语言的情况。
随着科学技术的发展,新的语言科学研究技术已经被广泛用于语言研究中,其中PET和fMRI尤其是fMRI技术又是神经认知科学研究被最广泛应用的一种新的技术手段。
一脑功能成像技术简介PET(Positron Emission Tomography,PET)即正电子发射断层扫描技术,其基本原理是:刺激作用于大脑会产生血流变化,利用血液中注射的放射性示踪物质来和脑活动的某些脑区进行对比,从而确定刺激任务与特定脑区之间的关系。
fMRI是functional Magnetic Resonance Imaging的简称,中文名称为功能性磁共振成像。
其实质就是在磁共振成像的基础上获取大脑活动的功能图像,以获取被试对所给语言、图形、声音等刺激材料进行加工时产生的fMRI信号并加以分析,以确定这些刺激材料与对应脑区的关系,从而分析其脑机制。
赵喜平(2000)认为所谓的fMRI就是利用MRI对组织磁化高度敏感的特点来研究人脑功能,特别是大脑各功能区划分或定位的无创伤性检测技术。
由于PET技术在技术要求以及资金需求方面的原因,用于认知任务的研究越来越少,现在主要的脑成像技术就是fMRI,因此这里主要介绍fMRI技术以及实验数据的处理和对实验数据的解读。
1.1 fMRI的发展及其原理MRI(Magnetic Resonance Imaging,磁共振成像)产生于上个世纪70年代。
1970年,美国纽约州立大学的Raymond Damadian发现正常组织的NMR(Nuclear Magnetic Resonance)信号与病变组织的信号明显不同。
磁共振功能成像

磁共振功能成像(functional magnetic resonance imaging;FMRI)是一种安全的影像学检查手段,在完全无创伤的条件下可对人脑进行功能分析,其时间及空间分辨率较高,一次成像可同时获得解剖与功能影像,而且对人体无辐射损伤,在这一点上优于ECT和PET成像。
目前,FMRI已广泛地用于人脑正常生理功能和脑肿瘤的术前评价,对手术计划的制定及最大程度地减小术后功能损伤有极大帮助。
1MR脑功能成像的原理与技术神经元活动与细胞能量代谢密切相关,磁共振功能成像并不能直接检测神经元活动,而是通过MR信号的测定来反映血氧饱和度及血流量,从而间接反映脑的能量消耗,因此,在一定程度上能够反映神经元的活动情况,达到功能成像的目的。
血氧水平依赖(blood oxygen level dependent;BOLD)技术是FMRI的基础,神经元活动增强时,脑功能区皮层的血流量和氧交换增加,但与代谢耗氧量的增加不成比例,超过细胞代谢所需的氧供应量,其结果可导致功能活动区血管结构中氧合血红蛋白增加,脱氧血红蛋白相对减少。
脱氧血红蛋白是顺磁性物质,其铁离子有4个不成对电子,磁矩较大,有明显的T2缩短效应,即PT2PRE(preferential t2 proton relaxation effect)。
因此,脱氧血红蛋白的直接作用是引起T2加权像信号减低,FMRI对其在血管结构中的浓度变化极为敏感,当浓度增加时可引起局部信号减低,减低时则可使磁化率诱导的象素内失相位作用减低,引起自旋相干性增大,从而导致T2*和T2弛豫时间延长,信号升高,使脑功能成像时功能活动区的皮层表现为高信号。
磁场强度的高低对脱氧血红蛋白引起的磁化率改变敏感性不同,磁场强度越高对磁化率变化的敏感性越大,超高磁场MRI仪对磁化率变化最为敏感。
但由于技术上的限制,临床上一般采用1T~2T的磁共振仪进行脑功能成像,其结果也较为满意。
FMRI一般采用梯度回波和回波平面T2加权成像,常用的梯度回波序列有:梯度破坏稳态再聚焦采集(spoiled gradient recalled acquisition in the steady-state;GRASS)序列和快速小角度激发(fast low angle shot;FLASH)序列,扫描参数为:TR/TE=40~120/40~60ms,翻转角30~40度,矩阵256×64~128,视野200~400mm,根据机型及获得的扫描层数不同,扫描参数有一定的差别;回波平面成像技术(echo-planar imaging;EPI)是一种超快速MR成像方法,是目前采用的主要技术,可以结合GRE序列和SE序列得到不同对比度的T1、T2加权像。
人脑认知过程的功能性磁共振成像研究

人脑认知过程的功能性磁共振成像研究第一章:引言人脑认知过程一直被科学家们所关注。
随着功能性磁共振成像技术的发展,人们逐渐能够深入了解人脑认知的神经机制。
本文将介绍功能性磁共振成像技术在人脑认知研究中的应用,并探讨其在理解认知过程中的作用。
第二章:功能性磁共振成像技术概述功能性磁共振成像(fMRI)是一种通过血氧水平变化来测量脑活动的非侵入性技术。
它基于血液中的血红蛋白与氧结合程度的差异,通过磁场中的氢原子的共振信号来获得脑活动的图像。
第三章:人脑认知过程人脑认知过程是指人类在感知、注意、记忆、思考、决策等活动中的信息加工过程。
这个过程涉及多个脑区之间的协同作用,包括感知网络、默认模式网络、控制网络等。
第四章:功能性磁共振成像技术在认知过程中的应用功能性磁共振成像技术广泛应用于研究人脑认知过程。
通过记录脑区的活动变化,研究者能够揭示不同认知任务下神经网络的激活情况,并探究脑区之间的相互关系。
第五章:注意和工作记忆的功能性磁共振成像研究通过功能性磁共振成像技术,研究者可以研究人脑注意和工作记忆的认知过程。
注意是指人脑对外界信息的选择性关注,工作记忆则是人脑对短期信息的处理和维持。
通过fMRI技术,研究者可以观察到注意和工作记忆任务下特定脑区的激活情况,从而深入理解这两个认知过程的神经基础。
第六章:感知和语言的功能性磁共振成像研究感知过程涉及到人脑对外界刺激的感知和解释,而语言是人类思维和交流的基础。
通过功能性磁共振成像技术,研究者可以研究大脑在感知和语言任务中的激活模式,从而了解感知和语言的认知过程。
第七章:记忆和决策的功能性磁共振成像研究记忆是人类思维能力的重要组成部分,决策则是人脑在面临选择时做出的判断。
通过功能性磁共振成像技术,研究者可以研究人脑在记忆和决策任务中的激活情况,进一步探索这两个认知过程的神经机制。
第八章:功能性磁共振成像技术的局限性和未来发展功能性磁共振成像技术虽然在人脑认知研究中有诸多优势,但也存在一些局限性,例如空间分辨率不高、对运动敏感等。
fmri的名词解释

fmri的名词解释fmri技术(Functional Magnetic Resonance Imaging,功能性磁共振成像)是一种用于探索大脑活动的非侵入性方法。
它结合了MRI(Magnetic Resonance Imaging,磁共振成像)和神经科学,能够通过测量血液氧合水平的变化,反映出大脑各个区域的功能活动。
本文将从fmri的原理、应用范围、数据分析方法以及局限性等方面进行详细解释。
fmri的原理是基于血液氧合水平依赖效应(BOLD,Blood Oxygenation Level Dependent)的测量。
当大脑某个区域活跃时,该区域的神经细胞会消耗氧气,并引起周边血液流量的增加。
增加的血流导致血液中的氧含量增加,进而改变血液的磁性质。
为了获取fmri数据,研究者需要将被试者放置在磁共振设备中,该设备利用强磁场和无害的无线电频率来获取图像。
在进行fmri扫描时,被试者通常会执行一系列特定的任务,或者在休息状态下进行观察。
通过监测被试者大脑不同区域的BOLD信号变化,研究者可以推断哪些区域与特定任务相关联,进而研究脑功能和大脑结构之间的关系。
fmri的应用范围非常广泛。
在认知心理学领域,它被用来研究不同认知过程如记忆、学习、决策等的脑机制。
在神经病学和精神病学领域,fmri可以帮助研究人员了解各类神经疾病的潜在机制,例如阿尔茨海默病、帕金森病、精神分裂症等。
此外,fmri还在神经工程学、人机交互以及脑机接口等领域得到广泛应用。
在fmri数据分析方面,研究者常常使用统计学方法来识别与特定任务或条件相关的脑活动模式。
研究者会首先预处理数据,包括去除噪声、校正头部运动等。
然后,使用特定的统计模型对数据进行分析,以确定哪些区域在特定任务下显示出显著的激活。
常用的统计测试方法有单样本t检验、多样本t检验、方差分析等。
此外,数据分析还可以使用机器学习方法,如支持向量机、深度学习等,以提高脑活动模式分类的精确度。
功能磁共振成像

功能磁共振成像功能磁共振成像(fMRI)是一种成像技术,可以用来测量大脑活动和功能。
它通过测量大脑特定区域的血液氧合水平的变化来指示大脑活动。
fMRI能够提供详细的大脑结构图像和活动模式,进一步了解大脑的功能和连接。
fMRI技术利用磁共振成像仪来捕捉大脑内血液流动的瞬时变化。
当某一部分大脑活跃时,该区域的血液供应会增加,从而增加血液氧合水平。
这种变化可以通过fMRI扫描来检测到,并以图像形式呈现。
通过fMRI,我们可以研究许多大脑活动的方面,包括视觉感知、语言理解、动作协调等。
在进行实验时,被试者往往需要进行某些特定任务,例如看图像、解决问题等,以激发相应的大脑活动。
fMRI成像提供了大脑结构和功能之间的空间对应关系,以及不同大脑区域之间的交互作用。
通过分析fMRI数据,我们可以确定哪些大脑区域在特定任务中起主导作用,或者不同任务之间的差异。
除了研究大脑功能外,fMRI还可以应用于临床实践。
例如,它可以帮助识别癫痫病灶的位置,在神经外科手术中提供更准确的导航,以最大限度地减少损伤风险。
此外,fMRI还可以用于早期诊断、治疗规划和监测神经退行性疾病等。
然而,尽管fMRI技术有诸多优点,如无创、无放射性和高空间分辨率,但它也具有一些限制。
例如,fMRI图像的分辨率相对较低,对于某些小脑区域的活动可能无法准确检测出来。
此外,fMRI只能提供间接指示,通过血液氧合水平变化来推测大脑活动。
总的来说,功能磁共振成像是一种重要的大脑成像技术,可以帮助我们理解大脑的结构和功能。
尽管它有一些限制,但随着技术的不断进步,fMRI有望在疾病诊断和治疗中发挥更广泛的作用。
功能磁共振成像

功能磁共振成像(fMRI)功能磁共振成像技术简述功能性磁共振成像(fMRI)是一种新兴的神经影像学方式,其原理是采用磁振造影来测量神经元活动所引发之血液动力的转变。
由于fMRI的非侵入性、没有辐射暴露问题与其较为广泛的应用,从1990年月开头就在脑部功能定位领域占有一席之地。
目前主要是运用在讨论人及动物的脑或脊髓。
相关技术进展自从1890年月开头,人们就知道血流与血氧的转变(两者合称为血液动力学)与神经元的活化有着密不行分的关系。
神经细胞活化时会消耗氧气,而氧气要借由神经细胞四周的微血管以红血球中的血红素运送过来。
因此,当脑神经活化时,其四周的血流会增加来补充消耗掉的氧气。
从神经活化到引发血液动力学的转变,通常会有一5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。
这使得不仅神经活化区域的脑血流会转变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之转变。
血氧浓度相依对比(Blood oxygen-level dependent, BOLD) 首先由贝尔试验室小川诚二等人于1990年所提出⑵,小川博士与其同事很早就了解BOLD对于应用MRI于脑部功能性造影的重要性,但是第一个胜利的fMRI讨论则是由John W. Belliveau 与其同事于1991年透过静脉内造影剂(Gd)所提出。
接着由邙健民等人于1992年发表在人身上的应用。
同年,小川博士于 4 月底提出了他的结果且于7月发表于PNAS。
在接下来的几年,小川博士发表了BOLD的生物物理学模型于生物物理学期刊。
Bandettini博士也于1993年发表论文示范功能性活化地图的量化测量。
由于神经元本身并没有储存所需的葡萄糖与氧气,神经活化所消耗的能量必需快速地补充。
经由血液动力反应的过程,血液释出葡萄糖与氧气的比率相较于未活化神经元区域大幅提升。
这导致了过多的带氧血红素布满于活化神经元处,而明显的带氧/缺氧血红素比例变化使得BOLD可作为MRI的测量指标之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fMRI:磁共振功能成像概述
血氧合水平依赖(Blood Oxygenation Level Dependant,BOLD)——脑功能成像fMRI的狭义概念
大脑皮层的解剖结构&功能定位
血红蛋白生理学
· 人体血液氧的输送方式
· 血红蛋白(Hb)
· 氧合过程、氧合Hb
· 去氧过程、去氧Hb
· 血氧饱和度
血红蛋白的磁性和T2*
· 血液中含氧血红蛋白具有逆磁性,去氧血红蛋白具有顺磁性
· 去氧血红蛋白的顺磁性,使得血液中磁化率不均匀,使得T2 *下降
脑功能成像(BOLD)物理原理
•血液中含氧血红蛋白具有逆磁性,去氧血红蛋白具有顺磁性
· 去氧血红蛋白的顺磁性,使得血液中磁化率不均匀,使得T2 *下降· 当有刺激活动时,被激活的皮质功能区血流量增加,而局部脑耗氧量增加不明显,使得含氧血红蛋白浓度增加,去氧血红蛋白浓度下降,磁化率不均匀性下降,T2 *增加· 采用T2 *-W序列,就能观察到这种变化。
BOLD法fMRI基本过程· 确定实验系统· 制定刺激方案· 扫描参考解剖像· BOLD加权fMRI · 数据处理· 脑活动区的可视化显示BOLD-fMRI常用序列EPI(回波平面成像): GRE-EPI、SE-EPI 优点:速度快、成像范围大缺点:图像变形大、对运动比较敏感
BOLD-fMRI应用–直接观察大脑的认知活动,使得认知科学有了研究大脑认知和智力的“望远镜”和“显微镜” , 推动了认知神经科学领域研究的飞速发展 ,是认知神经科学研究的一个里程碑. –人类疾病早期诊断和早期治疗提供了新的方法和手段
转载自:Sandora 一点小医工。