五类晶体模型

合集下载

纤维素的聚集态结构及其五种变体

纤维素的聚集态结构及其五种变体

纤维素的聚集态结构及其五种变体纤维素的聚集态结构是研究纤维素分子间的相互排列情况(晶区和非晶区、晶胞大小及形式、分子链在晶胞内的堆砌形式、微晶的大小)、取向结构(分子链和微晶的取向)等。

天然纤维素和再生纤维素纤维都存在结晶的原纤结构,由原先结构及其特性可部分地推知纤维的性质,所以为了解释以纤维素为基质的材料的结构与性能关系,寻找制备纤维素衍生物的更有效方法,则研究纤维素合成的机理、了解纤维素的聚集态结构,在理论研究和实际应用方面都有重要的意义。

为了深入研究纤维素的聚集态结构,必须了解纤维素的各种结晶变体,这些结晶变体都以纤维素为基础,有相同的化学成分和不同的聚集态及结构。

纤维素有五类多种结晶变体(同质异晶体,polymorph),即纤维素Ⅰ、纤维素Ⅱ、纤维素Ⅲ1、纤维素Ⅲ2、纤维素Ⅳ1、纤维素Ⅳ2、纤维素Χ,他们之间可以互相转化。

纤维素Ⅰ是纤维素天然存在形式,又叫原生纤维素,包括细菌纤维素、海藻和高等植物(如棉花、麻、木材等)细胞中存在的纤维素。

由于Χ射线衍射设备和研究方法的改进,特别是计算机模拟技术的应用,从20世纪70年代起,应用模型堆砌分析方法已能够定量地确定纤维素及其衍生物链构象中的键长、键角配糖扭转角(φ和ψ)、配糖角(τ)、测基-CH2OH的旋转角(X),链的极性、旋转和相对位移及分子内和分子间的氢键,这使纤维素晶胞架构的研究建立在全新的近代科学基础上,并取得了重大进展。

关于纤维Ⅰ晶胞的结构,主要的突破是解决了链极性(即方向)的问题。

这方面研究以美国的Blackwell和Sarko 为代表。

纤维素Ⅱ是原生纤维素经由溶液中再生或丝光化得到的结晶变体,是工业上使用最多的纤维素形式。

除了在Halicystis海藻中天然存在外,纤维素Ⅱ可以用以下四种方法制得:以浓碱液(较合适的浓度是11%--15%)作用于纤维素而生成碱纤维素,再用水将其分解为纤维素;将纤维素溶解后再从溶液中沉淀出来;将纤维素酯化后,再皂化成纤维素;将纤维素磨碎后,用热水处理。

晶体材料基础---第六、七讲 晶体结构及对称性(5) 单形和聚形

晶体材料基础---第六、七讲 晶体结构及对称性(5) 单形和聚形
与六方双锥的区别是 横截面不是正六边形 形
复三方双锥:12
中级晶族各晶系的单形
①柱类:三方柱、复三方柱、四方 柱、复四方柱、六方柱、复六方柱
注意:晶面和交棱都平行于高次轴。
中级晶族各晶系的单形
②单锥类:三方单锥、复三方单锥、 四方单锥、复四方单锥、六方单锥、复 六方单锥
注意:出现在没有对称中心和其它水平对称要素 的对称型中。所有晶面交高次轴于一点。
实例⑴
正交晶系以L22P(mm2)为例:
将L2为Z轴,对称面的法线分别为X、Y轴,进行极射 赤平投影。
在1/4的扇形区域内,原始晶面与对称要素之间的相 对位置关系有7种: 3个角顶(1、2、3号晶面) 3条边上(4、5、6号晶面) 中部(7号晶面)
六 单形的推导
Z Y Y X X
位置1:单面{001} 位置2:平行双面{100} 位置3:平行双面{010} 位置4:双面{h0l} 位置5:双面{0kl} 位置 6:斜方柱{hk0} 位置 7:斜方单锥{hkl}
称型逐一进行推导,能导出146种不同的单
形,称为结晶单形。
实际晶体单形的对称型判断
实际晶体的单形都是结晶单形.可根据晶 面花纹、蚀像、物性等特点判断。 如黄铁矿立方体晶面 上常发育有相互垂直的不是3L44L36L29PC
四 47种几何单形的形态特点
五角十二面体的三个变形
有关单形的几个概念:
⒋左形(left-hand form)和右 形(right-hand form) :形状完全 相同而在空间的取向正好彼此相反 的两个形体,若相互间不能借助于 旋转、但可借助于反映而使两者的 取向达到一致,此二同形反向体即 构成左形和右形。
三方偏方面体 的左形和右形
六四面体:

液晶的种类

液晶的种类

液态晶体的类别现在液态晶体这个名词的定义更广义。

凡是不像一般液体那么乱又不像一般晶体那样具有三度空间之周期性的态均被称为液态晶体。

甚至于那些具有液晶态的材料也被随意地称为液态晶体。

液态晶体的类别可以许多方面来分【1】。

以构造来分可分成许多态,我们在这介绍几种较普遍得液晶态:1、向列型液晶态 (Nematics):分子平均起来有一个特定方向,此平均方向通常用一个单位向量来表示,请看(图三)所示。

2、胆固醇型液晶态 (Cholesterics):这一形液晶和向列形液晶几乎完全相同,只是会如(图四)般沿者某一个方向随着位置缓慢旋转。

3、层状液晶态 (Smectics):这一型液晶不但具有方向之秩序性,连分子的质心排列也有部分秩序性。

我们由(图五)来说明。

小棒子表示分子,的方向是向上。

除此外,分子还具有层状排列,(图五)中之横线是用来指出此层状结构。

图三向列型液晶态(Nematics)图四胆固醇型液晶态图五层状液晶态在上面所说的层状液晶态还可再细分成许多态。

最近发现的TGB(扭曲颗粒接口)液晶就有非常有趣的结构,在第六节中我们再单独介绍。

以材料来分可分成两大类:1、热致型液晶(Thermotropics)-纯物质(或均匀之混合物):此种材料在不同温度下会呈现不同性质之液态。

我们用(图六)来说明各态与温度之关系。

当然,对任一种物质而言,可能只具有某几个态。

图六各液晶态与温度之关系4,溶致型液晶 (Lyotropics)-两栖型分子之水溶液(如肥皂水):两栖型分子的两端具有不同之性质;其一端亲水,而另一端拒水。

此种水溶液在不同浓度时会呈现不同性质之液态。

(图七)中举出两个例子,说明这些分子在水中可能形成的结构。

图七溶致型液晶。

晶体结构5

晶体结构5

所示,硅氧单链[Si2O6]平行于c轴方向伸展,图中两个重叠的硅氧
链分别以粗黑线和细黑线表示。单链之间依靠Ca2+、Mg2+连接。 Ca2+的配位数为8,Mg2+为6。Ca2+负责[SiO4] 底面间的连接, Mg2+负责顶点间的连接。 若透辉石结构中的Ca2+全部被Mg2+取代,则形成斜方晶系 的顽火辉石Mg2[Si2O6]。
(a)立体图
(b)投影图
图1-37 层状结构硅氧四面体
按照硅氧层中活性氧的空间取向不同,硅氧层分为单网层和复网
层。单网层结构中,硅氧层的所有活性氧均指向同一个方向。而复网 层结构中,两层硅氧层中的活性氧交替地指向相反方向。活性氧的电 价由其它金属离子来平衡,一般为6配位的Mg2+或Al3+离子,同时,水 分子以OH-形式存在于这些离子周围,形成所谓的水铝石或水镁石层。
1-32(b)中25、75的Mg2+被Ca2+取代,则形成钙橄榄石
CaMgSiO4。如果Mg2+全部被Ca2+取代,则形成-Ca2SiO4,
即-C2S,其中Ca2+的配位数为6。另一种岛状结构的水泥熟
料矿物-Ca2SiO4,即-C2S属于单斜晶系,其中Ca2+有8和6
两种配位。由于其配位不规则,化学性质活泼,能与水发生
堇青石Mg2Al3[AlSi5O18] 与绿宝石结构相同,但六节环中有一
个Si4+被Al3+取代;同时,环外的正离子由(Be3Al2)变为
(Mg2Al3),使电价得以平衡。此时,正离子在环形空腔迁移阻力
增大,故堇青石的介电性质较绿宝石有所改善。堇青石陶瓷热学性 能良好,但不宜作无线电陶瓷,因为其高频损耗大。 应该注意,有的研究者将绿宝石中的[BeO4]四面体归到硅氧骨 架中,这样绿宝石就属于架状结构的硅酸盐矿物,分子式改写为 Al2[Be3Si6O18]。至于堇青石,有人提出它是一种带有六节环和四节 环的结构,化学式为Mg2[Al4Si5O18]。

第五章 聚合物的结晶态

第五章 聚合物的结晶态

结晶最大 速度
1/t1/2 晶核生成
晶体生长
产生上述现象的原因: 晶核生成速度和晶体生 长速度存在不同的温度 依赖性
(一)、高聚物结晶的时间依赖性: —Avrami方程
V0 t0 开始
Vt t 中间
t 时体积收缩=
V∞ t∞ 终了(达到平衡)
以体积收缩对时间t作图 等温结晶曲线
t 小时
天然橡胶的等温结晶曲线 结论:结晶过程的完成需要很长时间, 结晶终点不明确。
用Avrami方程描述聚合物的等温结晶过程:
∫ ∫ Δ vt d Δ v = − t kt l dt
2)贡献:
可以解释一些实验事实,比如高聚物结晶的不完全性→结晶 度概念,出现内应力等 晶区
高聚物的晶态 非晶区
共存的状态
结晶缺陷区
但是这一模型不能解释:用苯蒸汽腐蚀聚葵二酸乙二 醇酯的球晶,观察到球晶中非晶部分会慢慢被蒸汽腐蚀, 而余下部分呈发射形式
二、折叠链模型
1、依据
1957年Keller等人从0.05-0.06%的PE的二甲苯溶液 中用极缓慢冷却的方法培育成功大于50um的PE单 晶体,用电镜测得单晶薄片的厚度约为10nm(伸展 的分子链长度可达102—103nm)。电子衍射数据证 明晶片中分子链垂直与晶面方向排列。
(一)、大分子结构简单、对称易结晶 1、结构简单、对称性非常好的聚合物—PE、
PTFE,结晶能力最强。 2、对称取代的聚合物—PVDC、PIB等,有较好的
结晶能力。 3、主链上含有杂链原子的聚合物,分子链有一定
的对称性—POM、聚酯、聚醚、PA、PC等是结晶 性聚合物。
(二)、立构规整性聚合物易结晶
在高压高温下结晶 由完全伸展的分子链平行规整排列而成 其晶体Tm最高 被认为是高分子热力学最稳定的一种聚集态结构。

纤维素的聚集态结构及其五种变体

纤维素的聚集态结构及其五种变体

纤维素的聚集态结构及其五种变体纤维素的聚集态结构是研究纤维素分子间的相互排列情况(晶区和非晶区、晶胞大小及形式、分子链在晶胞内的堆砌形式、微晶的大小)、取向结构(分子链和微晶的取向)等。

天然纤维素和再生纤维素纤维都存在结晶的原纤结构,由原先结构及其特性可部分地推知纤维的性质,所以为了解释以纤维素为基质的材料的结构与性能关系,寻找制备纤维素衍生物的更有效方法,则研究纤维素合成的机理、了解纤维素的聚集态结构,在理论研究和实际应用方面都有重要的意义。

为了深入研究纤维素的聚集态结构,必须了解纤维素的各种结晶变体,这些结晶变体都以纤维素为基础,有相同的化学成分和不同的聚集态及结构。

纤维素有五类多种结晶变体(同质异晶体,polymorph),即纤维素Ⅰ、纤维素Ⅱ、纤维素Ⅲ1、纤维素Ⅲ2、纤维素Ⅳ1、纤维素Ⅳ2、纤维素Χ,他们之间可以互相转化。

纤维素Ⅰ是纤维素天然存在形式,又叫原生纤维素,包括细菌纤维素、海藻和高等植物(如棉花、麻、木材等)细胞中存在的纤维素。

由于Χ射线衍射设备和研究方法的改进,特别是计算机模拟技术的应用,从20世纪70年代起,应用模型堆砌分析方法已能够定量地确定纤维素及其衍生物链构象中的键长、键角配糖扭转角(φ和ψ)、配糖角(τ)、测基-CH2OH的旋转角(X),链的极性、旋转和相对位移及分子内和分子间的氢键,这使纤维素晶胞架构的研究建立在全新的近代科学基础上,并取得了重大进展。

关于纤维Ⅰ晶胞的结构,主要的突破是解决了链极性(即方向)的问题。

这方面研究以美国的Blackwell和Sarko 为代表。

纤维素Ⅱ是原生纤维素经由溶液中再生或丝光化得到的结晶变体,是工业上使用最多的纤维素形式。

除了在Halicystis海藻中天然存在外,纤维素Ⅱ可以用以下四种方法制得:以浓碱液(较合适的浓度是11%--15%)作用于纤维素而生成碱纤维素,再用水将其分解为纤维素;将纤维素溶解后再从溶液中沉淀出来;将纤维素酯化后,再皂化成纤维素;将纤维素磨碎后,用热水处理。

美国眼力健公司AMO人工晶体简介

美国眼力健公司AMO人工晶体简介
AMO人工晶体简介
美国眼力健公司(AMO) (Abbott Medical Optics, Inc. )
• AMO共有五种类型人工晶体,分别是: EP551、AR40e、ZA9003、ZCB00、 ZMA00。 按人工晶体材质分类
• 硬质人工晶体:EP551 • 软质人工晶体:AR40e、ZA9003、ZCB00、
切口5.5-6.0MM 切口2.8-3.2MM
切口2.8-3.2MM
单焦点非球面折叠(软)晶 体,一片式设计、疏水性丙 烯酸材料、创新型前圆后方 的边缘设计,可减少术后球 面相差,提高暗视力,减少 术后色差
在保有ZA9003的优点之外, 同时减少了患者术后的色差。 一片式的设计更加容易植入, 增加了晶体在囊带内的稳定 性和可控性。
切口2.8-3.2MM
多焦点非球面折叠(软)晶 体,三片式设计、疏水性丙 烯酸材料、衍射型人工晶体, 可减少术后球面相差,提高 暗视力,减少色差
在保有ZCB00晶体的优点之 外,可让90%白内障患者术 后摆脱老花镜的困扰,提供 非瞳孔依赖的全程视力。
切口2.8-3.2MM
• 1、疏水性丙烯酸材质,切口2.8-3.2mm
• 2、单焦点、一片式非球面人工晶体
• 3、前圆后方的边缘设计
• 4、人工晶体度数:+5.0D~30.0D
• 四、ZCB00(TECNIS) • 优点:
• 1、术后减少球面相差,提高功能性视力
• 2、更高的光学性能,减少术后色差
• 3、减轻术后眩光,降低术后后发性白内障的发生率
• 1、矫正球面相差,提供更加敏锐的视力
• 2、多焦点提供全程视力,是老视矫正型人工晶体
• 3、视物不依赖瞳孔大小,充分提高暗室条件下视远、视近的视力

第五讲 晶体学基础

第五讲 晶体学基础

第五讲晶体学基础*(一)晶体(crystal)的点阵结构(1)晶体的结构特征晶体是内部粒子(原子分子离子)或离子集团在空间按一定的规律周期性排列的固体。

周期性是指一定种类的粒子(原子或原子团)在空间一定的方向上每隔一定的距离重复出现的现象。

周期性重复的两要素:周期性重复的内容(结构基元(structural motif))和重复大小和方向。

(2)点阵(lattice)结构点阵: 连接任意两点的向量平移后能重合的一组点。

a 线性高分子—(CH2)n—与直线点阵素向量b As2O3,B(OH)3,石墨与平面点阵平面点阵单位:正方,六方,巨型,带心,一般。

c NaCL晶体与空间点阵点阵单位:素单位(P) 底心(C) 体心(I) 面心(F)(3) 晶体与点阵对应关系:晶楞--直线点阵;晶面--平面点阵;晶体--空间点阵;*晶体结构= 点阵+ 结构基元(晶体基本特征)(二)晶胞晶胞:空间点阵单位所截出晶体的一块平行六面体。

(1)晶胞(crystal cell)两要素:大小形状和内容。

(2)晶胞参数: 三个互不平行的楞长(a,b,c)及他们的夹角γαβ。

<ab γ,<bc=α,<ca=β(3)原子坐标:晶轴:a, b, c ;分数坐标例NaCL: Na 0 0 0, 1/2 1/2 0, 0 1/2 1/2, 1/2 0 1/2Cl 1/2 0 0, 0 1/2 0, 0 0 1/2, 1/2 1/2 1/2CsCL: Cs 0 0 0, Cl 1/2 1/2 1/2(CC 4): C=Na,C / 1/4 1/4 1/4, 1/4 3/4 3/4, 3/4 1/4 3/4, 3/4 3/4 1/4* 坐标系不变,原子移动:例:*坐标系平移(原点选择不同):例: 金刚石(CC 4)(4)两点间距离:P 2—P 1 =b y y a x x )()(1212-+-+c z z )(12-= [(P 2-P 1).(P 2-P 1)]1/2正交:P 2—P 1 = [(x 2-x 1)2a 2+(y 2-y 1)2b 2+(z 2-z 1)2c 2]1/2可用于计算键长P 2--P 1 ,键角(c 2=a 2+b 2-2abCosin ab α)及二面角,确定分子结构,讨论分子性能;计算分子间的距离,讨论分子间作用力及氢键等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五类晶体模型
晶体晶体结构晶体详解
原子晶体



(1)每个碳与相邻个碳以共价键结合,形成
结构,键角均为
(2)最小碳环由个C组成且六原子不在同
一平面内
(3)每个C参与4条C—C键的形成,C原子数
与C—C键之比为
(4)每个碳原子连接个六元环
SiO2
(1)每个Si与个O以共价键结合,形成
结构
(2)每个正四面体占有个Si, 个“2
1
*O”,
n(Si)∶n(O)=
(3)最小环上有个原子,即个O, 个Si

子晶体干冰
(1)8个CO2分子构成立方体且
在个面心又各占据1个CO2分子
(2)每个CO2分子周围等距紧邻的CO2分子
有个
离子晶体NaCl

(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)
有个。

每个Na+周围等距且紧邻的Na+
有个
(2)每个晶胞中含个Na+和个Cl-
CsCl

(1)每个Cs+周围等距且紧邻的Cl-有个,每
个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)
有个
(2)如图为8个晶胞,每个晶胞中含个Cs+、
个Cl-
金属晶体简单
立方
堆积
典型代表,空间利用率,配位数为
体心
立方
堆积
典型代表、、,空间利用率,
配位数为
六方
最密
堆积
典型代表Mg、Zn、Ti,空间利用率,配
位数为
面心
立方
最密
堆积
典型代表、、,空间利用率;
配位数为

墨晶体层状
晶体
石墨层状晶体中,层与层之间的作用
是,平均每个正六边形拥有的
碳原子个数是,C原子采取的杂化方
式是,每个碳原子连接个六元环。

下列是钠、铜、碘、金刚石、干冰、氯化钠、氟化钙、水合铜离子的晶胞示意图(未按顺序排序),将对应物质名称写在晶胞结构下:。

相关文档
最新文档