2016届《创新设计》高考物理(浙江专用)大一轮复习精讲课件:第4章 曲线运动-2
高考物理一轮复习课件:第四章 第1讲 曲线运动 运动的合成与分解

质点仅在恒力F的作用下,由O点
运动到A点的轨迹如图4-1-2所示,在
A点时速度的方向与x轴平行,则恒力F 的方向可能沿( A.x轴正方向 C.y轴正方向 ) B.x轴负方向 D.y轴负方向
【审题视点】 (1)观察曲线走向及O、A两点速度方向. (2)恒力F的方向不可能与v的方向相同. 【解析】 质点的初速度沿y轴正方向的分速度到A点时减 为零,说明质点受的恒力F有沿y轴负方向的分量,又知在A 点时速度的方向与x轴平行,故选项D对. 【答案】 D
【规范解答】 小环释放后, v 增加, 而 v 1=v cos θ,v 1 增大,由此可知小环刚 释放时重物具有向上的加速度, 故绳中张 力一定大于 2mg,A 项正确;小环到达 B 处时,绳与直杆间的夹角为 45° ,重物上 升的高度 h=( 2-1)d,B 项正确;如图 所示,将小环速度 v 进行正交分解如图 示,其分速度 v 1 与重物上升的速度大小 2 相等,v 1=v cos 45° = v ,所以,小环 2 在 B 处的速度与重物上升的速度大小之 比等于 2,C 项错误、D 项正确.
【答案】
Aபைடு நூலகம்
两直线运动的合运动的性质和轨迹,由两分运动的性质及
合初速度与合加速度的方向关系决定.
1.根据合加速度判定合运动是匀变速运动还是非匀变速 运动,若合加速度不变则为匀变速运动;若合加速度变化(
包括大小或方向)则为非匀变速运动.
2.根据合加速度方向与合初速度方向判定合运动是直线 运动还是曲线运动,若合加速度与合初速度的方向在同一直 线上则为直线运动,否则为曲线运动.
d d 180 t= = = s=36 s, 5 v⊥ v2 5 2 2 v 合= v 1+v 2= 5 m/s, 2 x=v 合 t=90 5 m. (2)欲使船渡河航程最短,船的实际速度应垂直河岸.船 头应朝图(b)中的 v 2 方向,则有 v 2sin α=v 1,解得 α=30° . 所以当船头与上游河岸成 60° 时航程最短. x=d=180 m. d d 180 t= =v cos 30° =5 s=24 3 s. v⊥ 2 2 3
(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学生用书

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。
(统考版)高考物理一轮复习 第四章 曲线运动 万有引力与航天 第2讲 抛体运动的规律及应用学生用书

第2讲抛体运动的规律及应用一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在________作用下的运动.2.性质:平抛运动是加速度为g的________曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解.(1)水平方向:________直线运动;(2)竖直方向:________运动.4.基本规律:如图所示,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向下为y轴正方向.(1)位移关系(2)速度关系(3)常用推论:①图中C点为水平位移中点;②tan θ=2tan α.注意θ与α不是2倍关系.二、斜抛运动1.定义:将物体以初速度v0________或斜向下方抛出,物体只在________作用下的运动.如图所示.2.性质:斜抛运动是加速度为g的________曲线运动,运动轨迹是________.3.研究方法:运动的合成与分解(1)水平方向:________直线运动;(2)竖直方向:________直线运动.,生活情境1.一架投放救灾物资的飞机在受灾区域的上空水平地匀速飞行,从飞机上投放的救灾物资在落地前的运动中(不计空气阻力)(1)速度和加速度都在不断改变.( )(2)速度和加速度方向之间的夹角一直减小.( )(3)在相等的时间内速度的改变量相等.( )(4)在相等的时间内速率的改变量相等.( )(5)在相等的时间内动能的改变量相等.( )教材拓展2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动考点一平抛运动规律的应用用“化曲为直”的思想处理平抛运动中落点在水平面上的问题时,将研究对象抽象为质点平抛运动模型,处理平抛运动的基本方法是运动的分解(化曲为直).即同时又要注意合运动与分运动的独立性、等时性.例1.[2021·河北卷,2]铯原子钟是精确的计时仪器.图1中铯原子从O点以100 m/s 的初速度在真空中做平抛运动,到达竖直平面MN所用时间为t1;图2中铯原子在真空中从P点做竖直上抛运动,到达最高点Q再返回P点,整个过程所用时间为t2.O点到竖直平面MN、P点到Q点的距离均为0.2 m.重力加速度取g=10m.则t1∶t2为( )s2A.100∶1 B.1∶100跟进训练1.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)( )2.[2022·陕西五校联考]墙网球又叫壁球,场地类似于半个网球场,如图所示,在场地一侧立有一竖直墙壁,墙壁上离地面一定高度的位置画了水平线(发球线),在发球区发出的球必须击中发球线以上位置才有效,假设运动员在某个固定位置将球发出,发球速度(球离开球拍时的速度)方向与水平面的夹角为θ,球击中墙壁位置离地面的高度为h,球每次都以垂直墙壁的速度撞击墙壁,设球撞击墙壁的速度大小为v,球在与墙壁极短时间的撞击过程中无机械能损失,球撞到墙壁反弹后落地点到墙壁的水平距离为x,不计空气阻力,球始终在与墙壁垂直的平面内运动,则下列说法正确的是( )A.h越大,x越大B.v越小,x越大C.h越大,θ越大 D.v越大,h越大考点二平抛运动与各种面结合问题角度1落点在斜面上分解位移,构建位移三例2. [2022·江西八校联考](多选)如图所示,小球A从斜面顶端水平抛出,落在斜面上的Q点,在斜面底端P点正上方水平抛出小球B,小球B也刚好落在斜面上的Q点,B球,A、B 抛出点离斜面底边的高度是斜面高度的一半,Q点到斜面顶端的距离是斜面长度的23两球均可视为质点,不计空气阻力,则A、B两球( )A.平抛运动的时间之比为2∶1B.平抛运动的时间之比为3∶1C.平抛运动的初速度之比为1∶2D.平抛运动的初速度之比为1∶1角度2落点在曲面上例3. [2022·浙江温州一模]如图所示为某种水轮机的示意图,水平管出水口的水流速度恒定为v 0,当水流冲击到水轮机上某挡板时,水流的速度方向刚好与该挡板垂直,该档板的延长线过水轮机的转轴O ,且与水平方向的夹角为30°.当水轮机圆盘稳定转动后,挡板的线速度恰为冲击该挡板的水流速度的一半.忽略挡板的大小,不计空气阻力,若水轮机圆盘的半径为R ,则水轮机圆盘稳定转动的角速度大小为( )A.v 02R B .v0RC .√3v 0RD .2v 0R跟进训练.3 [2022·浙江名校统测]如图所示,水平地面有一个坑,其竖直截面为y =kx 2的抛物线(k =1,单位为m -1),ab 沿水平方向,a 点横坐标为-3s2,在a 点分别以初速度v 0、2v 0(v 0未知)沿ab 方向抛出两个石子并击中坑壁,且以v 0、2v 0抛出的石子做平抛运动的时间相等.设以v 0和2v 0抛出的石子做平抛运动的时间为t ,击中坑壁瞬间的速度分别为v 1和v 2,下落高度为H ,仅s 和重力加速度g 为已知量,不计空气阻力,则(选项中只考虑数值大小,不考虑单位)( )A .不可以求出tB .可求出t 的大小为 √4sg C .可以求出v 1的大小为 √3g+16gs 24D .可求出H 的大小为2s 2考点三 生活中的平抛运动(STSE 问题)素养提升情境1投篮游戏[2021·新疆第二次联考]如图甲所示,投篮游戏是小朋友们最喜欢的项目之一,小朋友站立在水平地面上双手将皮球水平抛出,皮球进入篮筐且不擦到篮筐就能获得一枚小红旗.如图乙所示,篮筐的半径为R,皮球的半径为r,篮筐中心和出手处皮球的中心高度为h1和h2,两中心在水平地面上的投影点O1、O2之间的距离为d.忽略空气的阻力,已知重力加速度为g.设出手速度为v,要使皮球能入筐,则下列说法中正确的是( )A.出手速度大的皮球进筐前运动的时间也长B.速度v只能沿与O1O2连线平行的方向C.速度v的最大值为(d+R-r)√g2(h2−h1)D.速度v的最小值为(d-R+r)√2gh2−h1[思维方法]1.处理平抛运动中的临界问题要抓住两点(1)找出临界状态对应的临界条件;(2)用分解速度或者分解位移的思想分析平抛运动的临界问题.2.平抛运动临界极值问题的分析方法(1)确定研究对象的运动性质;(2)根据题意确定临界状态;(3)确定临界轨迹,画出轨迹示意图;(4)应用平抛运动的规律结合临界条件列方程求解.情境2农林灌溉农林灌溉需要扩大灌溉面积,通常在水管的末端加上一段尖管,示意图如图所示,尖管,尖管水平,不考虑空气阻力的影响,下列说法正确的是( )的直径是水管直径的13A.由于增加尖管,单位时间的出水量增加2倍B.由于增加尖管,水平射程增加3倍C.增加尖管前后,空中水的质量不变D.由于增加尖管,水落地时的速度大小增加8倍情境3海鸥捕食[2021·山东卷,16] 海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳.一只海鸥叼着质量m=0.1 kg的鸟蛤,在H=20 m的高度、,以v0=15 m/s的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上.取重力加速度g=10ms2忽略空气阻力.(1)若鸟蛤与地面的碰撞时间Δt =0.005 s ,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F ;(碰撞过程中不计重力)(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L =6 m 的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平飞行的高度仍为20 m ,速度大小在15~17 m/s 之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x 坐标范围.第2讲 抛体运动的规律及应用必备知识·自主排查一、 1.重力 2.匀变速3.(1)匀速 (2)自由落体 4.(1)12gt 2√x 2+y 2yx(2)√v x 2+v y 2 v y v x二、1.斜向上方 重力 2.匀变速 抛物线 3.(1)匀速 (2)匀变速生活情境1.(1)× (2)√ (3)√ (4)× (5)× 教材拓展2.解析:根据合运动与分运动的等时性和独立性特点可知,两球应同时落地,为减小实验误差,应改变装置的高度,多次做实验,选项B 、C 正确;平抛运动的实验与小球的质量无关,选项A 错误;此实验只能说明A 球在竖直方向做自由落体运动,选项D 错误.答案:BC关键能力·分层突破例1 解析:设距离d =0.2 m ,铯原子做平抛运动时有d =v 0t 1,做竖直上抛运动时有d =12g (t 22)2,解得t 1t 2=1200.故A 、B 、D 错误,C 正确.答案:C1.解析:由题意可知,炸弹被投放后做平抛运动,它在水平方向上做匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,故A 、C 错误;炸弹在竖直方向上做自由落体运动,从上至下,炸弹间的距离越来越大.故B 正确,D 错误.答案:B 2.解析:将球离开球拍后撞向墙壁的运动反向视为平抛运动,该平抛运动的初速度大小为v ,反弹后球做平抛运动的初速度大小也为v ,两运动的轨迹有一部分重合,运动员在某个固定位置发球,因此不同的发球速度对应击中墙壁的不同高度h ,但所有轨迹均经过发球点,如图所示,h 越大,球从发球点运动到击墙位置的运动时间越长,墙壁到发球点的水平位移x ′相同,则v 越小,由图可知,反弹后球做平抛运动的水平位移x 越小,选项A 、B 、D 错误;设球击中墙壁的位置到发球点的高度为h ′,由平抛运动的推论可知2h ′x ′=tan θ,则h ′越大,即h 越大,θ越大,选项C 正确.答案:C例2 解析:依题意及几何关系可知,小球A 下落的高度为斜面高度的23,小球B 下落高度为斜面高度的12再减去斜面高度的13,则根据公式h =12gt 2,可知A 、B 两球平抛运动时间之比为tA tB =2,选项A 正确,B 错误;两小球在水平方向做匀速直线运动,有x =v 0t ,小球A水平分位移为斜面宽度的23,小球B 水平分位移为斜面宽度的13,代入上式联立可得v 0A v 0B=1,选项C 错误,D 正确.答案:AD 例3 解析:由几何关系可知,水流冲击挡板时,水流的速度方向与水平方向成60°角,则有vy v 0=tan 60°,所以水流速度为v =√v 02+v y2 =2v 0,根据题意知被冲击后的挡板的线速度为v ′=12v =v 0,所以水轮机圆盘稳定转动的角速度大小为ω=v ′R=v0R,选项B 正确.答案:B3.解析:由题可知,两个石子做平抛运动,运动时间一样,则下落的高度H 一样,又因为落在抛物线上,a 、b 是关于y 轴对称的点,可得如下关系3s 2-v 0t =2v 0t -3s2,可得v 0t =s ,可分别得出落在坑壁上两个石子的横坐标分别为-s 2和s2,由y =kx 2,可得初始高度为9s 24,可求得此时高度为s 24,所以利用高度值差可求得H =2s 2,由H =12gt 2可求出平抛运动的运动时间t = √2Hg =2s √1g ,故选项D 正确,A 、B 错误;由前面可求出v 0=st =√g2,竖直方向上的速度v y =gt =2s √g ,由运动的合成可得v 1=√v 02+v y2 =√g+16gs 24,故选项C 错误.答案:D情境1 解析:本题考查平抛,属于应用性题.平抛运动的时间由下落的高度决定,则进筐的皮球运动时间相同,A 错误;与O 1O 2连线方向成一个合适的角度投出的皮球也可能进筐,B 错误;皮球沿与O 1O 2连线平行的方向投出,下落的高度为h 2-h 1,水平射程临界分别为d +R -r 和d +r -R ,则投射的最大速度为v max =√2(h 2−h 1)g=(d +R -r ) √g2(h 2−h 1)最小速度为v min =√2(h 2−h 1)g=(d -R +r ) √g2(h 2−h 1)C 正确,D 错误. 答案:C情境2 解析:单位时间的出水量与单位时间输入水管的量有关,与是否增加尖管无关,选项A 错误;设尖管中水的流速为v 0,水管中水的流速为v ,水管的半径为r ,根据相同时间Δt 内水的流量相同可得,π(r3)2v 0Δt =πr 2v Δt ,得水管、尖管中水的流速之比为v v 0=19,根据平抛运动规律,有h =12gt 2,增加尖管后水平射程x 0=v 0t =v 0√2hg ,不加尖管时水平射程x =vt =v √2hg,可得xx 0=19,Δx =x 0-x =8x ,故由于增加尖管,水平射程增加8倍,选项B 错误;不加尖管时,空中水的质量m =ρπr 2x ,加尖管时空中水的质量为m 0=ρ·π(r 3)2·x 0=πρr 2x ,则m =m 0,选项C 正确;由动能定理有mgh =12mv 12-12mv 2、m 0gh =12m 0v −2212m 0v 02,解得增加尖管前后水落地时的速度分别为v1=√2g ℎ+v 2、v2=√2g ℎ+v 02 ,v 2−v 1v 1≠8,选项D 错误.答案:C情境3 解析:(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v.竖直方向gt2,v y=gt,v=√v02+v y2.分速度大小为v y,根据运动的合成与分解得H=12在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得-FΔt =0-mv联立并代入数据得F=500 N(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点的x坐标为x1,击中岩石右端时,释放点的x坐标为x2,则有x1=v1t,x2=x1+L联立并代入数据得x1=30 m,x2=36 m若释放鸟蛤时的初速度为v2=17 m/s,设击中岩石左端时,释放点的x坐标为x′1,击中岩石右端时,释放点的x坐标为x′2,则有x′1=v2t,x′2=x′1+L联立并代入数据得x′1=34 m,x′2=40 m综上得x坐标范围为[34 m,36 m].。
2016届《创新设计》高考物理(浙江专用)大一轮复习精讲课件:第4章 曲线运动-1

【例 3】 (2014·四川卷)有一条两岸平直、河水均匀流动、流
速恒为 v 的大河。小明驾着小船渡河,去程时船头指向始 终与河岸垂直,回程时行驶路线与河岸垂直。去程与回程
所用时间的比值为 k,船在静水中的速度大小相同,则小
船在静水中的速度大小为
()
kv A. k2-1
v B. 1-k2
kv C. 1-k2
点的 切线方向 。 2.运动的性质:做曲线运动的物体,速度的 方向 时刻在
改变,所以曲线运动一定是 变速 运动。
3.曲线运动的条件
知识点二、运动的合成与分解
1.基本概念 (1)运动的合成:已知 分运动求合运动。
(2)运动的分解:已知 合运动求分运动。 2.分解原则:根据运动的 实际效果
分解,也可采
解析 若Fy=Fxtan α,则Fx和Fy的合力F与v在同一直线上, 此时质点做直线运动。若Fx>Fycot α,则Fx、Fy的合力F与x 轴正方向的夹角β<α,则质点向x轴一侧做曲线运动,故正 确选项为D。 答案 D
题组二 运动的合成与分解
3. (多选)跳伞表演是人们普遍喜欢的观赏性
体育项目,如图2所示,当运动员从直升
【例2】 有一个质量为2 kg的质点在x-y平面上运动,在x
方向的速度图象和y方向的位移图象分别如图6甲、乙所
示,下列说法正确的是
()
图6 A.质点所受的合外力为3 N B.质点的初速度为3 m/s C.质点做匀变速直线运动 D.质点初速度的方向与合外力的方向垂直
解析 由题图乙可知,质点在 y 方向上做匀速运动,vy=xt =4 m/s,在 x 方向上做匀加速直线运动,a=ΔΔvt =1.5 m/s2,故质 点所受合外力 F=ma=3 N,A 正确;
高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

解析:工件同时参与了水平向右的匀速运动和竖直方向的匀速 运动,水平和竖直方向的速度都不变,根据矢量合成的平行四 边形法则,合速度大小和方向均不变。
考点一 物体做曲线运动的条件及轨迹分析
1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方 向不共线。 2.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变。 (2)变加速曲线运动:合力(加速度)变化。 3.合外力方向与轨迹的关系:物体做曲线运动的轨迹一定夹 在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的“凹”侧。
[解析] (1)小船参与了两个分运动,即船随水漂流的运动和船在 静水中的运动。因为分运动之间具有独立性和等时性,故小船
渡河的时间等于垂直于河岸方向的分运动的时间,即
t
=d= v船
200 4
s=50 s。小船沿水流方向的位移 s 水=v 水t=2×50 m=100 m,
即船将在正对岸下游 100 m 处靠岸。
小船渡河的时间为
t=v船sdin
,当 θ
θ=90°,即船头与河岸垂直时,
渡河时间最短,最短时间为 tmin=50 s。
(4)因为 v 船=3 m/s<v 水=5 m/s,所以船不
可能垂直于河岸横渡,不论航向如何,总
被水流冲向下游。如图丙所示,设船头(v 船)
与上游河岸成 θ 角,合速度 v 与下游河岸成
考点三 运动分解中的两类模型
1.小船渡河模型 渡河时 间最短
当船头方向垂直于河岸时,渡河时间最短, 最短时间 tmin=vd船
渡河位 移最短
如果 v 船>v 水,当船头方向与上游夹角 θ 满 足 v 船 cos θ=v 水时,合速度垂直于河岸,渡 河位移最短,等于河宽 d 如果 v 船<v 水,当船头方向(即 v 船方向)与合 速度方向垂直时,渡河位移最短,等于dv水
届《创新设计》高考物理(浙江专用)大一轮复习精讲课件实验 验证机械能守恒定律

图4
要热点整聚合焦
(3)该小组内同学们根据纸带算出了相应点的速度,作出 v2-h图线如图5所示,请根据图线计算出当地的重力加 速度g=________m/s2(结果保留两位有效数字)。
图5
要热点整聚合焦
解析 (1)甲,理由是:采用乙图实验时,由于小车和斜面间存 在摩擦力的作用,且不能忽略,所以小车在下滑过程中机械能 不守恒,故乙图不能用来验证机械能守恒定律。 (2)vB=A2TC=1.37 m/s; (3)因为 mgh=12mv2,所以 v2=2gh,图线的斜率是 2g,可得 g=9.7 m/s2 或 g=9.8 m/s2。
要热点整聚合焦
(2)重力势能减少量为 ΔEp=mghOB=0.867 J;打 B 点时重物的
速度为
vB
=
xOC-xOA 2T
,
打
B
点时重物的动能为
ΔEkB
=
1 2
m(xOC2-TxOA)2=0.852 J,可见在误差允许的范围内,重物下落
时机械能守恒。
要热点整聚合焦
答案 (1)①大 > ②天平 ③甲 图乙中还受到细线与滑 轮的阻力的影响 (2)0.867 0.852 在误差允许的范围内, 重物下落时机械能守恒
大家好
1
实验六 验证机械能守恒定律
要热点整聚合焦
要热点整聚合焦
误差分析 1.减小测量误差:一是测下落距离时都从 0 点量起,一次将
各打点对应下落高度测量完,二是多测几次取平均值。 2.误差来源:由于重物和纸带下落过程中要克服阻力做功,
故动能的增加量 ΔEk=12mv2n必定稍小于重力势能的减少量 ΔEp=mghn,改进办法是调整器材的安装,尽可能地减小阻 力。
【变式训练】 2.某同学利用如图8所示的气垫导轨装置验证系统机械能守
(全国通用)高三物理一轮复习 第四章 曲线运动 万有引力与航天 第4节 万有引力定律及其应用课时跟踪

万有引力定律与其应用对点训练:开普勒行星运动定律与万有引力定律1.(2016·某某黄浦区期末)关于万有引力定律,如下说法正确的答案是( ) A .牛顿提出了万有引力定律,并测定了引力常量的数值 B .万有引力定律只适用于天体之间C .万有引力的发现,揭示了自然界一种根本相互作用的规律D .地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是一样的解析:选C 牛顿提出了万有引力定律,卡文迪许测定了引力常量的数值,万有引力定律适用于任何物体之间,万有引力的发现,揭示了自然界一种根本相互作用的规律,选项A 、B 错误C 正确;地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是不一样的,选项D 错误。
2.对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 关系作出如图1所示图像,如此可求得地球质量为(引力常量为G )( )图1A .4π2a Gb B .4π2bGaC .Ga4π2b D .Gb4π2a解析:选A 由GMm r 2=m 4π2T 2·r 可得r 3T 2=GM 4π2,结合图线可得,a b =GM 4π2,故M =4π2aGb,A正确。
3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力的( )A .0.25倍B .0.5倍C .2.0倍D .4.0倍解析:选C 由F 引=GMm r2=12GM 0m ⎝ ⎛⎭⎪⎫r 022=2GM 0mr 02=2F 地,故C 项正确。
4.(2016·福州二模)北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统将由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中地球轨道和倾斜轨道。
高考物理一轮复习 第四章 曲线运动 万有引力定律(第4课时)课时作业(含解析)-人教版高三全册物理试

课时作业【根底练习】一、天体质量的估算1.(多项选择)我国将于2017年11月发射“嫦娥五号〞探测器,假设“嫦娥五号〞到达月球后,先绕月球外表做匀速圆周运动,然后择机释放登陆器登陆月球.“嫦娥五号〞绕月球飞行的过程中,在较短时间t 内运动的弧长为s ,月球半径为R ,引力常量为G ,如此如下说法正确的答案是( )A .“嫦娥五号〞绕月球运行一周的时间是πRtsB .“嫦娥五号〞的质量为s 2R Gt2C .“嫦娥五号〞绕月球运行的向心加速度为s 2t 2RD .月球的平均密度为3s24πGR 2t2CD 解析:因绕月球外表做匀速圆周运动的“嫦娥五号〞在较短时间t 内运动的弧长为s ,可知其线速度为v =st,所以其运行一周的时间为T =2πRts,选项A 错误;天体运动中只能估算中心天体质量而无法估算环绕天体质量,选项B 错误;由a =v 2R 知a =s 2t 2R,选项C 正确;根据万有引力提供向心力有G Mm R 2=m v 2R ,再结合M =ρ·43πR 3可得ρ=3s24πGR 2t2,选项D 正确. 2.(2018漯河二模)宇航员站在某一星球外表h 高处,以初速度v 0沿水平方向抛出一个小球,经过时间t 后小球落到星球外表,该星球的半径为R ,引力常量为G ,如此该星球的质量为( )A.2hR2Gt 2B.2hR2GtC.2hRGt2D.Gt 22hR2 A 解析:设该星球的质量为M 、外表的重力加速度为g ,在星球外表有mg =GMmR 2,小球在星球外表做平抛运动,如此h =12gt 2.由此得该星球的质量为M =2hR2Gt2.二、卫星运行参量的分析与计算3.(2015山东理综)如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以一样的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1,a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的答案是( )A .a 2>a 3>a 1B .a 2>a 1>a 3C .a 3>a 1>a 2D .a 3>a 2>a 1D 解析:地球同步卫星受月球引力可以忽略不计,地球同步卫星轨道半径r 3、空间站轨道半径r 1、月球轨道半径r 2之间的关系为r 2>r 1>r 3,由GMm r 2=ma 知,a 3=GM r 23,a 2=GMr 22,所以a 3>a 2;由题意知空间站与月球周期相等,由a =(2πT)2r ,得a 2>a 1.因此a 3>a 2>a 1,D 正确.4.(2014浙江理综)长期以来“卡戎星(Charon)〞被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,如此它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天B 解析:由开普勒第三定律可知r 31T 21=r 32T 22,得出T 2=r 32T 21r 31=〔4.8×107〕3×6.392〔1.96×107〕3天≈25天,应当选项B 正确.5.(2017广东华南三校联考,19)(多项选择)石墨烯是目前世界上的强度最高的材料,它的发现使“太空电梯〞的制造成为可能,人类将有望通过“太空电梯〞进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低本钱发射绕地人造卫星.如下列图,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比拟( )A .B 的线速度大于C 的线速度 B .B 的线速度小于C 的线速度C .假设B 突然脱离电梯,B 将做离心运动D .假设B 突然脱离电梯,B 将做近心运动BD 解析:A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,如此ωC >ωB ,又据v =ωr ,r C=r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有GMm C r 2C =m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B>m B ω2B r B ,假设B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.6.(2014江苏卷,2)地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,如此航天器在火星外表附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/sA 解析:由万有引力提供向心力可得:G Mm r 2=m v 2r,在行星外表运行时有r =R ,如此得v=GMR ∝M R ,因此v 火v 地=M 火M 地×R 地R 火 =110×2=55,又由v 地=7.9 km/s ,故v 火≈3.5 km/s ,应当选A 正确.三、卫星变轨问题分析7.(2017湖南长沙三月模拟,20)(多项选择)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空〞的暗物质探测卫星.“悟空〞在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,如此如下说法中正确的答案是( )A .“悟空〞的线速度大于第一宇宙速度B .“悟空〞的向心加速度大于地球同步卫星的向心加速度C .“悟空〞的环绕周期为2πtβD. “悟空〞的质量为s 3Gt 2βBC 解析:“悟空〞的线速度小于第一宇宙速度,A 错误.向心加速度a =GM r2,因r 悟空<r同,如此a 悟空>a 同,B 正确.由ω=βt =2πT ,得“悟空〞的环绕周期T =2πtβ,C 项正确.由题给条件不能求出悟空的质量,D 错误.关键点拨 第一宇宙速度是卫星最小的发射速度,是最大的环绕速度.卫星做匀速圆周运动时ω=2πT =βt.8.(2019哈尔滨师范大学附中)卫星 信号需要通过地球同步卫星传送,地球半径为r ,无线电信号传播速度为c ,月球绕地球运动的轨道半径为60r ,运行周期为27天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.做平抛运动的物体,在任何相等的时间内位移的增量
都是相等的
D.平抛运动是加速度大小、方向不变的曲线运动
强基固本
考点突破
解析
平抛运动可分解为水平方向的匀速直线运动和竖直方 2h g ,落地速度为 v =
向的自由落体运动,且落地时间 t=
2 2 v2 + v = v x y 0+2gh,所以 B 项正确,A 项错误;做平抛运动
强基固本
考点突破
4.研究方法:平抛运动可以分解为水平方向的 匀速直线 运 动和竖直方向的 自由落体 运动。
5.基本规律(如图1所示)
图1
强基固本 考点突破
位移关系
速度关系
强基固本
考点突破
知识点二、斜抛运动 1.定义:将物体以初速度v0沿 斜向上方 或 物体只在 迹是 抛物线 重力 作用下的运动。 重力加速度g 的匀变速曲线运动,轨 。 斜向下方 抛出,
C.初速度大小不变,降低抛出点高度
D.初速度大小不变,增大抛出点高度
强基固本 考点突破
解析 v0
为能把小球抛进桶中,须减小水平位移,由 x=v0t= 2h g 知,选项 A、C 正确。
答案
AC
强基固本
考点突破
题组二
平抛运动规律的应用
3. (多选)a、b两个物体做平抛运动的轨迹
如图3所示,设它们抛出的初速度分别
强基固本
考点突破
所示,
装甲车在水平地面上以速度v0=20 m/s 沿直线前进,车上机枪的枪管水平,距 地面高为h=1.8 m。在车正前方竖直立 图6
一块高为两米的长方形靶,其底边与地面接触。枪口与
靶距离为L时,机枪手正对靶射出第一发子弹,子弹相 对于枪口的初速度为v=800 m/s。在子弹射出的同时, 装甲车开始匀减速运动,行进s=90 m后停下。装甲车 停下后,机枪手以相同方式射出第二发子弹。(不计空
强基固本
考点突破
4.两个重要推论 (1)做平抛(或类平抛)运动的物体任
一时刻的瞬时速度的反向延长线一
定通过此时水平位移的中点,如图 5所示。 (2)做平抛(或类平抛)运动的物体在 图5 任一时刻,设其速度方向与水平方向的夹角为 θ,位移与
水平方向的夹角为α,则tan θ=2tan α。如图5所示。
气阻力,子弹看成质点,重力加速度g=10 m/s2)
强基固本 考点突破
(1)求装甲车匀减速运动时的加速度大小; (2) 当L= 410 m 时,求第一发子弹的弹孔离地的高度,并计 算靶上两个弹孔之间的距离;
(3)若靶上只有一个弹孔,求L的范围。
强基固本
考点突破
解析
(1)以装甲车为研究对象,
2 v 20 0 2 2 由 v -v0=2ax 得:a= = m/s2 2s 9
B.1∶ 2∶ 3 D.1∶1∶1
强基固本
考点突破
1 2 解析 由平抛运动的规律可知竖直方向上:h= gt ,水平方向 2 上:x=v0t,两式联立解得 v0=x g 1 ,知 v0∝ 。由于 2h h
hA=3h,hB=2h,hC=h,代入上式可知选项 A 正确。
答案
A
强基固本
考点突破
考点一
平抛运动规律的应用 2h g 知,时间取决于下落高度 h,与初速
为va、vb,从抛出至碰到台上的时间 分别为ta、tb,则 A.va>vb B.va<vb 图4 ( )
C.ta>tb
D.ta<tb
强基固本
考点突破
解析
1 2 由题图知,hb>ha,因为 h= gt ,所以 ta<tb,又因为 2
x=v0t,且 xa>xb,所以 va>vb,选项 A、D 正确。
答案
AD
强基固本
考点突破
4.如图 4 所示,P 是水平地面上的一点,A、B、 C、D 在同一条竖直线上,且 AB=BC=CD。 从 A、B、C 三点分别水平抛出一个物体,这 三个物体都落在水平地面上的 P 点。则三个 物体抛出时的速度大小之比 vA∶vB∶vC 为
图4
( )
A. 2∶ 3∶ 6 C.1∶2∶3
(2)子弹在空中的运动是平抛运动, L 410 水平方向:t1= = s=0.5 s v+v0 800+20 1 2 竖直方向:弹孔离地的高度:h1=h- gt1=0.55 m 2 1 L-s 2 第二发子弹的弹孔离地的高度 h2=h- g( v ) =1.0 m 2 两弹孔之间的距离 Δh=h2-h1=0.45 m。
的物体,在任何相等的时间内,其竖直方向位移增量 Δy=gt2, 水平方向位移不变,故 C 项错误;平抛运动的物体只受重力作 用,其加速度为重力加速度,故 D 项正确。
答案
BD
强基固本
考点突破
2. (多选)(2014·惠州模拟)某人向放在水平地 面上正前方的小桶中水平抛球,结果球划 着一条弧线飞到小桶的前方,如图2所示。 图2 不计空气阻力,为了能把小球抛进小桶中,则下次再水平 抛球时,可能做出的调整为 ( A.减小初速度,抛出点高度不变 B.增大初速度,抛出点高度不变 )
2.性质:加速度为
3.研究方法:斜抛运动可以看做水平方向的 匀速直线 运 动和竖直方向的 匀变速直线 运动的合运动。
强基固本
考点突破
思维深化
判断正误,正确的画“√”,错误的画“×”。 (1)做平抛运动的物体、在任意相等的时间内速度的变化相同。 ( (2)做平抛运动的物体初速度越大,在空中运动时间越长。 ( ) )
1.飞行时间:由 t= 度 v0 无关。
2.水平射程:x=v0t=v0
2h g ,即水平射程由初速度 v0 和下
落高度 h 共同决定,与其他因素无关。
强基固本
考点突破
2 2 3.落地速度:v= vx +v2 y = v0+2gh,以 θ 表示落地速度与
vy 2gh x 轴正方向间的夹角,有 tan θ=v = ,所以落地速度 v x 0 只与初速度 v0 和下落高度 h 有关。
第2课时 平抛运动
强基固本
考点突破
[知 识 梳 理 ]
知识点一、平抛运动 1.定义:以一定的初速度沿水平方向抛出的物体只在 重力 作用下的运动。 2.性质:平抛运动是加速度为g的 匀加速 曲线运动,其运
动轨迹是 抛物线 。
3.平抛运动的条件:(1)v0≠0,沿 水平方向; (2)只受 重力 作用。
(3)从同一高度水平抛出的物体,不计空气阻力,初速度越大,
落地速度越大。
答案 (1)√ (2)× (3)√
(
)
强基固本
考点突破
[题 组 自 测 ]
题组一
对平抛运动的理解
( )
1.(多选)对于平抛运动,下列说法正确的是
A.落地时间和落地时的速度只与抛出点的高度有关 B.平抛运动可以分解为水平方向的匀速直线运动和竖直 方向的自由落体运动