测光速实验报告

合集下载

光速测量调制法实验报告

光速测量调制法实验报告

竭诚为您提供优质文档/双击可除光速测量调制法实验报告篇一:激光光速测量实验报告综合物理实验实验报告实验名称:激光光速的测定系别专业班号实验日期20XX年5日姓名学号交报告日期20XX年6月1日实验仪器:he-ne激光器及电源适配器,实验基台,透镜及反射平面镜,光接收器,示波器及函数发生器,30米卷尺及平板小车,连接电缆若干实验简介利用函数信号发生器,调整激光器输出为高频周期脉冲方波信号,等距改变激光传输光程并用光接收器接收反射信号,利用示波器便可以测定光速。

理论基础在自由空间内光的速度是一个重要而有趣的自然常数,光源的速度与观察者的相对速度无关,且有以下规律1.光的速度,是宇宙见任何事物速度的上限2移动物体接近光速,遵循一套物理原则,不符合牛顿定律且超过了我们的直觉假设。

实验预备1.准备了光接收器和红光激光器2.在实验基台上,依次放置好激光器,透镜和光接收器,并将反射平面镜放置在另外一个平板小车上。

3.反射平面镜放置的平板小车须有10—20m活动空间。

4.调整平面镜垂直及水平,使反射光和入射光在同一水平高度。

5.使用bnc同轴线缆连接TTL与示波器通道1,使用RcA-bnc线缆连接光接收器与示波器通道2,使用3.5mm耳机线-bnc线缆连接激光器电源与函数发生器输出接口。

6.设置函数发生器为方波,频率设置-3mhZ,调节函数发生器的直流输出和偏移,直至激光器亮度始终为止。

7.调节示波器参数,调整示波器时间轴为25ns/div实验内容1.调整激光反射镜透镜位置和接收器,使信号最大化。

2.在示波器上,调整信号以最大限度的显(:光速测量调制法实验报告)示显示信号变化。

注意测量全程不要更改示踪的水平位置。

3.记录的反射镜的位置d和示波器信号的相位差T4.改变反射镜位置,并重复上述步骤,至少采集7个数据点以上。

实验结果得|m|=0.302m/ns,则通过实验所测得的光速c=3.02*108m/s。

相对误差为(c-c0)/c=0.67%。

光速测量实验报告

光速测量实验报告

光速测量实验报告引言:在物理学的世界中,光速被视为一个至关重要的常数。

然而,要准确测量光速并非易事。

本实验旨在通过一种简化的方法来测量光速,并深入探讨光的本质特征。

通过对实验结果的分析,将给出一个关于光速的精准测量结果。

实验方法:本实验采用远距离测量的方式,以确保实验结果的准确性。

我们选择了一个开阔的场地,在两端间设置了固定的测量点A和B。

测量点之间的距离D被精确测量,并作为后续计算的基础。

实验中,我们使用了一台高精度计时器,并将其置于A点和B 点。

器材的定位、校正是本实验中的关键环节。

我们确保两个计时器正好位于A点和B点,并且保证时钟的同步性。

仅保持实验过程中达到的这种直线状态,才能保证数据的准确性。

实验进行时,通过激光在两个点之间发出光脉冲,计时器将捕捉到光脉冲离开发射点和到达接收点之间所经历的时间,即Δt。

同时,我们也通过一个高精度计时器记录下了激光发射瞬间的时间T。

实验结果:经过多次实验,我们得到了一系列真实可靠的测量数据。

将这些数据代入计算公式:光速= D/Δt,我们得到了一组光速的初步测量结果。

然而,我们意识到仅凭初步测量并不能得出最精确的结果。

因此,我们需要对实验结果进行进一步的分析和去除异常值,以获得更加准确的测量结果。

数据分析:首先,我们首先对实验中可能存在的误差进行了全面的分析。

光在空气中的传播速度可能受大气温度和湿度的影响,因此我们在实验时对这些环境因素进行了详细记录,并保证每次实验条件的一致性。

其次,我们对测量结果进行了统计学处理。

通过计算平均值、方差和标准差,我们能够获得数据的分布特征,并确定是否存在异常值。

通过去除异常值,我们可以得到更真实可信的测量结果。

深入探讨:通过对实验结果的详细分析,我们了解到光速度既是具有粒子性特征的粒子,也具有波动性质。

这一发现引发了对光的本质特性的更深入探讨。

在实验过程中,我们亲眼目睹并测量到光的运动速度的极大;在实验中将光脉冲分解成分波,能够看到波动的粒子(也称为光子)以极高速度在空间中传播。

光导纤维中光速的实验测定实验报告

光导纤维中光速的实验测定实验报告

光导纤维中光速的实验测定实验报告光导纤维中光速的测定光导纤维中光速的测定【目的要求】1. 学习光纤中光速测定的基本原理2. 了解数字信号电光/光电变换及再生原理3. 熟悉数字相位检测器原理、特性测试方法4. 掌握光纤光速测定系统的调试技术【仪器设备】1.OFE—A型光纤传输及光电技术综合实验仪一套2.双迹示波器一台【实验原理】光纤中光速的测定是一个十分有趣的实验,通过这一实验能使学生亲身感受到光在介质中传播的真实物理过程和深刻了解介质折射率的物理意义。

在通常的光纤光速测量系统中,对被测光波均采用正弦信号对光强进行调制。

在此情况下,为了测出调制光信号通过一定长度光纤后引起的相位差,必须采用较为复杂的由模拟乘法电路及低通滤波器组成的相位检测器,这种相位检测电路的输出电压不仅与两路输入信号的相位差有关,而且也与两路输入信号幅值有关。

这里提出一种采用方波调制信号,应用具有异或逻辑功能的门电路进行相差测量的巧妙方法。

由这种电路所组成的相位检测器结构简单、工作可靠、相位——电压特性稳定。

在光纤折射率n1已知(或近似为1.5)的情况下,利用这种方法还可测定光纤长度。

一、光导纤维的结构如图1示,它由纤芯和包层两部分组成,纤芯半径为α,折射率为n(p),包层的光纤传光原理及光在光纤中的速度学的角度考虑,光波实际上是一种振荡频率很高的电磁波,当光波在光导纤维中传播时,光导纤维就起着一种光波导的作用。

应用电磁场理论中E矢量和H矢量应遵从的麦克士威尔方程及它们在芯纤和包层面处应满足的边界条件可知:在光导纤维中主要存在着两大类电磁场形态。

一类是沿光纤横载面呈驻波状,而沿光导纤维轴线方向为行波的电磁场形态,这种形态的电磁场其能量沿横向不会辐射,只沿轴线方向传播,故称这类电磁场形态为传导模式;另一类电磁场形态其能量在轴线方向传播的同时沿横向方向也有辐射,这类电磁场形态称为辐射模。

利用光导纤维来传输光信息时就是依靠光纤中的传导模式。

光拍法测光的速度实验报告

光拍法测光的速度实验报告

光拍法测光的速度一、 [摘要]本实验通过声光效应产生光拍频波,利用双光束相位比较法,通过测量出近程光和远程光的光程差从而求出光速。

试验中,我们通过以扫描干涉仪的自由标准区作为标准,测量出0级、1级、2级衍射光的纵模分裂间距,并最终利用光程差标定拍频波波长,最终得到光速。

[关键词]声光效应 光速 纵模分裂 双光束位相法二、 [引言]光速是最近本的物理常数之一,光速的精确测定及其特性的研究与近代物理学和实验技术的许多问题重大问题关系密切。

早在麦克斯韦光的电磁理论建立以前,人们已有了光具有一定传播速度的概念。

迈克尔逊和他的同事们在1879-1935年期间,对光速作了多次系统的测量。

实验结果不仅验证了光是电磁波,而且为深入地了解光的本性和为建立新的物理原理提供了宝贵的资料。

而1960年激光的出现以后,把光速的测量推向一个新阶段。

1972年美国标准局埃文森等人测量了甲烷稳频激光的频率,又以原子的基准波长测定了该激光的波长值,从而得到光速的新数值c=299792458m/s ,不确定度为410-9。

此值为1975年第十五届国际计量大会所确认。

本实验采用光拍法测定光速,通过实验使大家加深了对光拍频波的的概念的理解,了解了声光效应的原理及驻波法产生声光频移的实验条件和实验特点,掌握了光拍法测量光速的技术。

三、 [实验原理]1、光拍频波根据波的叠加原理,两束传播方向相同、频率相差很小的简谐波相叠加,将会形成拍。

对于振幅都为圆频率分别为和,且传播方向相同的两束单色光四、⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=1101cos ϕωc x t E E (1) 五、⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=2202cos ϕωc x t E E (2) 它们的叠加为⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛--=+=22cos 22cos 221212121021ϕϕωωϕϕωωc x t c x t E E E E (3)当21ωω>,且21ωωω-=∆较小,合成E的光波带有低频调制的高频波,振幅为⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛--22cos 2121ϕϕωωc x t ,角频率为221ωω-。

光速测定实验报告

光速测定实验报告

光速测定实验报告光速测定实验报告引言:光速是自然界中最基本的物理常数之一,它在科学研究和日常生活中都扮演着重要的角色。

为了准确测定光速,我们进行了一系列实验,并在本报告中对实验过程和结果进行详细阐述。

实验目的:本实验的主要目的是通过测定光在空气中的传播速度,来计算出光速的近似值。

通过实验,我们希望进一步了解光的传播特性以及相关的物理原理。

实验装置:我们使用了一套简单的实验装置,包括激光器、光电传感器、计时器等。

激光器产生的光束经过一块透明介质,然后被光电传感器接收并转化为电信号,计时器记录下光束从发射到接收的时间。

实验步骤:1. 首先,我们将激光器固定在一个稳定的支架上,并将光电传感器放置在一定距离的位置上。

2. 接下来,我们将透明介质放置在激光器和光电传感器之间,确保光束能够顺利通过。

3. 启动激光器并开始计时,记录下光束从发射到接收的时间。

4. 重复实验多次,取平均值以提高测量的准确性。

实验结果:经过多次实验和数据处理,我们得到了光速的近似值为299,792,458米每秒。

这个数值与国际上公认的光速值非常接近,验证了我们实验的准确性。

讨论与分析:在实验过程中,我们发现光速的测定受到了一些因素的影响。

首先,透明介质的折射率对光速的测定有一定的影响。

由于空气中的折射率很接近于1,我们可以忽略这个影响因素。

其次,光电传感器的响应速度也会对测定结果产生一定的影响。

在实验中,我们选择了响应速度较快的光电传感器,以尽量减小这个误差。

此外,在实验中还存在一些潜在的误差源,如人为操作误差、仪器精度等。

为了提高测量的准确性,我们在实验中进行了多次重复,并取平均值来减小误差的影响。

结论:通过本次实验,我们成功地测定了光速的近似值,并验证了实验的准确性。

光速作为一个重要的物理常数,对于科学研究和技术应用都具有重要意义。

我们希望通过这次实验,能够进一步加深对光速和光的传播特性的理解,为未来的科学研究和应用提供有力支持。

光速的测定实验报告

光速的测定实验报告
二、实验使用仪器与材料
三棱镜、DHLV-1光速测定仪(激光接收头、测量信号输出、参考信号输出、59.9MHZ信号输出、60MHZ调制信号输出、60MHZ光电接收信号输出)
三பைடு நூலகம்实验步骤
1、连接实验线路。参考信号输出接示波器通道1,测量信号输出接示波器通道2。
2、设置示波器。通道1为触发信号,过零触发。
四、实验数据整理与归纳(数据、图表、计算等)
测量一定间距的时间差
1
2
3
间距(cm)
21
47.2
71.3
时间差(us)
1
1
1
计算光速:
五、实验结果与分析
通过本次实验,测出的光速值与实际值很接近,误差为0.6%,实验中存在的误差可能是用示波器读时间差时存在读数误差,时间差不能很好地控制1us。
六、实验心得
班别
姓名
专业名称
学号
实验课程名称
近代物理实验
实验项目名称
光速的测定
实验时间
实验地点
实验成绩
指导老师签名
内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验结果与分析、实验心得
一、实验目的
1、掌握DHLV-1光速测定仪的工作原理。
2、学会用DHLV-1光速测定仪测量光速。
3、调节光路,棱镜全程滑动时,反射光完全射入接收头,从示波器上观察测量信号全程幅度变化小于0.5V。一般情况调节棱镜仰角便可将光路调合适,某些情况下还要调节发射接收头的盒子(其位置受强力撞击而变化)。
4、用示波器测量一定距离的时间差,计算光速。
5、建议用频率计测量参考信号和测量信号的频率,因为品振是有误差的,得到的100K信号往往有近1%的误差,这样的话用实测频率就会减小测量误差。

光强调制法测光速实验报告(附数据分析处理)

光强调制法测光速实验报告(附数据分析处理)

光强调制法测光速一、实验简介光速是物理学中最重要的基本常数之一,也是所有各种频率的电磁波在真空中的传播速度。

历史上光速测量方法可以分为天文学测量方法、大地测量方法和实验室测量方法等。

1607 年伽利略最早提出大地测量方法来测量光速。

1676 年,丹麦天文学家罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速。

1728年,英国天文学家布莱德雷( 1693—1762) 采用恒星的光行差法测量了光速,这些是天文学测定的方法。

1849 年,法国人菲索第一次在地面上设计转齿轮装置测定光速。

1850 年,法国物理学家傅科设计了转镜法测出的光速是298000千米/ 秒。

另外傅科还测出了光在水中的传播速度,它小于光在空气中的速度,彻底否定了光的经典微粒说。

1928 年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。

1951 年,贝奇斯传德用这种方法测出的光速是299793千米/ 秒。

二、实验仪器光强调制法测光速实验装置包括:光速测定仪、示波器、信号发生器、透镜2 个、直角反光镜、1 米长的水管。

三、实验原理可见光的频率为1014HZ的数量级,超出了所有仪器的响应。

在本实验中光源是发光二极管。

用50 兆赫兹的高频正弦电压信号将光的强度进行调制,对强度调制光检波后就得到周期大大扩展了的电子学信号。

发光二极管所发红光在仪器内调制后,分为两路,一束输入到双踪示波器的X 通道;另一束从出射孔射出,见图1。

出射光经过直角反射镜改变传播方向,从接收孔又进入到仪器内,输入到示波器的Y 通道。

这二个频率相同的强度调制波信号在示波器内相干,屏幕上得到李萨如图形。

一般而言,这种图形是椭圆。

如果两种信号之间的相位差为0 或π,李萨如图形为直线。

对应于相位差为0 和为π 的这两条直线应有不同方向,一个在一、三象限,另一个在二、四象限。

这两束调制信号之间的相位差与出射光在空气中传播的距离有关。

如果直角反射镜靠近出射孔时,两束信号之间的相位差相等(可通过调节仪器上的相位旋钮做到),示波器上得到一条直线。

光强调制法测光速实验报告(附数据分析处理)

光强调制法测光速实验报告(附数据分析处理)

光强调制法测光速一、实验简介光速是物理学中最重要的基本常数之一,也是所有各种频率的电磁波在真空中的传播速度。

历史上光速测量方法可以分为天文学测量方法、大地测量方法和实验室测量方法等。

1607年伽利略最早提出大地测量方法来测量光速。

1676年,丹麦天文学家罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速。

1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法测量了光速,这些是天文学测定的方法。

1849年,法国人菲索第一次在地面上设计转齿轮装置测定光速。

1850年,法国物理学家傅科设计了转镜法测出的光速是298000千米/秒。

另外傅科还测出了光在水中的传播速度,它小于光在空气中的速度,彻底否定了光的经典微粒说。

1928年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。

1951年,贝奇斯传德用这种方法测出的光速是299793千米/秒。

二、实验仪器光强调制法测光速实验装置包括:光速测定仪、示波器、信号发生器、透镜2个、直角反光镜、1米长的水管。

三、实验原理可见光的频率为1014HZ的数量级,超出了所有仪器的响应。

在本实验中光源是发光二极管。

用50兆赫兹的高频正弦电压信号将光的强度进行调制,对强度调制光检波后就得到周期大大扩展了的电子学信号。

发光二极管所发红光在仪器内调制后,分为两路,一束输入到双踪示波器的X通道;另一束从出射孔射出,见图1。

出射光经过直角反射镜改变传播方向,从接收孔又进入到仪器内,输入到示波器的Y通道。

这二个频率相同的强度调制波信号在示波器内相干,屏幕上得到李萨如图形。

一般而言,这种图形是椭圆。

如果两种信号之间的相位差为0或π,李萨如图形为直线。

对应于相位差为0和为π的这两条直线应有不同方向,一个在一、三象限,另一个在二、四象限。

这两束调制信号之间的相位差与出射光在空气中传播的距离有关。

如果直角反射镜靠近出射孔时,两束信号之间的相位差相等(可通过调节仪器上的相位旋钮做到),示波器上得到一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测光速实验报告
2.通过测量光拍的波长和频率来确定光速。

实验使用仪器: 光速测定仪、示波器和数字频率计等。

实验步骤: 1.观察实验装置,打开光速测定仪,示波器,数字频率计电开关。

2.调节高频信号的输出频率(15MHZ左右),使产生二级以上最强衍射光
斑。

3.用斩光器挡住远程光,调节全反射镜和半反镜,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上,这时,示波器上应有与近程光束相应的经分频的光拍波形出现。

4.用斩光器挡住近程光,调节半反镜、全反镜和正交反射镜组,经半反射镜与近程光同路入射到光电二极管的光敏面上,这时,示波器屏上应有与远程光光束相应的经分频的光拍波形出现。

5.示波器上这时有两列波出现,移动导轨上A的滑块,记下此时A的位置,然后移动滑块B,让两列波完全重合,记下滑块B的位置。

6.重复步骤5,然后再记下数据。

实验数据整理与归纳: 1.测量频率 1 2 3 4 测量信号频率 100.8K 100.8K 100.8K 100.8K 参考信号频率 100.8K 100.8K 100.8K 100.8K
T1=1/100.8KHz=9.92μS 2.测量一定间距的时间差 1 2 3 4 间距(cm) 160 160 160 160 时间差(μS) 3.18 3.12 3.14 3.08
△t1=(3.18+3.12+3.14+3.08)/4=3.13 3.计算光速
c=(△s/△t1) ?T1 ?f=(1.6/3.1310-6)9.9210-660106=3.04108m/s (f=60MHz) 实验结果与分析^p :从实验所得结果来看,总体还是令人满意的,测量的频率、间距的时间差和计算出的光速所得值与理论值相差不大,平均相对误差在正常值内。

实验心得:调节远程光是本实验的重点也是难点。

实验时只要把远程光调节好,实验也就成功了一半。

调节时一定要循序渐进,从光开始一步步的进行,直到示波器中出现了两条
1
正旋波为至。

实验时,切勿用手或其它污物接触光学表面,切勿带电触摸激光管电极等高压部位。

思考题答案: 1、“拍”是怎么形成的?它有什么特性?答;根据波的叠加原理,两束传播方向相同、频率相差很小的简谐波相叠加,将会形成拍 2、声光调制器是如何形成驻波衍射光栅的?什么叫声光效应?答;使声光介质的厚度为超声波半波长的整数倍,使超声波产生反射,在介质中形成驻波场,从而产生驻波衍射光栅;功率信号输出角频率为Ω的正弦信号加在频移器的晶体压电换能器上,超声波沿方向通过声光介质,使介质内产生应变,导致介质的折射率在空间和时间上发生周期性变化,形成一个相位光栅,使入射激光发生衍而传播方向,这种衍射光的频率产生了与超声波频率有关的频率移动这种现象叫声光效应。

2。

相关文档
最新文档