七上丰富的图形世界测试题及答案C
2022-2023学年北师大版七年级数学上册第1章 丰富的图形世界 单元测试卷含答案

北师大版七上丰富的图形世界单元测试(共23题,共100分)一、选择题(共10题,共30分)1.(3分)下列图形中,是棱柱的是A.B.C.D.2.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“新”字一面的相对面上的字是A.代B.中C.国D.梦3.(3分)用一个平面去截一个正方体,截面可能是A.七边形B.圆C.长方形D.圆锥4.(3分)下图中的几何体从上面看到的图是A.B.C.D.5.(3分)下列几何体中,是圆锥的为A.B.C.D.6.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是A.厉B.害C.了D.我7.(3分)用一个平面去截一个圆柱体,不可能的截面是A.B.C.D.8.(3分)如图是由个小正方体组成的立体图形,它的左视图是A .B .C .D .9. (3分)下面平面图形经过折叠不能围成正方体的是A .B .C .D .10. (3分)如图,已知是圆柱底面的直径,是圆柱的高,在圆柱的侧面上,过点 , 嵌有一圈路径最短的金属丝,现将圆柱侧面沿 剪开,所得的圆柱侧面展开图是A .B .C .D .二、填空题(共5题,共15分) 11. (3分)一个棱柱有 个顶点,所有侧棱长的和是,则每条侧棱长是.12. (3分)如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字 相对面上的数字是 .13. (3分)在如图所示的几何体中,其三视图中有三角形的是_________(填序号).14. (3分)将如图所示的展开图折叠成正方体,“你”对面的数字是 .15. (3分)在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递件如图所示,则这正方体快递件最多有 件.三、解答题(共8题,共55分)16. (6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.17. (6分)如图,在一个正方体的上面、前面、右面分别标有数字 ,,. 的对面标有数字 , 的对面标有数字 , 的对面标有数字 .(1) 求与数字所在平面垂直的面的数字之积.(2) 如果与一个面垂直的面上的数字之和是,那么这个面上的数字是多少?18.(6分)观察下面由个大小相同的小正方体组成的几何体,请分别画出从正面、上面、左面看得到的平面图形.19.(6分)由几个完全相同的小立方块搭成的几何体如图所示,请在下面方格纸中分别画出这个几何体从三个不同的方向(正面、左面和上面)看到的视图.20.(6分)一个几何体由若干个完全相同的小正方体组成,下图分别是从正面和上面看到的几何体的形状图.(1) 该几何体最少需要多少个小正方体?(2) 该几何体最多可以有多少个小正方体?21.(8分)回答下列问题.(1) 如图①,一个正方体纸盒的棱长为,将它的一些棱剪开展成一个平面图形,则这个平面图形的周长为.(2) 如图②,一个长方体纸盒的长、宽、高分别,,,将它的一些棱剪开展成一个平面图形,则这个平面图形的周长的最大值是.22.(8分)如图,左边是小颖的圆柱形笔筒,右边是小彬的六棱柱形笔筒.仔细观察两个笔筒,并回答下列问题:(1) 圆柱、六棱柱各由几个面组成?它们都是平的吗?(2) 圆柱的侧面与底面相交成几条线?它们是直的吗?(3) 六棱柱有几个顶点?经过每个顶点有几条棱?(4) 试写出圆柱与棱柱的相同点与不同点.23.(9分)做一做,回答下列问题:(1) 下图中左边的图形经过折叠能围成右边的棱柱吗?(2) 这个棱柱的上、下底面一样吗?它们各有几条边?(3) 这个棱柱有几个侧面?侧面的形状是什么图形?(4) 侧面的个数与底面图形的边数有什么关系?(5) 这个棱柱有几条侧棱?它们的长度之间有什么关系?答案一、选择题(共10题,共30分)1. 【答案】D【解析】A.是三棱锥,故A错误;B.是圆柱,故B错误;C.是圆锥,故C错误;D.是三棱柱,故D正确.【知识点】认识立体图形2. 【答案】D【解析】时与中是对面,代与国是对面,新与梦是对面.【知识点】正方体相对两个面上的文字3. 【答案】C【知识点】面截体4. 【答案】C【知识点】从不同方向看物体5. 【答案】B【知识点】认识立体图形6. 【答案】D【知识点】正方体的展开图7. 【答案】D【解析】用一个平面去截一个圆柱体,轴截面是矩形;过平行于上下底面的面去截可得到圆;过侧面且不平行于上下底面的面去截可得到椭圆;不可能的截面是等腰梯形.故选D.【知识点】面截体8. 【答案】B【知识点】从不同方向看物体9. 【答案】B【知识点】正方体的展开图10. 【答案】D【解析】因圆柱的展开面为长方形,展开应该是两直线,且有公共点.【知识点】圆柱的展开图二、填空题(共5题,共15分)11. 【答案】【解析】根据以上分析一个棱柱有个顶点,所以它是六棱柱,即有条侧棱,又因为所有侧棱长的和是,所以每条侧棱长是.故答案为.【知识点】认识立体图形12. 【答案】【知识点】正方体相对两个面上的文字13. 【答案】①【知识点】从不同方向看物体14. 【答案】【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”与“”是相对面,“好”与“”是相对面,“”与“”是相对面.【知识点】正方体相对两个面上的文字15. 【答案】【解析】最底一层、二层最多分别有件,第三层最多有件,最上面一层最多有件,故这正方体快递件最多件数为:(件).【知识点】从不同方向看物体三、解答题(共8题,共55分)16. 【答案】从正面和从左面看到的形状图如图所示:【知识点】由立体图形到视图17. 【答案】(1)(2) 或【知识点】正方体相对两个面上的文字18. 【答案】如图所示:【知识点】从不同方向看物体19. 【答案】画视图如图所示.【知识点】从不同方向看物体20. 【答案】(1) 个.(2) 个.【知识点】由视图到立体图形21. 【答案】(1)(2)【解析】(1) 因为正方体有个表面,条棱,要展成一个平面图形必须条棱连接,所以要剪(条)棱,则这个平面图形的周长为.(2) 由题意得,只需将最长的棱都剪开,最短的棱只剪一条即可得到周长最大的展开图形.如图所示,则这个平面图形的周长的最大值为.【知识点】直棱柱的展开图、正方体的展开图22. 【答案】(1) 圆柱有个面,六棱柱有个面,圆柱有两个平面,有一个曲面,六棱柱的个面都是平面.(2) 圆柱的侧面与底面相交形成两条线,它们都是曲线.(3) 六棱柱有个顶点,经过每个顶点有条棱.(4) 圆柱与棱柱的相同点:都是柱体;不同点:棱柱与圆柱的底面形状不同,棱柱的底面是多边形,而圆柱的底面是圆形;圆柱的侧面是曲面,而棱柱的侧面是四边形.【知识点】认识立体图形23. 【答案】(1) 上图中左边的图形经过折叠能围成右边的棱柱.(2) 棱柱的上、下底面一样,它们各有五条边.(3) 这个棱柱有五个侧面,侧面的形状是长方形.(4) 侧面的个数与底面图形的边数相等.(5) 这个棱柱有五条侧棱,它们的长度相等.【知识点】认识立体图形、直棱柱的展开图。
2024年北师大版七年级上册数学第一章综合检测试卷及答案

15.一个几何体从3个方向看到的形状图如图所示,则该几何体的侧面积是_______.(结果保留 )
三、解答题(共55分)
16.(7分)请你画出如图所示的几何体从正面、左面、上面看到的形状图.
解:
17.(7分)如图所示,给出了6个立体图形.找出图中具有相同特征的图形,并说明相同特征.
解:①③都是由六个面组成的,且六个面都是四边形;①③④的面都是平的;②⑤⑥都有一个面是曲的;②⑥至少有一个面是圆.
(1) 和 ;
解: , .
(2) 和 ;
[答案] , .
(3) 和 .
[答案] , .
D
A.从正面看到的形状图不同B.仅从上面看到的形状图相同C.仅从左面看到的形状图不同D.从正面、上面、左面看到的形状图都相同
二、填空题(每小题3分,共15分)
11.国扇文化有深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为__________.
19.(10分)如图所示的是某几何体的表面展开图.
(1)这个几何体的名称是______;
圆柱
(2)画出从三个方向看这个竖直放置的几何体的形状图;
解:
(3)求这个几何体的体积.
[答案] 这个几何体的体积为 .
20.(12分)如图是一个长为 、宽为 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1,图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.(结果保留 )
线动成面
12.在图中增加1个小正方形,使所得图形经过折叠能够围成一个正方体,在图中适合按要求加上小正方形的位置有___个.
4
13.一个几何体从正面看、从左面看、从上面看到的形状图如图所示,该几何体是________.
第一章《丰富的图形世界》单元检测试卷(C)及答案

第一章《丰富的图形世界》单元检测C一.选择题(共13小题)1.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()A.ﻩB.ﻩC.ﻩ D.2.(2015•眉山)下列四个图形中是正方体的平面展开图的是( )A.ﻩB.ﻩC. D.ﻩ3.(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.ﻩ C.ﻩD.4.(2015•吉林)如图,有一个正方体纸巾盒,它的平面展开图是()ﻩD.A.ﻩB.ﻩC.ﻩ5.(2015•聊城)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.梦B.水ﻩC.ﻩ城ﻩD. 美6.(2014•山东模拟)用一平面去截下列几何体,其截面可能是长方形的有()ﻩA.1个 B.ﻩ2个ﻩC.ﻩ3个D.ﻩ4个7.用一个平面去截一个正方体,截出截面不可能是( )ﻩA.三角形B.五边形 C. 六边形ﻩD.ﻩ七边形8.(2015•莱芜)下列几何体中,主视图和左视图都为矩形的是()ﻩA.B.ﻩC.ﻩD.9.(2015•湘潭)下面四个立体图形中,三视图完全相同的是()ﻩC.ﻩD.ﻩA.B.ﻩ10.(2015•德州)某几何体的三视图如图所示,则此几何体是()A.圆锥ﻩB.ﻩ圆柱 C.ﻩ长方体ﻩD.ﻩ四棱柱11.(2015•娄底)如图,正三棱柱的主视图为()A. B. C.ﻩD.ﻩ12.(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()ﻩA.ﻩB. C.或ﻩD.或13.(2015•茂名)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创 B. 教C.ﻩ强D.市二.填空题(共6小题)14.(2015•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号). 15.(2015•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.16.(2015•青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.17.(2015•随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.18.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有条.19.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为平方分米.三.解答题(共8小题)20.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.21.一个几何体的三视图如图,求这个几何体的侧面积?22.将图中的几何体进行分类,并说明理由.23.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?24.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.25.丰富的图形世界里有奇妙的数量关系,让我们通过下面这些几何体开始神奇的探索之旅.观察:下面这些几何体都是简单几何体,请你仔细观察.统计:每个几何体都会有棱(棱数为E)、面(面数为F)、顶点(顶点数为V),现将有关数据统计,完成下表.几何体abc de棱数(E)69 15面数(F) 4 55 6顶点数(V) 4 5 8发现:(1)简单几何中,V+F﹣E=;(2)简单几何中,每条棱都是个面的公共边;(3)在正方体中,每个顶点处有条棱,每条棱都有个顶点,所以有2×E=3×V.应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有条棱,个顶点,每个顶点处有条棱.26.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3= ,E3= ;五棱锥中,V5= ,F5=,E5= ;(2)猜想:①十棱锥中,V10= ,F10= ,E10=;②n棱锥中,V n=,F n= ,E n=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=; (4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.参考答案与试题解析一.选择题(共13小题)1.C.2.B.3. D4. B.5.A.6.C.7. D.8.B.9.B.10.B. 11.B.12. C.13. C.二.填空题(共6小题)14.①③④.15. 7.16.19,48.17.24.18. 4.19.33.三.解答题(共8小题)20.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴1与z相对,2与x相对,y与3相对,∵相对表面上所填的数互为倒数,∴x=,y=,z=1.21.解:根据三视图可得:这个几何体是圆柱,∵圆柱的直径为2,高为3,∴侧面积为2××2×3π=6π.答:这个几何体的侧面积是6π.22.解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体. 23.解:(1)它有6个面,2个底面,底面是梯形,侧面是长方形;(2)侧面的个数与底面多边形的边数相等都为4;(3)它的侧面积为20×8=160cm2.24.解:连线如下:25.解:(1)简单几何中,V+F﹣E=2;(2)简单几何中,每条棱都是2个面的公共边;(3)在正方体中,每个顶点处有3条棱,每条棱都有2个顶点,所以有2×E=3×V;应用:有一个叫“正十二面体”的简单几何体,它有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.请问它有30条棱,20个顶点,每个顶点处有3条棱,故答案为:2;3,2;30,20,3.26.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=5,F5=5,E5=8;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,F n=n+1,E n=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V=F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣E=2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E=2.故答案为:4,4,6;5,5,8;11,11,20;n+1,n+1,2n;V=F,V+F﹣E=2.。
第一章 丰富的图形世界 达标测试卷(含答案)北师大版(2024)数学七年级上册

第一章丰富的图形世界达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体为圆柱的是()A B C D2.图1是由5个相同的小立方块搭成的立体图形,从正面看它得到的形状图是()A B C D图1 图2 图33.下列图形绕虚线旋转一周能够得到图2所示的几何体的是()A B C D4. 把图3所示的三棱柱表面展开,得到的展开图可能是()A B C D5. 往图4所示的一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是()A.三角形B.正方形C.六边形D.七边形图4 图5 图66. 一个正方体的每个面上都有一个汉字,其展开图如图5所示,那么在该正方体中与“绿”字所在面的相对面上的汉字是()A.低B.碳C.发D.展7. 图6是由一些大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示该位置小立方块的个数,则该几何体从左面看到的形状图是()A B C D8.下列说法错误的是()A.若直棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.若一个棱柱有12个顶点,则这个棱柱的底面是八边形9. 已知一个不透明的正方体的六个面上分别写着1~6六个数字,如图7是我们能看到的三种情况,请你判断数字4对面上的数字是()A.6 B.3 C.2 D.1图7图810. 将图8所示的无盖正方体沿①、②、③、④边剪开后展开,则下列展开图的示意图正确的是()A B C D二、填空题(本大题共6小题,每小题3分,共18分)11. 用一个平面去截一个球,无论怎样切截,截面形状都是_______.12. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,这个现象用数学知识解释为______________.13. 如图9所示的几何体是由________个面围成,面与面相交成________条线,其中直的线有________条,曲线有________条.图9 图1014. 图10是由4个相同的棱长为1的小正方体组成的几何体,则从上面看它的平面图形的面积是______.15. 如图11是一些几何体的展开图,它们的几何体的名称从左到右依次是______________.图11 图1216.一个立体图形由若干个完全相同的小立方块搭成,如图12是分别从正面、左面、上面看这个立体图形得到的形状图.这个立体图形由 _____________个小立方块搭成.三、解答题(本大题共6小题,共52分)17.(6分)如图13所示是一个正六棱柱.(1)填写下表:(2)若该正六棱柱所有侧棱长的和为72 cm,底面的边长为5 cm,求该正六棱柱的所有侧面的面积和.图1318.(8分)如图14,小明同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中的阴影部分),但是由于疏忽少画了一个,请你给他补画一个,使之可以折叠成正方体,请你把所有的画法都补上,在图上用阴影注明.图14 备用图19.(8分)小明用一个平面去截图15所示的几何体.(1)写出几何体截面形状的名称,①__________,②___________,③___________.(2)除了上述三个截面形状外,还有其他互不相同的截面形状吗? 请分别再写出一个.图1520.(8分)如图16是一张长方形纸片,AB长为4 cm,BC长为6 cm.若将此长方形纸片绕它的一边所在直线旋转一周,(1)得到的几何体是__________;这个现象用数学知识解释为 ______________;(2)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的体积.(结果保留π)图16②①③21. (10分)图17是由棱长都为2 cm的6个小立方块搭成的简单几何体.图17(1)请在下面的方格中画出该几何体从三个方向看到的形状图;从正面看从左面看从上面看(2)根据形状图求简单几何体的表面积;(3)如果在这个几何体上再添加一些小立方块,并保持从正面和左面看到的形状图不变,那么最多可以再添加_________个小立方块.22.(12分)现有如图18所示的长方体,长、宽、高分别为4,3,6.图18(1)若将它的表面沿某些棱剪开,展开成一个平面图形,则下列图形中,可能是该长方体的展开图的是 _______.(填序号)(2)图A,B分别是图18所示的长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长.(3)图18所示的长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个展开图,并求出它的外围周长.附加题(20分,不计入总分)一个几何体是由若干个棱长为3 cm的小立方块搭成的,从左面、上面看到的几何体的形状图如图所示.(1)该几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(2)当该几何体用最多的小立方块搭成时,将该几何体的形状固定好.①求该几何体的体积;①若将该几何体表面涂上油漆,求所涂的油漆面积.(山西左丁政)第一章丰富的图形世界达标测试卷参考答案答案速览一、1. B 2. C 3. B 4. B 5. D 6. C 7. B 8. D 9. B 10. A二、11. 圆12. 线动成面13. 4 6 4 214. 3 15. 圆锥圆柱16. 9三、解答题见“答案详解”答案详解三、17. 解:(1)填表如下:(2)该正六棱柱的所有侧面的面积的和为(72÷6)×5×6=360(cm2).18. 解:如图1所示.图119.解:(1)圆长方形梯形(2)有,不唯一,如:还有三角形,椭圆,拱形门,如图2所示.图2几何体顶点数棱数面数正六棱柱___12_____18_______8____三角形拱形门椭圆20. 解:(1)圆柱面动成体(2)分两种情况:①绕AB所在直线旋转一周:V=π×62×4=144π(cm3);②绕BC所在直线旋转一周:V=π×42×6=96π(cm3).所以形成的几何体的体积是144π cm3或96π cm3.21. 解:(1)如图3所示.从正面看从左面看从上面看图3(2)简单几何体的表面积为2×(5+3+4)×2×2=96(cm2).(3)222. 解:(1)①②③(2)图B的外围周长为4×6+4×4+6×3=58.(3)外围周长最大的表面展开图如图4所示,外围周长为8×6+4×4+3×2=70.图4附加题:解:(1)观察图形可知,最少的情形有2+3+1+1+1+1=9(个)小立方块,最多的情形有2+3+3+3+3+1=14(个)小立方块(如图所示).(2)①该几何体的体积为33×14=378(cm3).①露在外面的面有2×[6+6+(9+2)]=46(个),所涂的油漆面积为36×9=414(cm2).。
北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。
七年级数学(上)第一章《丰富的图形世界》单元测试题(有答案)

1七年级数学(上)第一章《丰富的图形世界》单元练习题一、选择题:( )1.下列说法中,正确的个数是。
①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形。
(A )2个 (B )3个 (C)4个 (D )5个( )2。
下面几何体截面一定是圆的是(A )圆柱 (B ) 圆锥 (C ) 球 (D ) 圆台( )3。
如图绕虚线旋转得到的几何体是. ( )4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是 (A )长方体 ( B )圆锥体(C )立方体 (D )圆柱体( )5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是( )7。
下列各个平面图形中,属于圆锥的表面展开图的是(A ) (B) (C ) (D)(D ) (B ) (C ) (A )2 第10题图 ( ).8.如图是由一些相同的小正方体构成的立体图形的三种视图: 构成这个立体图形的小正方体的个数是 A .5 B . 6 C .7 D .8( )9.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是A B C D( )10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是(A )235、、π-- (B)235、、π- (C)π、、235- (D)235-、、π 二、填空题12.点动成_____,线动成_____,_____动成体.比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明_________。
(2)冬天环卫工人使用下部是长方 形的木锨推雪时,木锨过处,雪就没了,这种现象说明________.(3)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球, 这种现象说明_________ _____.14. 桌面上放两件物体,它们的三视图如下图示,则这两个物体分别是________.主视图 俯视图 左视图15。
七年级上第1章《丰富的图形世界》单元测试卷(含答案解析)

2020-2020学年度北师大版数学七年级上册第1章《丰富的图形世界》单元测试卷考试范围:第1章;考试时间:100分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,30分)1.下列图形中,属于圆锥的是()A.B. C.D.2.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是()A.B.C.D.3.设棱长都为a的六个正方体摆放成如图所示的形状,则摆放成这种形状的表面积是()A.36a2B.30a2 C.26a2 D.25a24.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.5.如图表示一个正方体的平面展开图,把它折成一个正方体时,与顶点K重合的点是()A.点F、点N B.点F、点B C.点F、点M D.点F、点A6.一个正方体的每一个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“好”字相对的字是()A.共B.创C.美D.园7.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④8.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A.B.C.D.9.下面四个几何体中,主视图与俯视图相同的几何体共有()A.1个 B.2个 C.3个 D.4个10.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题,20分)11.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.12.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是cm2(结果保留π).13.一个棱柱共有15条棱,那么它是棱柱,有个面.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是.15.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有种.16.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.17.下列图形中:①等腰三角形;②矩形;③正五边形;④六边形,只有三个是可以通过切正方体(如图)而得到的切口平面图形,这三个图形的序号是.18.一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为.19.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.20.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为.评卷人得分三.解答题(共7小题,70分)21.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)22.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)23.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.24.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.25.如图是某几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm 的等腰三角形,求这个几何体的体积.26.分别画出图中几何体的主视图、左视图、俯视图.27.如图是某几何体的三视图(1)说出这个几何体的名称;(2)若主视图的宽为4cm,长为15cm,左视图的宽为6cm,俯视图中直角三角形的斜边为10cm,求这个几何体中所有棱长的和是多少?它的表面积是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】根据圆锥、圆柱、圆台、棱柱的特点分别进行分析即可.【解答】解:A、此图属于圆锥,故此选项正确;B、此图属于圆柱,故此选项错误;C、此图属于圆台,故此选项错误;D、此图属于棱柱,故此选项错误,故选:A.2.【分析】根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.【解答】解:由图可知,只有B选项图形绕直线l旋转一周得到如图所示立体图形.故选:B.3.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积是5个正方形的面积,下面共有5个正方形的面积,前后左右共看到4×4=16个正方形的面积,所以表面积是26a2故选:C.4.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图解答即可.【解答】解:根据正方体展开图的特点可得:两个三角形相邻.故选:D.5.【分析】当把这个平面图形折成正方体时,左面五个正方形折成一个无盖的正方体,此时,G与M重合、F与K重合、L与C重合、N与J重合,右面一个正方形折成正方体的盖,此时B与F、K的重合点重合,A与G、M的重合点重合.【解答】解:当把这个平面图形折成正方体时,与顶点K重合的点是F、B.故选:B.6.【分析】利用正方体及其表面展开图的特点解题.方法比较灵活可让“好”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“好”与面“园”相对.故选:D.7.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.8.【分析】根据球的主视图只有圆,即可得出答案.【解答】解:∵球的主视图只有圆,∴如果截面是三角形,那么这个几何体不可能是球.故选:B.9.【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形进行分析.【解答】解:①正方体的主视图与俯视图都是正方形;②圆锥主视图是三角形,俯视图是圆;③球的主视图与俯视图都是圆;④圆柱主视图是矩形,俯视图是圆;故选:B.10.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.二.填空题(共10小题)11.【分析】根据点动成线,线动成面,面动成体进行解答.【解答】解:一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.12.【分析】直接利用圆柱体侧面积公式求出即可.【解答】解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.13.【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五棱柱.【解答】解:一个棱柱共有15条棱,那么它是五棱柱,有7个面,故答案为:五;7.14.【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=4cm,进而得出长方体的长、宽、高,进而得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:6﹣4=2(cm),∴EF=4﹣2=2(cm),∴原长方体的体积是:2×4×2=16(cm3).故答案为:16cm3.15.【分析】利用正方体的展开图即可解决问题,共2种.【解答】解:如图所示,不同的选法有2处,故答案为:2.16.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.17.【分析】根据正方体的特性即截面图的定义即可解.【解答】解:正方体利用斜截面可以截得等腰三角形和正六边形,当截面与经过相对棱的面成45°时就可得到.当截面与棱平行时,得到的切口就是矩形.故答案为:①②④.18.【分析】应先得到旋转后得到的几何体,找到从正面和上面看所得到的图形即可.【解答】解:一矩形硬纸板绕其竖直的一边旋转180°,得到的几何体是半圆柱,它的主视图和俯视图分别为矩形,半圆.故答案为:矩形,半圆19.【分析】根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.【解答】解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.故答案为:3.20.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:由三视图知该几何体是底面边长为2、高为4的正六棱柱,∴其侧面积之和为2×4×6=48,故答案为:48.三.解答题(共7小题)21.【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.22.【分析】和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图.【解答】解:只写出一种答案即可.(4分)图1:图2:23.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“2”是相对面,“y”与“3”是相对面,“z”与“1”是相对面,∵各相对面上所填的数字互为倒数,∴x=﹣2,y=﹣3,z=﹣1.24.【分析】(1)根据平移的性质可得出S1与S的大小关系;(2)利用立方体的性质得出得出棱长之间的关系;(3)利用立方体的侧面展开图的性质得出即可.【解答】解:(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是相等;故选:B;(2)设大正方体棱长为1,小正方体棱长为x,那么l1﹣l=6x.只有当x=时,才有6x=3,所以小明的话是不对的;(3)如图所示:.25.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,求出圆锥的高,然后根据圆锥的体积公式求解即可.【解答】解:由三视图可知此几何体是圆锥,依题意知母线长l=13,底面半径r=5,所以底面上的高h=,∴圆锥的体积=πr2•h==100π.26.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:27.【分析】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个三棱柱;(2)根据直三棱柱的棱长的和以及表面积公式计算即可.【解答】解:(1)这个几何体为三棱柱.(2)这个几何体的所有棱长之和为:(6+4+10)×2+15×3=85(cm);它的表面积为:2××6×4+(6+4+10)×15=324(cm2).。
北师大版七年级数学上册 第一章丰富的图形世界 单元测试卷(含答案)

第一章丰富的图形世界综合测试卷一、选择题(每题3分,共30分)1.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民2.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.3.下列几何体中,从正面和上面看都为矩形的是()A.B.C.D.4.圆柱是由下列哪一种图形绕虚线旋转一周得到的?()A.B.C.D.5.如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆7.将一个圆围绕它的直径所在的直线旋转180°形成的几何体是()A.圆锥B.半球C.球体D.圆柱8.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.19.下列水平放置的几何体中,从上面看是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱二、填空题(每题3分,共30分)11.假如我们把水滴看成一个点,当水滴向下落时,就能形成水线,说明了____________;钟的时针旋转时,形成一个面,说明了____________;正方形铁丝框架绕它的一边所在的直线旋转一周,形成一个圆柱,说明了____________.12.如果某六棱柱的一条侧棱长为5 cm,那么所有侧棱长之和为__________.13.下列图形中,属于棱柱的有________个.14.如图所示的几何体有______个面、______条棱、______个顶点.15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.16.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是____________________________________.17.用平面去截正方体,在所得的截面中,边数最少的截面形状是__________.18.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).19.如图,这是从不同方向观察由一些相同的小立方块搭成的几何体得到的形状图,则该几何体是由______个小立方块搭成的.20.图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(22题8分,26题12分,其余每题10分,共60分)21.根据如图所示的图形,完成下列各题:(1)将以上图形按平面图形与立体图形分类;(2)把立体图形按柱体、锥体、球分类;(3)指出立体图形中各面都是平面的图形.22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.23.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.24.由7个相同的小立方块搭成的几何体如图所示. (1)请画出该几何体从三个方向看到的形状图; (2)若每个小立方块的棱长为1,请计算它的表面积.25.如图①,把一张长10 cm 、宽6 cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为V 圆锥=13πr 2h ,π取3.14).(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米? (2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?26.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,e,v应满足什么关系式?参考答案一、1.【答案】A【解析】由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选A.2.【答案】A【解析】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B,C,D不符合长方体的展开图的特征,故不是长方体的展开图.故选A.3.【答案】B【解析】A.此几何体从正面是等腰三角形,从上面看是圆,故此选项错误;B.此几何体从正面是矩形,从上面看是矩形,故此选项正确;C.此几何体从正面是矩形,从上面看是圆,故此选项错误;D.此几何体从正面是梯形,从上面看是矩形,故此选项错误;故选B.4.【答案】B【解析】圆柱是由长方形绕它的一条边旋转而成的,故选B.5.【答案】A【解析】根据图2中的展开图可知,底面正方形ABCD的左边一个三角形是独立的,据此可知,需剪开图1中的PA、PB,根据正方形右边三个三角形脱离正方形的上下两边可知,需剪开AD、BC,综上,被剪开的四条边可能是:PA、PB、AD、BC,故选A.6.【答案】D【解析】立体图形是指图形的各个面不都在一个平面上,由此可判断出答案.由题意得:只有D选项符合题意.故选D.7.【答案】C【解析】一个圆围绕它的直径所在的直线旋转180°形成的几何体是球体,故选C.8.【答案】C【解析】根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选C.9.【答案】B【解析】A.圆柱从上面看是圆,故此选项错误;B.长方体从上面看是矩形,故此选项正确;C.三棱柱从上面看是三角形,故此选项错误;D.圆锥从上面看是圆,故此选项错误;故选B.10.【答案】C【解析】埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.二、11. 点动成线,线动成面,面动成体12.30 cm13.314.9;16;915.圆锥;三棱锥;圆柱16.6或717.三角形18.6π19.1020.63π三、21.解:(1)平面图形:②④⑦⑧;立体图形:①③⑤⑥⑨.(2)柱体:①③⑤;锥体:⑨;球:⑥.(3)立体图形中各面都是平面的图形:①⑤.22.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)长方体(2)由题图可知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).24.解:(1)如图所示.(2)从正面看有5个正方形,从后面看有5个正方形,从上面看有5个正方形,从下面看有5个正方形,从左面看有3个正方形,从右面看有3个正方形,中间空处的两边共有2个正方形,所以表面积为(5+5+3)×2+2=26+2=28. 25.解:(1)甲三角形旋转一周可以形成一个圆锥, 它的体积是13×3.14×62×10=376.8(cm 3).(2)乙三角形旋转一周可以形成一个圆柱,里面被挖去一个圆锥,它的体积是3.14×62×10-13×3.14×62×10=753.6(cm 3).26.解:(1)题中图②有7个面、15条棱、10个顶点, 图③有7个面、14条棱、9个顶点, 图④有7个面、13条棱、8个顶点, 图⑤有7个面、12条棱、7个顶点. (2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f ,e ,v 满足的关系式为f +v -e =2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北七上第一章《丰富的图形世界》水平测试(C)
一、精心选一选,慧眼识金(每题3分,共30分)
1.如图1所示的图形绕虚线旋转一周,所形成的几何体是().
2.经过折叠不能
..围成一个正方体的图形是().
3.圆锥的侧面展开图是().
A.三角形 B.矩形 C.圆 D.扇形
4.用一个平面截圆柱,则截面形状不可能是()
A.圆 B.三角形 C.长方形 D.梯形
5.如图2是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()
A.4个 B.5个 C.6个 D.7个
6.如图3所示,不属于三棱柱的展开图的是()
7.如图4,用一个平面去截圆锥,得到的截面是()
8.下面四个图形都是由相同的六个小正方形纸片组成(如图5),小正方形上分别贴有北京2008年奥运会吉祥物五个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的卡通画和奥运五环标志,如果分别用“贝、晶、欢、迎、妮”五个字来表示五个福娃,那么折叠后能围成如图所示正方体的图形是().
9.下列说法中,正确的个数是()
①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;
③棱柱的底面是四边形;④长方体一定是柱体;
⑤棱柱的侧面一定是长方形.
A.2个 B.3个 C.4个 D.5个
10.从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2005个三角形,则
这个多边形的边数为().
A.2005 B.2006 C.2007 D.2008
二、耐心填一填,一锤定音(每题3分,共30分)
11.正方体或长方体是一个立体图形,它是由_____个面,_______条棱,____个顶点组成的.
12.要把一个长方体剪开展成平面图形,需要剪开________条棱.
13.一平面与一曲面相交得到_________(填序号)①曲线;②直线;③点;④平面;⑤曲
面;⑥直线或曲线.
14.在同一平面内,用游戏棒(同样长)搭4个一样大小的等边三角形,至少要_____根,
在空间搭四个一样大小的等边三角形,至少要________根.
15.如图6,截去正方体一角变成一个多面体,这个多面体有___个面,___条棱,__个顶点.
16.要使图7中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=_____,y=______.
17.四棱柱按如图8粗线剪开一些棱,展成平面图形,请画出平面图来:_______________.
18.薄薄的硬币在桌面上转动时,看上去象球,这说明了_________________.
19.如图9所示的几何体由_____个面围成,面与面相交成__ __条线,其中直的线有__ __条,曲线有__ ___条.
20.用一个平面去截一个圆柱,图10甲中截面的形状是 ___,图乙中截面的形状是 ____.
三、细心做一做,马到成功(共48分)
21.(8分)如图11,至少找出下列几何体的四个共同点.
22.(8分)如图12,电视台的摄像机1、2、3、4在不同位置拍摄了四幅画面,则A图象是______号摄像机所拍,B图象是______号摄像机所拍,C图象是______号摄像机所拍,D 图象是______号摄像机所拍.
23.(8分)若要使得图13中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.
24.(12分)(1)画出图14几何体的三种视图;
(2)用小立方块搭成的几何体,主视图和俯视图如图15,问这样的几何体有多少可能?
它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图.
25.(12分)我们知道,对于一些立体图形问题,常把它转化为平面图形来研究和处理.棱长为a的正方体摆成如图16所示的形状. 问:
(1)有几个正方体;
(2)摆成如图16形式后,表面积是多少?
四、拓广探索(共12分)如图17所示,这是两盏灯的图例,请你利用其中的构件(两个圆,两个三角形,两条平行线段)构造出新的思路独特而且有意义的图形,
并加上合适的解说词,请你构造一个这样的图形.
参考答案
一、精心选一选,慧眼识金 1.B ; 2.B ; 3.D ;
4.B ; 点拨:用一个平面截圆柱,截可能是圆,长方形,正方形,椭圆形,抛物面形等。
5.B ; 点拨:通过观察主视图和左视图在俯视图中标明每一位置的正方体的个数。
6.B ;点拨:从答案B 中可看出上下底面是长方形,这样不能围成三棱柱;三棱柱的底所在面一定是三角形.
7.A ;点拨:这是过圆锥的顶点且垂直于底面的平面来截的,一定是三角形. 8.C ;
9.B ;点拨:说法中正确有(1),(2),(4)四棱柱的底面是四边形,不能说棱柱的底面是四边形;棱柱的侧面还可以是正方形,不能说一定是长方形。
10.C ;点拨:从n 边形的一点出发,连接各个顶点,可得到(n-2)个三角形。
这里n-2=2005
则n=2007.
二、耐心填一填,一锤定音 11.6,12,8;
12.7;点拨:这题可逆向思考,长方体共有六个面,展成平面图形且六个面相连则必有五
条棱不剪开,因此需要剪开7条棱; 13.⑥;点拨:可看填空题第19题的图形;
14.9,6;点拨:在空间可以搭成一个正四面体; 15.7,12,7;点拨:按图形数即可;
16.5,3;点拨:x 的对面是1,y 的对面是3; 17.如答图1; 18.面动成体; 19.4;6;4;2; 20.圆,长方形.
三、细心做一做,马到成功
21.答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等. 22.2,3,4,1.
23.4.点拨:由图可知y 的对面是3,x 的对面是4,z 的对面是2.
所以,25;15;35y x z +=+=+=,4,3,2x y z ===,即4329.x y z ++=++= 24.(1)如答图2所示;
(2)如答图3所示,有两种可能;最多为8个小立方块,最少为7个小立方块;
25.(1)这个几何体共有10个正方体.
(2)表面积为6×6×a2=36 a2 (平方单位). 、拓广探索
答案不惟一. 符合要求的图形有如答图4.。