如何构建系统发育树
系统发育树

所谓的信息位点指那些至少存在2个不同序列且每 个不同序列至少出现两次的位点。
4个类群共 有3种进化 树,每个序 列有9个位 点,序列对 比得到:5、 7、9为信息 位点,分别 计算3种进 化树信息位
点替换数得
系统发育树
民大生科
内容提要
一.系统发育树的介绍 二.系统发育树的构建方法及原理 三.系统发育树的构建软件
一.系统发育树的介绍
1.系统发育树的定义:
在研究生物进化和系统分类中,常用一 种类似树状分支的图形来概括各种(类) 生物之间的亲缘关系,这种树状分支的图 形成为系统发育树(phylogenetic tree)。
计算距离软件:DNADIST-计算所输入核酸序列间的距离。 PROTDIST-计算蛋白质序列的距离。
从而获得距离矩阵。
一种距离矩阵:
由进化距离构建进化树的方法常见有: 1.Fitch-Margoliash Method(FM法) 2. Neighbor-Joining Method (NJ法/邻接法) 3. Neighbors Relaton Method(邻居关系法) 4.Unweighted Pair Group Method (UPGMA 法)
节点上的数字是Bootstrap value,即自展支持率,或者自展值, 是用来检验进化树分支可信度的。
自展值,是用来检验你所计算的进化树分支可信度的。简单地讲
就是把序列的位点都重排,重排后的序列再用相同的办法构树,
如果原来树的分枝在重排后构的树中也出现了,就给这个分枝打 上一分,如果没出现就给0分,这样经过你给定的repetitions次 (至少1000次)重排构树打分后,每个分枝就都得出分值,计算 机会给你换算成bootstrap值。重排的序列有很多组合,值越小说 明分枝的可信度越低,最好根据数据的情况选用不同的构树方法 和模型。
系统发育树的构建

1.Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla ,1995. 2.Murphy, W.J., et al., Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 2001. 294(5550): p. 2348-51.
贝叶斯法(Bayesin)
基本思想:
1.先验概率; 2.后验概率;
贝叶斯法(Bayesin)
每棵树的后验概率是无法直接计算的,通常采用MCMC法近似估计后验 概率的密度分布和相对比例。
比较项目 原理 序列信息利用 进化模型 模型参数 目标函数 函数计算 树搜索 结果
可靠性评估 系统误差 运算速度 混合性状分析 适用范围
2.长枝吸引(Long-branch Attraction,LBA) 克服长枝吸引的方法:
1.排除法
去除序列中受选择压力较少的位点
去除分类群中进化速率较快的长枝分类元
2.打断长枝法 增加与长枝分类元关系较近的分类元进行系统发育分析, 以打断 长枝。多数情况下, 这种方法能够避免形成长枝吸引。
3.使用多种建树方法 NJ 和MP容易造成长枝吸引,改ML或bayesin 可改善。
构建进化树的方法
UPGMA法 (Unweighted Pair Group Method using Arithmetic average) 1.距离法
系统发育树构建教程(PHYLIP)

系统发育树构建教程(PHYLIP)PHYLIP网址:/phylip.html(一)序列的前期准备1.用ENTREZ或SRS搜索同源DNA/蛋白质序列(same sequence in different organisms) 2.用CLUSTALX进行多条序列比对,在output format option选定PHY格式,构建进化树需要这个phy文件。
Figure 4.1 用clustalx进行多条序列比对3.解压缩phylip-3.68.exe,得到三个文件夹,doc文件夹里是关于所有PHYLIP子程序的使用说明,exe文件夹里是直接可以使用的各个子程序,src文件夹里是所有程序的源文件。
4.打开exe文件夹,双击SEQBOOTt子程序(SEQBOOT是一个利用bootstrap方法产生伪样本的程序),输入刚刚生成的phy文件的路径,点击enter。
5.所有PHYLIP程序默认的输入文件名为infile, 输出文件名为outfile。
如果在exe文件夹里找不到默认的输入文件,会提示can’t find input file “infile”。
Figure 4.2 seqboot程序起始界面6.进入程序参数选择页面(Figure 4.3)。
第一列中的D、J、%、B、R、W、C、S等代表可选的参数。
想改变哪个参数,就键入此参数对应的字母,并点击回车键,对应参数将会发生改变。
当我们设置好所有参数后,(这里我们可以不做任何修改),键入Y,按回车。
此时程序询问“random numbe r seed? <must be odd>”,这是询问生成随机数的种子是多少,输入一个4N+1的数,点击回车程序开始运行,输出结果到文件outfile,保存在当前文件夹里。
.Figure 4.3 seqboot程序参数选择页面主要参数解释:D: 数据类型,有Molecular sequence、discrete morphology、restriction sites和gene frequencies4个选项。
最大似然法系统发育树原理步骤

一、概述系统发育树是生物学领域中常用的一种分类学方法,通过比较不同物种的遗传信息,构建它们之间的亲缘关系,从而揭示它们的进化历史和演化路径。
而最大似然法则是系统发育树构建的常用方法之一,它基于遗传信息的统计学原理,通过计算各种拓扑结构的概率来确定系统发育树的最优结构。
二、最大似然法的原理在构建系统发育树时,我们首先需要收集物种的遗传信息,比如DNA 序列,蛋白质序列等。
然后我们需要假设一个系统发育树的拓扑结构,即物种之间的亲缘关系,接着利用这些遗传信息来评估这个拓扑结构的合理性。
而最大似然法则就是基于遗传信息的统计学原理,来评估不同拓扑结构的合理性。
三、最大似然法的步骤最大似然法构建系统发育树的步骤通常可以分为以下几个步骤:1. 假设模型:我们需要选择一个适当的进化模型,用来描述物种进化的过程。
比较常用的模型包括Jukes-Cantor模型、Kimura模型、GTR模型等。
这些模型会考虑不同的进化因素,比如碱基替换率、碱基组成偏好等。
2. 构建系统发育树:在选择好模型后,我们需要利用这些遗传信息来构建系统发育树。
通常我们会有多个不同拓扑结构的备选方案,比如三叉结构、四叉结构等。
而最大似然法则会根据已有的遗传信息来评估这些备选方案的合理性。
3. 计算概率:最大似然法则通过计算每个拓扑结构出现的概率来评估其合理性。
这里的概率通常是指给定遗传信息的情况下,某拓扑结构出现的可能性。
而这个概率通常是利用进化模型和统计学原理计算得来的。
4. 确定最优结构:通过比较不同拓扑结构的概率,我们可以确定系统发育树的最优结构。
通常我们会选择概率最大的那个拓扑结构作为最终的系统发育树。
四、总结通过最大似然法则构建系统发育树的步骤,我们可以在遗传信息的基础上,找到最优的物种亲缘关系,从而揭示它们的进化历史和演化路径。
最大似然法则基于遗传信息的统计学原理,通过计算不同拓扑结构的概率来评估其合理性,从而确定系统发育树的最优结构。
系统发育树构建构建步骤

打开软件cLeabharlann ustalx• CLUSTALX-是CLUSTAL多重序列比对程 序的Windows版本。Clustal X为进行多重 序列和轮廓比对和分析结果提供一个整体 的环境。 序列将显示屏幕的窗口中。采用多色彩的 模式可以在比对中加亮保守区的特征。窗 口上面的下拉菜单可让你选择传统多重比 对和轮廓比对需要的所有选项。
• 系统发育树(phylogenetic tree)——描 述物种之间进化关系
• 系统发育树(phylogenetic tree)——又 称evolutionary tree进化树)就是描述这一 群有机体发生或进化顺序的拓扑结构。它 可以用来研究不同物种间的进化关系,这 一直是生物学的研究热点。
• 拓扑(Topology)将讨论范围内的事物之 间的相互关系表示出来,将这些事物之间 的关系通过图表示出来。
• 两个临近的分支的连接处称为节点 (node),表示推断祖先的现存类群在树最 底部的分支点成为根节(root node), 一 个单一的共同的祖先被定义为进化支 (clade)或者单源群(monophyletic group)
• 树的分支模式被成为拓扑结构(tree topology)
系统发育树建立方法
Mega下载地址/
作业: 1.使用entrez获取登录号为P26374的蛋白序列,然后 通过blastp,搜索nr库中最相似的10个序列,记录登 录号,用Mega软件进行系统发育树构建(要求用两 种以上方法)。
多序列比对及 系统发生树的构建
主要目的:
• 了解分子进化及系统发育分析 • 掌握多序列比对方法 • 熟悉系统发育树建立方法 • 掌握用Mega软件进行构建系统发育树
• 系统发生(phylogeny)——是指生物形 成或进化的历史
叙述系统发育树的构建过程

叙述系统发育树的构建过程嘿,咱今儿就来讲讲系统发育树的构建过程,这可有意思啦!你看啊,系统发育树就像是一棵大树,它的枝桠代表着各种生物之间的关系。
那怎么把这棵大树给“种”出来呢?首先得有一堆生物的数据呀,就像盖房子得有砖头一样。
这些数据可以是各种各样的,比如基因序列啦、形态特征啦等等。
然后呢,就开始比对这些数据,这就好比把不同的砖头摆在一起,看看哪些相似,哪些不同。
接着,就根据这些比对的结果来确定它们之间的亲缘关系。
这就好像在给砖头们找它们的“家族”一样,哪些是近亲,哪些是远亲。
这可不是一件容易的事儿啊,得非常仔细地去分析。
然后呢,把这些亲缘关系用一种特别的方式表示出来,就像把砖头们按照一定的规律摆好,形成一个结构。
这个结构慢慢就变成了系统发育树的雏形。
这时候,就像是在给大树修剪枝叶一样,要对这个雏形进行调整和优化。
要确保每个部分都放对了位置,不能有差错。
最后,一棵完整的系统发育树就出来啦!哇塞,你想想看,通过这么多复杂的步骤,终于把生物之间的关系给清楚地呈现出来了,这难道不神奇吗?你说,这系统发育树构建的过程,像不像一个艺术家在精心雕琢一件作品?每一个细节都要处理好,才能呈现出完美的结果。
而且啊,这可不是一次性就能完成的事儿,得反复地去研究、去调整。
你再想想,要是没有系统发育树,我们怎么能知道各种生物之间有着这样那样的联系呢?我们怎么能更好地理解生命的奥秘呢?所以啊,这个构建过程虽然复杂,但真的超级重要呢!咱平时生活中也有类似的情况呀,比如说搭积木,不也是一块一块地搭起来,最后形成一个完整的造型嘛。
这和构建系统发育树不是有点像嘛!总之呢,系统发育树的构建过程就是这么神奇又有趣,它让我们对生物的世界有了更深的了解和认识。
这可真是一项伟大的工作啊!你难道不这么觉得吗?。
MEGA软件系统发育树构建方法
MEGA软件——系统发育树构建方法(图
文讲解)
一、序列文本的准备
构树之前先将目标基因序列都分别保存为txt文本文件中(或者把所有序列保存在同一个txt文本中,可以用“>基因名称”作为第一行,然后重起一行编辑基因序列),序列只包含序列字母(ATCG或氨基酸简写字母)。
文件名名称可以已经您
的想法随意编辑。
二、序列导入到Mega 5软件
(1)打开Mega 5软件,界面如下
(2)导入需要构建系统发育树的目的序列
OK
选择分析序列类型(如果是DNA序列,点击DNA,如果是蛋白序列,点击Prot
ein)
出现新的对话框,创建新的数据文件
选择序列类型
导入序列
导入序列成功。
(3)序列比对分析
点击工具栏中“W”工具,进行比对分析,比对结束后删除两端不能够完全对齐
碱基
(4)系统发育分析
关闭窗口,选择保存文件路径,自定义文件名称
三、系统发育树构建
根据不同分析目的,选择相应的分析算法,本例子以N—J算法为例
Bootstrap 选择1000,点击Compute,开始计算
计算完毕后,生成系统发育树。
.
根据不同目的,导出分析结果,进行简单的修饰,保存
精选范本。
系统发育树构建
系统发育树的主要目的是揭示物种的进化历程,帮助科学家理解生物多样性的 起源、物种的演化路径以及生物进化的规律。
系统发育树的基本组成
01
02
03
04
节点
代表物种或共同祖先,节点间 的连线表示物种间的亲缘关系
。
分支
连接节点间的线段,代表物种 间的进化关系。
叶节点
代表可观测的物种,是系统发 育树的末端节点。
WENKU DESIGN
树的解读与注释
根部的位置
系统发育树的根部通常代表进化关系中最为原始的物种。
分支长度
分支长度可以反映物种之间的进化距离,较长的分支表示较大的 进化距离。
节点注释
节点注释包括该节点的物种名称、化石记录等信息,有助于理解 该节点在进化历史中的位置。
系统发育关系推断
同源性分析
通过比较不同物种的基因或蛋白质序 列,确定它们之间的同源性,进而推 断它们之间的进化关系。
03
通过比较不同物种在特定环境下的适应性特征,可以分析这些
特征的进化起源和演化过程。
PART 05
系统发育树的应用
REPORTING
WENKU DESIGN
物种分类与系统发生学研究
物种鉴定
系统发育树可以帮助确定物种间的亲缘关系,从而对未知物种进 行鉴定和分类。
生物多样性研究
通过构建系统发育树,可以了解生物多样性的起源、演化和分布, 为保护和利用生物资源提供科学依据。
分子钟假设
基于分子钟假设,通过比较不同物种 基因或蛋白质序列的进化速率,可以 推断它们之间的相对进化时间。
物种进化历史分析
物种起源与分化
01
系统发育树揭示了物种的起源和分化过程,有助于理解物种多
构建系统发育树的方法
构建系统发育树的方法
构建系统发育树的方法
一、定义
系统发育树(Phylogenetic Tree)又称为系统种群学树,是一
种描述物种演化的树型结构,从根节点开始描述物种主要进化分支结构,树上的每条边则表示两个物种在进化的历史中距离彼此更近或来自同一进化祖先的关系。
二、建立系统发育树的方法
1.收集数据:系统发育树的建立首先要收集数据,作为建立树的基础,这些数据一般是利用各种实验技术来收集,比如遗传学实验和物种形态的实验。
2.选取特征:从收集的大量数据中,应选取尽可能多的可靠特征,作为建立树的材料,这些特征要有规律性,有可靠性,可以容易发现物种之间的内在关系,有利于在研究中可靠地比较各物种之间的相似程度。
3.分类比较:将所有待比较的物种或实体按照类似的特征进行分类,根据同一物种种的特征之间的差异,可以比较出物种之间的相似度,确定出有利于建立树的特征。
4.描绘树枝:根据比较的结果,可以依次将物种分类编码,从根节点开始,逐级分细枝条,最后得出系统发育树的图形结构。
5.校正树枝:检查系统发育树的构建结果,如果发现有一些物种不太符合物种演化过程的规律,可以根据其他数据和结果来校正树枝,
从而得出最终的发育树结构。
系统发育树构建的三种方法
系统发育树构建的三种方法
系统发育树(Systems 发育 Tree,简称Stree)是一种用于描述生物系统进化的图形化工具,通常用于模拟生物系统行为的演化过程。
以下是三种构建系统发育树的方法:
1. 基于规则的方法:这种方法使用预定义的规则和偏好来构建
系统发育树。
例如,可以使用遗传算法或人工神经网络等机器学习方法,来预测一个物种的遗传特征或行为演化轨迹。
这种方法需要大量
的人工工作,但可以生成较为准确的演化树。
2. 基于统计方法的方法:这种方法使用统计学方法来推断物种
之间的演化关系。
例如,可以使用最大似然估计或贝叶斯推断等方法,来预测一个物种的遗传特征或行为演化轨迹。
这种方法不需要人工工作,但需要更多的计算资源和时间,才能得到比较准确的演化树。
3. 基于模型的方法:这种方法使用已经建立的模型和数据来构
建系统发育树。
例如,可以使用层次结构模型(如生物进化树、社会网络模型等)来预测一个物种的遗传特征或行为演化轨迹。
这种方法可
以快速构建系统发育树,但需要更多的人工工作来验证模型的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何构建系统发育树
Bioinformatics2009-11-03 10:45 阅读159 评论0
字号:大中小小
(2009-06-11 22:44:13)
标签:系统发育树构建系统发育树分子生物学发育分析it
转自丁香园
构建系统发育树需要注意的几个问题
1 相似与同源的区别:只有当序列是从一个祖先进化分歧而来时,它们才是同源的。
2 序列和片段可能会彼此相似,但是有些相似却不是因为进化关系或者生物学功能相近的缘故,序列组成特异或者含有片段重复也许是最明显的例子;再就是非特异性序列相似。
3 系统发育树法:物种间的相似性和差异性可以被用来推断进化关系。
4 自然界中的分类系统是武断的,也就是说,没有一个标准的差异衡量方法来定义种、属、科或者目。
5 枝长可以用来表示类间的真实进化距离。
6 重要的是理解系统发育分析中的计算能力的限制。
任何构树的实验目的基本上就是从许多不正确的树中挑选正确的树。
7 没有一种方法能够保证一棵系统发育树一定代表了真实进化途径。
然而,有些方法可以检测系统发育树检测的可靠性。
第一,如果用不同方法构建树能得到同样的结果,这可以很好的证明该树是可信的;第二,数据可以被重新取样,来检测他们统计上的重要性。
分子进化研究的基本方法
对于进化研究,主要通过构建系统发育过程有助于通过物种间隐含的种系关系揭示进化动力的实质。
表型的(phenetic)和遗传的(cladistic)数据有着明显差异。
Sneath和Sokal(1973)将表型性关系定义为根据物体一组表型性状所获得的相似性,而遗传性关系含有祖先的信息,因而可用于研究进化的途径。
这两种关系可用于系统进化树(phylogenetictree)或树状图(dendrogram)来表示。
表型分枝图(phenogram)和进化分枝图(cladogram)两个术语已用于表示分别根据表型性的和遗传性的关系所建立的关系树。
进化分枝图可以显示事件或类群间的进化时间,而表型分枝图则不需要时间概念。
文献中,更多地是使用“系统进化树”一词来表示进化的途径,另外还有系统发育树、物种树(speciestree)、基因树等等一些相同或含义略有差异的名称.
系统进化树分有根(rooted)和无根(unrooted)树。
有根树反映了树上物种或基因的时间顺序,而无根树只反映分类单元之间的距离而不涉及谁是谁的祖先问题。
用于构建系统进化树的数据有二种类型:一种是特征数据(characterdata),它提供了基因、个体、群体或物种的信息;二是距离数据(distancedata)或相似性数据(similaritydata),它涉及的则是成对基因、个体、群体或物种的信息。
距离数据可由特征数据计算获得,但反过来则不行。
这些数据可以矩阵的形式表达。
距离矩阵(distancematrix)是在计算得到的距离数据基础上获得的,距离的计算总体上是要依据一定的遗传模型,并能够表示出两个分类单位间的变化量。
系统进化树的构建质量依赖于距离估算的准确性。
一1) 打开clustal X,载入上述序列,“load sequences”→“output format options”:
“CLASTAL FORMA T”;CLASTAL SEQUENCES NUMBERS:ON;
ALIGNMENT PARAMETERS:
“RESET NEW GAPS BEFOR ALIGNMENT”
“MULTIPLE ALIGNMENT PARAMETERS”→设置相关参数
2) “DO COMPLETE ALIGNMENT”→FILE→SA VE AS,掐头去尾。
3) 打开MEGA4,FILE→CONVERT TO MEGA FORMA TE→SA VE→FILE→OPEN DA TA→CONTAINING PROTAIN SEQUENCES? NO →PHYLOGENY→BOOTSTRAP TEST OF PHYLOGENY→N J →
设置相关参数。
最后看到系统发育树
二这里要介绍的是Bioedit-Mega建树法,简单实用,极易上手。
1 将所测得的序列在NCBI上进行比对,这个就不多讲了。
2 选取序列保存为text格式。
3 运行Bioedit,使用其中的CLUSTAL W进行比对。
4 运用MEGA 4 建树,首先将前面的文件转化格式为mega格式,然后进行激活,最后进行N-J建树。
此法简单实用,树形美观。