PKPM振型

合集下载

PKPM参数设置教程分析

PKPM参数设置教程分析

1.1.1 水平力与整体坐标夹角(度)规范规定:《抗震规范》5.1.1条和《高规》3.3.2条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进形抗震验算”。

程序实现:该参数为地震作用力方向或风荷载作用方向与结构整体坐标的夹角,逆时针方向为正,如地震沿着不同方向作用,结构地震反映的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向称为最不利地震作用方向,从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线,当结构不规则时,地震作用的主轴方向就不一定时0°或90°,如最大地震力方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。

操作要点:由于设计人员事先很难估算结构最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,应将该角度重新计算,以考虑最不利地震作用方向的影响。

注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。

(2)本参数不是规范要求的,供设计人员选用。

(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。

1.1.2 混凝土容重(kN/m3)规范规定:参看《荷载规范》附录A常用材料和构件的自重表。

容重是用来计算梁、柱、墙、板重力荷载用的。

操作要点:初始值钢筋混凝土容重为25.0 kN/m3,这适合于一般工程情况,若采用轻只混凝土或需要考虑构件装饰层重量时,应按实际情况修改此参数。

注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。

1.1.3 对所有楼层强制采用刚性楼板假定规范规定:《高规》5.1.5条规定,“进行高层建筑内力与位移计算时,可假定楼板在其自身平面内均无限刚性”程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。

对pkpm参数设置的疑问解答

对pkpm参数设置的疑问解答

一、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。

模拟施工加载2则可以更合理的给基础传递荷载。

复杂结构设计人员可以指定施工顺序。

二、修正后的大体风压一般就是荷载规范规定的大体风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。

3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。

结构阻尼比取0.01~0.02,程序缺省0.02。

4、侧刚计算方式:一种简化计算法,计算速度快,但应用范围有限,当概念有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有必然误差;总刚计算方式:精度高,适用范围广,计算量大。

对于没有概念弹性楼板且没有不与楼板相连构件的工程,两种方式结果一样。

(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的减弱、不持续,都可采用这个假定。

相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。

一样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。

“弹性板6 ”的适用范围:所有的工程都可采用。

相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。

板的面外刚度将承担一部份梁柱的面外弯矩,而使梁柱配筋减少。

此时结构分析时间大大增加。

“弹性板3 ”的适用范围:需要保证楼板平面内刚度超级大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。

“如厚板转换层中的厚板,板厚达到1m以上。

而面外刚度则需要按实际考虑。

相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差别产生的传力问题。

“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。

设计时可以进行梁的刚度放大和扭矩折减。

(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁一路承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.另外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无穷大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,若是没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或弹性膜,不允许概念为刚性板或弹性板3)五、按照高规(JGJ 3-2021)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。

PKPM参数调整

PKPM参数调整

1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。

但需注意以下几点:(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。

(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。

(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。

(4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用。

但注意对多层短肢剪力墙结构可不提高。

(5)注意:钢结构、砌体结没有抗震等级。

计算时可选“5”,不考虑抗震构造措施。

2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。

但要注意以下几点:(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。

如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。

(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%。

在WDISP.OUT文件里查看。

3、主振型的判断;(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。

(2)对于刚度不均匀的付杂结构,上述规律不一定存在,此时应注意查看SATWE 文本文件“周期、振型、地震力”WZQ.OUT。

程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。

4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。

振型数与地振反应计算方法的确定

振型数与地振反应计算方法的确定

振型数与地振反应计算方法的确定
地震反应计算方法在pkpm软件中有侧刚法和总刚法两种选择,如何选择这也是一个pkpm 使用者必须知道的重要一环。

一、侧刚法用于结构每层楼板整体无限刚或分块无限刚,分块无限刚是指多塔结构中的分块无限刚。

侧刚法对应的振型数为全楼每层刚性楼板数之和*3。

二、总刚法用于楼层中存在独立于刚性楼板的节点的结构,并且它是一种通用的结构计算方法,可用于任何结构。

其振型数为全楼刚性楼板数*3+全楼弹性节点数*2
三、以上计算出的振型数不一定是振型数选取时要填入的那个数,但在确定了计算方法后可据以上算出的振型数来选择,最起码不得大于以上计算值,振型数量的确定要求质量参与系数赿大赿好,且规范要求不得小于90%.是不是振型数取的赿多质量参与系数就赿大呢?不是的。

取过多了,受高振型的影响,反而参与系数向小的方向改变,所以,要经几次试算确定合理的振理数,使质量参与系数赿高赿好。

四、总刚法是一种用于任何结构的算法,但对计算机资源要求高。

在自已确信满足侧刚法要求的情况下还是用侧刚法,两者计算结果基本一致。

如果你对地震计算方法不能确有把握地选择时那用总刚法吧,不会有错,但你要有一台配置比较高的微机哟。

pkpm计算振型个数和周期折减系数(精)

pkpm计算振型个数和周期折减系数(精)

pkpm计算振型个数和周期折减系数pkpm计算振型个数和周期折减系数1. 计算振型数NMODE)《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;[耦联取3的倍数,且≤3倍层数,[非耦联取≤层数,参与计算振型的[有效质量系数应≥90%双向地震有扭转,单向地震也有扭转。

结构上某质点(层)有三个自由度:x,y,t,t就是转角反应,不同的是,当不计算扭转偶联的时候,就不考虑转角反应t。

双向地震、单向地震都不考虑扭转偶联的话,就是这样。

就是说,这个时候对于结构,不考虑其转角反应。

结构上的层质点只有2个自由度,要么是x, 要么是y。

最后求出来的地震效应也只是一个方向的反应,要么是x, 要么是y。

程序当然两个方向都算。

都是分开计算的,单独计算的。

当考虑扭转偶联的时候,结构和其上层质点就有三个自由度――不管是单向地震还是双向地震。

计算x方向的地震效应的时候,要考虑其它两个方向效应对x方向效应的影响,而不是只单独考虑x方向效应。

对y,t两个方向也同理。

扭转偶联的时候,单向地震的扭转效应,是考虑振型之间的组合效应。

双向地震扭转效应,是按x、y两个方向的方向组合,见抗规5.2.3-8式。

这个方向组合有一个0.85的系数,sap2k里面是没有这样的方向组合的,只有原始的SRSS组合,即系数是1.0。

etabs中文版里有修正的SRSS组合,是按中国规范的(其实仍是参考美日规范条文得来的)。

老版pkpm有偶联这个选项,设计者可选择偶联也可不选择。

新版没有这个选项,就是说,任何时候都是默认考虑偶联的。

因为考虑扭转效应,就必须进行偶联计算。

所以“扭转偶联效应”就是指“扭转效应”。

当不考虑偶联计算的时候,程序就没法进行扭转效应的分析,而只能人工对内力进行调整(或在程序里嵌套人工内力调整的步骤)。

2.振型组合方法:(CQC耦联;SRSS非耦联)CQC:《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联,规则结构用非耦联补充验算3.周期折减系数TC)框架:砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪:砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条计算振型个数如何取?计算震型个数:这个参数需要根据工程的实际情况来选择。

pkpm中楼板自振频率计算_概述及解释说明

pkpm中楼板自振频率计算_概述及解释说明

pkpm中楼板自振频率计算概述及解释说明1. 引言1.1 概述本文旨在介绍与解释PKPM(Putong Keji Pingmian)中楼板自振频率计算的方法和步骤。

楼板的自振频率是建筑结构设计中一个重要的参数,它反映了楼板在受到外部激励下发生共振的能力。

通过准确计算楼板的自振频率,可以帮助工程师评估结构的稳定性和安全性,并合理设计相关材料和结构。

1.2 文章结构本文主要分为五个部分进行阐述。

首先,在引言部分,我们将对文章进行概述,明确研究目标及整体架构。

其次,在“PKPM中楼板自振频率计算”部分,将对PKPM软件进行简单介绍,并详细解释了楼板自振频率的概念。

然后,在“自振频率计算步骤与示例说明”部分,将逐步阐明计算自振频率所需执行的步骤,并附上实例说明以便读者更好地理解。

其次,在“结果分析与讨论”部分,我们将对影响自振频率的因素进行深入探讨,并通过结果对比与验证来评估模型的准确性。

最后,在“结论与展望”部分,将总结本文的重要发现,并提出对未来研究方向的展望和建议。

1.3 目的本文旨在全面介绍PKPM中楼板自振频率计算的方法和步骤,帮助读者深入理解该领域的相关知识,并为实际工程案例提供解决方案。

通过阐述自振频率计算及其影响因素,我们希望能够加深读者对于楼板设计稳定性与安全性评估的认识,进一步提高工程设计水平。

2. PKPM中楼板自振频率计算:2.1 PKPM简介:PKPM(混凝土楼盖设计软件)是中国建筑行业广泛使用的一种结构设计软件,它可以用于分析和设计各种楼板结构。

在PKPM中,计算楼板的自振频率是评估楼板整体性能和抗震性能的重要指标之一。

2.2 楼板自振频率概念解释:楼板自振频率指的是当给定一定边界条件下,楼板在垂直方向上固有的振动频率。

它与楼板结构的刚度和质量有关,通常以Hz(赫兹)为单位表示。

2.3 自振频率计算方法:PKPM中使用了简化计算方法来估算楼板的自振频率。

这个计算过程基于以下两个主要步骤:第一步,根据实际情况选择合适的单元类型和模型参数。

建筑结构设计中PKPM软件的运用及注意事项

建筑结构设计中PKPM软件的运用及注意事项

建筑结构设计中PKPM软件的运用及注意事项【摘要】PKPM系列软件是中国建筑科学研究院研发的建筑结构设计软件,包括建筑、结构、特种结构、设备、概预算五个方面的内容。

应用范围全面, 功能强大, 自动化程度高, 是众多建筑设计软件中最权威的设计软件之一。

其中尤以结构设计软件最受设计人员的青睐, 成为结构设计人员不可或缺的重要工具。

本文笔者主要对PMCAD 软件的运用及应注意到的问题进行简要的分析。

【关键词】结构设计;PKPM软件;注意事项;一、PKPM软件在建筑结构设计中的运用(一)结构计算振型数的确定采用振型分解反应谱法进行结构水平地震作用计算时,《抗规》第5.2.2条规定:不进行扭转耦联计算的结构, 确定水平地震作用标准值的效应,可只取前2-3个振型, 当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数应适当增加。

《高层建筑混凝土结构技术规程》(以下简称《高规》)第3.3.10条规定: 对于不考虑扭转耦联振动影响的结构,结构计算振型数规则结构可取3;当建筑较高、结构沿竖向刚度不均匀时,可取5-6。

上述规范的条文说明均要求振型个数一般可以取振型参与质量达到总质量90%所需的振型数。

《高规》第5.1.13条规定:B级高度的高层建筑结构和复杂高层建筑结构抗震计算时,考虑平扭耦联计算结构的扭转效应,振型数不应小于15;对多塔结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

TAT 在TAT-4.out文件、SATWE在WZQ.out文件PMSAP在工程名TB.RPT文件中查看X,Y向的有效质量系数。

我们都知道,结构计算振型数增加, 水平地震作用效应增大,即内力和变形增大;振型数如取少了, 后续振型产生的地震作用效应未能计入, 导致计算结果不安全, 所以,振型数要尽量取得多。

但对大型结构, 过多的振型数,导致运算时间过长, 并对计算机的内存也要求大, 而最后的那些高振型对结构地震作用贡献也不大,因此,也不必所有的振型都计算, 当有效质量系数超过0.9,就意味着计算振型数够了;如果小于0.9,说明后续振型产生的地震作用效应不能忽略, 应增加振型数重算。

PKPM参数设置(个人总结)

PKPM参数设置(个人总结)

一、PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。

2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。

3、保护层厚度,【砼规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。

4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲、乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)。

5、抗震构造措施和抗震等级,【抗规3.3.2】建筑场地为1类时,对甲、乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。

(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲、乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。

6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PKPM中振型数量取值
请列出各种结构中振型数怎样取值。

无所谓多少,通常以满足振型系量参与系数>=90%(用SATWE等相关软件计算时,其结果中会给出这个结果)所需要的振型数即可,其取值通常为3的倍数,也不能大于总层数的3倍,一般的民用建筑在9~30范围里即可满足要求。

但如果是空旷的结构以及层概念不太明显的结构,可能要受到高阶振型的影响比较大,取的计算振数也可能比较多,有60~90的都见过。

一般为结构层数的3倍,不包含地下室,多塔一般不应小于15,太大也没有多大意义,一般只要让XY两个方向的质量参与都达到90%就可以了,如果达不到
就在加大
计算振型个数如何取?
计算震型个数:这个参数需要根据工程的实际情况来选择。

对于一般工程,不少于9个。

但如果
是2层的结构,最多也就是6个,因为每层只有三个自由度,两层就是6个。

对复杂、多塔、平面不
规则的就要多选,一般要求“有效质量系数”大于90%就可以了,证明我们的震型数取够了。

这个“有效质量系数”最先是美国的WILSON教授提出来的,并且将它用于著名的ETABS程序。

《高层建筑混凝土结构技术规程》的5.1.13-2条要求B级高度的建筑和复杂的高层建筑“抗震计算
时,宜考虑平扭藕连计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应少于
塔数的9倍,且计算振型数应使振型参与质量不少于总质量的90%”
-------------------------------------------
规范规定要求震型参与质量达到总质量的90%以上
这句话怎么理解?
s一些概念,希望对你有帮助
有关振型的几个概念
振型参与系数:每个质点质量与其在某一振型中相应坐标乘积之和与该振型的主质量(或者说该模态质量)之比,即为该振型的振型参与系数。

一阶振型自振频率最小(周期最长),二阶,三阶....振型的自振频率逐渐增大.
地震力大小和地面加速度大小成正比,周期越长加速度越小,地震力也越小。

自振振型曲线是在结构某一阶特征周期下算得的各个质点相对位移(模态向量)的图形示意.在形状上如实反映实际结构在该周期下的振动形态.振型零点是指在该振型下结构的位移反应为0。

振型越高,周期越短,地震力越大,但由于我们地震反应是各振型的迭代,高振型的振型参与系数小。

特别是对规则的建筑物,由于高振型的参与系数小,一般忽略高振型的影响。

振型的有效质量:这个概念只对于串连刚片系模型有效(即基于刚性楼板假定的,不适用于一般结构。

)。

某一振型的某一方向的有效质量为各个质点质量与该质点在该一振型中相应方向对应坐标乘积之和的平方((∑mx)2)。

一个振型有三个方向的有效质量,而且所有振型平动方向的有效质量之和等于各个质点的的质量之和,转动方向的有效质量之和等于各个质点的转动惯量之和。

有效质量系数:如果计算时只取了几个振型,那么这几个振型的有效质量之和与总质量之比即为有效质量系数。

这个概念是由WILSON E.L. 教授提出的,用于判断参与振型数足够与否,并将其用于ETABS程序。

振型参与质量:某一振型的主质量(或者说该模态质量)乘以该振型的振型参与系数的平方,即为该振型的振型参与质量。

振型参与质量系数:由于有效质量系数只实用于刚性楼板假设,现在不少结构因其复杂性需要考虑楼板的弹性变形,因此需要一种更为一般的方法,不但能够适用于刚性楼板,也应该能够适用于弹性楼板。

出于这个目的,我们从结构变形能的角度对此问题进行了研究,提出了一个通用方法来计算各地震方向的有效质量系数即振型参与质量系数,规范即是通过控制有效质量振型参与质量系数的大小来决定所取的振型数是否足够。

(见高规(5.1.13)、抗规(5.2.2)条文说明)。

这个概念不仅对糖葫芦串模型有效。

一个结构所有振型的振型参与质量之和等于各个质点的质量之和。

如果计算时只取了几个振型,那么这几个振型的振型参与质量之和与总质量之比即为振型参与质量系数。

由此可见,有效质量系数与振型参与质量系数概念不同,但都可以用来确定振型叠加法所需的振型数。

我们注意到:ETABS6.1中,只有有效质量系数(effective mass ratio)的概念,而到了ETABS7.0以后,则出现了振型质量参与系数(modal participating mass ratio),可见,振型参与质量系数是有效质量系数的进一步发展,有效质量系数只适用于串连刚片系模型,分别有x方向、y方向、rz 方向的有效质量系数。

振型参与质量系数则分别有x、y、z、rx、ry、rz六个方向的振型参与质量系数。

注释:
1)这里的“质量”的概念不同于通常意义上的质量。

离散结构的振型总数是有限的,振型总个数等于独立质量的总个数。

可以通过判断结构的独立质量数来了解结构的固有振型总数。

具体地说:
每块刚性楼板有三个独立质量Mx,My,Jz;
每个弹性节点有两个独立质量mx,my;
根据这两条,可以算出结构的独立质量总数,也就知道了结构的固有振型总数。

2)若记结构固有振型总数是NM,那么参与振型数最多只能选NM个,选参与振型数大于NM是错误的,因为结构没那么多。

3)参与振型数与有效质量系数的关系:
3-1)参与振型数越多,有效质量系数越大;
3-2)参与振型数=0 时,有效质量系数=0
3-3)参与振型数=NM 时,有效质量系数=1.0
4)参与振型数NP 如何确定?
4-1)参与振型数NP 在1-NM 之间选取。

4-2)NP应该足够大,使得有效质量系数大于0.9。

有些结构,需要较多振型才能准确计算地震作用,这时尤其要注意有效质量系数是否超过了0.9。

比如平面复杂,楼面的刚度不是无穷大,振型整体性差,局部振动明显的结构,这种情况往往需要很多振型才能使有效质量系数满足要求。

看看你的SATWE计算书里面,在周期的计算里面有一个计算结果,分为X方向和Y方向,分别给出了两个方向的计算结果,只有两个方向都达到了90%以上,才能说明你的震型数取得足够了
关于对计算振型个数的要求:
规范要求如下:
《抗规.条文》:振型个数一般可以取振型参与质量达到总质量90%所需的振型数。

《措施》8.8.4:振型数的多少与结构层数及结构形式有关,高层建筑地震作用振型数应至少取9;当考虑扭转耦连计算时,振型数不应小于15;对多塔结构则振型数不应小于多塔数×9,且计算振型数应保证振型参与质量不小于总质量的90%。

《手册》:一般计算振型数应大于9,多塔结构计算振型数应取更多些,但不能超过结构固有振型数(一般为层数的3倍)。

振型个数不是简单的与结构的层数有关。

对一般规则的结构,结构振型个数在刚性楼板假定的情况下,是结构层数的3倍,即每层3个,两个平动振型和一个转动振型。

然而,有些振型可能是局部振型(可以在WZQ.out文件中看出,也可在SAT12结构整体空间振动简图中逐阶演示出来),其阶数低,但对地震作用的贡献却较小。

而要满足振型参与质量达到总质量的90%以上,即基底的地震剪力误差已经很小,才可以认为所取振型个数已满足。

也就意味着只取到这个振型是不足够的,需要再取振型以满足要求。

振型参与质量不少于总质量的90%以上时,我们认为计算的地震力足够了,小于这个数,我们认为地震力偏小了;震型参与质量不小于90%,是为了保证震型分解反映谱法的到的结果不至于失真。

本身震型分解反映谱也是一种近似的计算。

相关文档
最新文档