1955年诺贝尔物理学奖
爱因斯坦的个人资料及简介作文

爱因斯坦的个人资料及简介阿尔伯特·爱因斯坦(Albert Einstein1879-1955),出生于德国,毕业于苏黎世联邦理工学院,现代物理学家,诺贝尔物理学奖获得者,在科学哲学领域也颇具影响力。
爱因斯坦是人类历史上最具创造性才智的人物之一。
他一生中开创了物理学的四个领域:狭义相对论、广义相对论、宇宙学和统一场论。
他是量子理论的主要创建者之一,在分子运动论和量子统计理论等方面也做出了重大贡献。
爱因斯坦是20世纪最伟大的科学家、思想家。
他的科学思想、哲学(科学哲学、社会哲学、人生哲学)思想都是颇有见地、不同凡响的。
爱因斯坦对现代物理学的贡献无人可以匹敌,他在科学生涯中始终孜孜以求,探寻物理学领域的普遍的、恒定不变的规律。
他的理论涵盖自然界的一切基本问题,大到宇宙、小到次原子粒子。
他修正了时间和空间、能量和物质的传统概念。
他的相对论不仅冲击了牛顿以来经典物理学理论体系,改变了传统的空间、时间观念。
爱因斯坦的理论为核能的开发奠定了理论基础为帮助对抗纳粹,他曾在利奥·西拉德等人的协助下曾致信美国总统富兰克林罗斯福、直接促成了曼哈顿计划的启动,而二战后他积极倡导和平、反对使用核武器,并签署了罗素一爱因斯坦宣言。
爱因斯坦开创了现代科学技术新纪元,被公认为是继伽利略、牛顿之后最伟大的物理学家,也是批判学派科学哲学思想之集大成者和发扬光大者。
1879年3月14日,爱因斯坦出生在德国乌尔姆市,一个犹太人家庭(父母均为犹太人)。
1880年,爱因斯坦随父母迁居慕尼黑。
1888年,阿尔伯特·爱因斯坦入路易波尔德高级中学学习。
在学校受宗教教育,接受了受戒仪式,弗里德曼是指导老师。
1889年,在医科大学生塔尔梅引导下,读通俗科学读物和哲学著作。
1891年,爱因斯坦自学欧几里德几何,对数学感到狂热的喜爱,同时开始自学高等数学。
1892年,爱因斯坦开始读伊曼努尔·康德的著作1894年,爱因斯坦一家人移居意大利米兰。
【历届诺贝尔奖得主(五)】1955年化学奖,生理学或医学奖,文学奖和物理学奖

1955年12月10日第55届诺贝尔奖和平奖未颁奖化学奖美国,迪维格诺德(VincentduVigneaud1901-1978),第一次合成多肽激素生理学或医学奖瑞典,西奥雷尔(AxelHugoTheodorTheorell1903-1982),发现氧化酶的性质和作用生平略影西奥雷尔(1903~1982),瑞典著名生物化学家,1955年获诺贝尔生理学及医学奖。
1930年获医学博士学位。
同年成为乌普萨拉大学的化学助理教授,1932年被提升为该校的医学和生理化学副教授。
成功历程提到西奥雷尔也许大家对他很陌生,但他的成就在科学界可是举世瞩目的。
从1930年开始,西奥雷尔首先研究肌肉中具有生物活性的输氧蛋白质——肌红蛋白,并很快在这项难度极大的研究中初露锋芒。
他测定了肌红蛋白与血红素在结构和功能上极为相似,同时还指出了他们在呼吸和贮存氮气的能力方面有很大的不同。
1935年,西奥雷尔意识到想要弄清楚生物细胞是如何利用氧的问题,紧紧依靠眼前对黄素酶方面的了解和相对展开工作是不够的。
为此,他这次把注意力放在研究细胞呼吸链中传递氢的重要物质——细胞色素C上面。
尽管对这项科学研究早在上个世纪就已经开始了,但是提纯问题一直没有得到解决;西奥雷尔在研究过程中不断改进设备,提高实验技术,逐步春花了他,攻克了这道难关。
1936年,西奥雷尔在实验中获得的细胞色素C,其纯度为80%。
到1939年,其纯度已经接近100%,是一个具有生物活性的大分子达到如此高的纯度难度是相当大的!所有看到过他的这个实验的科学家,都异口同声地赞扬西奥雷尔长的“简直是一双神奇的妙手”文学奖冰岛,拉克斯内斯(HalldórKiljanLaxness1902-1998),写了恢复冰岛古代史诗的艺术作品生平简介哈多尔·基里扬·拉克斯内斯,原名哈多尔·古兹永松,(HalldóKiljanLaxness1902年4月23日—1998年2月8日)冰岛小说家、剧作家。
历届诺贝尔物理学奖

历届诺贝尔物理学奖伦琴(1845-1923)Willhelm Konrad Rotgen1901年诺贝尔物理学奖——X射线的发现1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Rotgen,1845-1923),以表彰他在1895年发现的X射线.1895年,物理学已经有了相当的发展,它的几个主要部门-牛顿力学,热力学和分子运动论,电磁学和光学,都已经建立了完整的理论,在应用上也取得了巨大成果.这时物理学家普遍认为,物理学已经发展到顶了,以后的任务无非是在细节上作些补充和修正而已,没有太多的事情好做了.正是由于X射线的发现唤醒了沉睡的物理学界.它像一声春雷,引发了一系列重大的发现,把人们的注意力引向更深入,更广阔的天地,从而揭开了现代物理学的序幕.1902年诺贝尔物理学奖——塞曼效应的发现和研究塞曼(1865-1943)Pieter Zeeman洛伦兹(1853 -1928)Hendrik Antoon Lorentz1902年诺贝尔物理学奖授予荷兰莱顿大学的洛伦兹(Hendrik Antoon Lorentz,1853-1928)和荷兰阿姆斯特丹大学塞曼(Pieter Zeeman,1865-1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献.磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的.它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应.塞曼效应更进一步涉及了光的辐射机理,因此人们把它看成是继X射线之后物理学最重要的发现之一.洛伦兹是荷兰物理学家,他的主要贡献是创立了经典电子论,这一理论能解释物质中一系列的电磁现象,以及物质在电磁场中运动的一些效应.由于塞曼效应发现时及时地从洛伦兹理论得到了解释,由此所确定的电子荷质比与J.J.汤姆孙用阴极射线所得数量级相同,相互间得到验证,因此1902年洛伦兹与塞曼共享诺贝尔物理学奖.贝克勒尔(1852 -1908)Antoine Henri Becquerel塞曼也是荷兰人,1885年进入莱顿大学后,与洛伦兹多年共事,并当过洛伦兹的助教.塞曼对洛伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并于1893年获博士学位.他在研究辐射对光谱的影响时,得益于洛轮兹的指导和洛轮兹理论,从而作出了有重大意义的发现.居里夫妇(1867 - 1934)Marie Sklodowska1903年诺贝尔物理学奖——放射性的发现和研究1903年诺贝尔物理学奖一半授予法国物理学家亨利·贝克勒尔(Antoine Henri Becquerel,1852-1908),以表彰他发现了自发放射性;另一半授予法国物理学家皮埃尔.居里(Pierre Curie ,1859-1906)和玛丽.斯可罗夫斯卡.居里(Marie Sklodowska,1867-1934),以表彰他们对贝克勒尔发现的辐射现象所作的卓越贡献.亨利·贝克勒尔是法国科学院院士,擅长于荧光和磷光的研究.1895年底,伦琴将他的初步通信:《一种新射线》和一些X射线照片分别寄给各国著名的物理学家,其中包括法国的庞加莱(H.Poincare).庞加莱是著名的数学物理学家,法国科学院院士.1896年1月20日法国科学院开会,他带伦琴寄给他的论文,并展示给与会的科学家.这件事大大激励了亨利.贝克勒尔的兴趣.他问这种穿透射线是这样产生的庞加莱回答说,这一射线似乎是从阴极对面发荧光的那部分管壁上发出的.贝克勒尔推想,可见光的产生和不可见X射线的产生或许是出于同一机理.第二天他就开始实验荧光物质会不会产生X射线.然而,贝克勒尔最初的一些实验却是失败的.正在这个时候,庞加莱在法国一家科普杂志上发表了一篇介绍X射线的文章,文章有一次提到荧光物质是否会同时辐射可见光和X射线的问题.贝克勒尔读到后非常很受鼓舞,于是再次投入荧光和磷光的实验,终于找到了铀盐有这种效应,他用厚黑纸包了一张感光底片,纸非常厚,即使放在太阳下晒一整天也不至于使底片变翳.他在黑纸上面放一层铀盐,然后拿到太阳下晒几个小时,显影之后,他在底片上看到了磷光物质的黑影.然后他又在磷光物质和黑纸之间夹一层玻璃,也作出同样的实验,证明这一效应不是由于太阳光线的热使磷光物质发出某种蒸气而产生化学作用所致.于是得出结论:铀盐在强光照射下不但会发可见光,还会发穿透力很强的X射线.贝克勒尔这一结论并不正确,一次偶然的机遇使他作出了真正的发现.瑞利(1842 -1919)Lord Rayleigh1904年诺贝尔物理学奖——氩的发现1904年诺贝尔物理学奖授予英国皇家研究所的瑞利勋爵(Lord Rayleigh,1842-1919),以表彰他在研究最重要的一些气体的密度以及在这些研究中发现了氩.瑞利以严谨,广博,精深著称,并善于用简单的设备作实验而能获得十分精确的数据.他是在19世纪末年达到经典物理学颠峰的少数学者之一,在众多学科中都有成果,其中尤以光学中的瑞利散射和瑞利判据,物性学中的气体密度测量几方面影响最为深远. 1905年诺贝尔物理学奖——阴极射线的研究勒纳德(1862-1947)Philipp Lenard1905年诺贝尔物理学奖授予德国基尔大学的勒纳德(Philipp Lenard,1862-1947),表彰他在阴极射线方面所作的工作.1888年,当勒纳德于海德堡大学在昆开(Quincke)的指导下工作时,就在阴极射线方面作了最初的研究.他研究了赫兹关于这种射线与紫外线相似的观点.为此他做了这个实验,观察阴极射线是否能想紫外线一样通过放大电管壁的石英窗.他发现阴极射线不能穿过.但是1892年,他在波恩大学担任赫兹的助手时,赫兹让他看了自己的一项新发现:将一块被铝箔包着的含铀玻璃片放入电管中,当时阴极射线轰击这快铝箔时,铝箔下面发出了光.当时赫兹以为可以用一片铝箔将空间隔开,一边是按普通方法产生的阴极射线;而在另一边则是纯粹状态下的阴极射线.这个实验以前从未做过.赫兹太忙了,没有时间做这个实验,就让勒纳德做,就这样,勒纳德作出了"勒纳德窗"的重大发现.汤姆孙(1856-1940)Sir Joseph Thomon1906年诺贝尔物理学奖——气体导电1906年诺贝尔物理学奖授予英国剑桥大学的J.J.汤姆孙爵士(Sir Joseph Thomon,1856-1940),以表彰他对气体导电的理论和实验所作的贡献.J.J.汤姆孙对气体导电的理论和实验研究最重要的结果是发现了电子,这是继X射线和放射性之后又一重大的发现.人们把这三件事称为世纪之交的三大发现.迈克耳孙(1852 -1931Albert Abrham Michelson1907年诺贝尔物理学奖——光学精密计量和光谱学研究1907年诺贝尔物理学奖授予芝加哥大学的迈克耳孙(Albert Abrham Michelson,1852-1931),以表彰他对光学精密仪器及用之于光谱学与计量学研究所作的贡献.迈克耳孙是著名的实验物理学家.他以精密测量光的速度和以空前精密度进行以太漂移实验而闻名于世.他发现的以他的名字命名的干涉仪至今还有广泛的应用.李普曼(1845-1921)Gabried Lippmann1908年诺贝尔物理学奖——照片彩色重现1908年诺贝尔物理学奖授予法国巴黎大学的李普曼(Gabried Lippmann,1845-1921), 以表彰他基于干涉现象用照片重现彩色方法所作的贡献.李普曼1845年8月16日生于卢森堡的霍勒利希(Hollenrich),双亲是法国人,后来他的家牵到巴黎,他在家中接受了早期教育.1858年他进入拿破仑中学,十年后进入综合师范大学.他的学业并不是很好,因为他只注重他感兴趣的科目,不重视他不喜欢的课程,因此他没有通过教师资格的考试.1873年,他被任命为政府的科学使节,到德国学习科学教育方法.在海得堡曾随库恩(Kuhne)和基尔霍夫一起工作,在柏林曾和亥姆霍兹一起工作.布劳恩(1850-1918)Karl Braun马克尼(1874-1937)Guglielmo Marcoin1909年诺贝尔物理学奖——无线电报1909年诺贝尔物理学奖授予英国伦敦马克尼无线电报公司的意大利物理学家马克尼(Guglielmo Marcoin,1874-1937)和德国阿尔萨斯州特拉斯堡大学的布劳恩(Karl Braun,1850-1918),以承认他们在发展无线电报上所作的贡献.范德瓦尔斯(1837-1923)Johannes Diderik van Waals1910年诺贝尔物理学奖——气夜状态方程1910年诺贝尔物理学奖授予荷兰阿姆斯特丹大学的范得瓦尔斯(Johannes Diderik van Waals,1837-1923),以表彰他对气体和液体的状态方程所作的工作.19世纪末,分子运动逐步形成一门有严密体系的精确科学.与此同时实验也越来越精,人们发现绝大多数气体的行为与理想气体的性质不符.维恩(1864-1928)WilhelmWien1911年诺贝尔物理学奖——热辐射定律的发现1911年诺贝尔物理学奖授予德国乌尔兹堡大学的维恩(WilhelmWien,1864-1928),以表彰他发现了热辐射定律.热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光谱学的支持,同时用到了电磁学和光学的新技术,因此发展很快.到19世纪末,这个领域已经达到如此顶峰,以至于量子论这个婴儿注定要从这里诞生.达伦( 1869-1937)Nils Gustaf1912年诺贝尔物理学奖——航标灯自动调节器1912年诺贝尔物理学奖授予瑞典德哥尔摩储气器公司的达伦(Nils Gustaf ,1869-1937),以表彰他分明用于灯塔和浮标照明的储气器的自动调节器.卡末林-昂内斯(1853-1936)Heike Kamerlingh Onnes1913年诺贝尔物理学奖——低温物质的特性1913年诺贝尔物理学将授予荷兰莱顿大学的卡末林-昂内斯(Heike Kamerlingh Onnes,1853-1936), 以表彰他对低温物质特性的研究,特别是这些研究导致液氦的生产.19世纪末,20世纪初,在低温的实验研究上展开过一场世界性的角逐.在这场轰动科坛的竞赛中,领先的是西北欧的一个小国――荷兰首都莱顿的低温实验室.1914年诺贝尔物理学奖——晶体的X射线衍射劳厄(1879-1960)Max von Laue1914年诺贝尔物理学奖授予德国法兰克福大学的劳厄(Max von Laue,1879-1960),以表彰他发现了晶体的X射线衍射.劳厄发现X射线衍射是20世纪物理学中的一件有深远意义的大事,因为这一发现不仅说明了X射线的认识迈出了关键的一步,而且还第一次对晶体的空间点阵假说作出了实验验证,使晶体物理学发生了质的飞跃.这一发现继佩兰(Perrin)的布朗运动实验之后,又一次向科学界提供证据,证明原子的真实性.从此以后,X射线学在理论和实验方法上飞速发展,形成了一门内容极其丰富,应用极其广泛的综合学科.1915年诺贝尔物理学奖——X射线晶体结构分析劳伦斯·布拉格(1890-1971)Sir William Lawrence Bragg亨利·布拉格(1862-1942)Sir William Henry Bragg1915年诺贝尔物理学奖授予英国伦敦大学的亨利.布拉格(Sir William Henry Bragg,1862-1942)和他的儿子英国曼彻斯特维克托利亚大学的劳伦斯.布拉格(Sir William Lawrence Bragg,1890-1971),以表彰他们用X射线对晶体结构的分析所作的贡献.1912年,劳厄关于X射线的论文发表之后不久,就引起了布拉格父子的关注.当时,亨利·布拉格正在利兹大学当物理学教授,劳伦斯.布拉格刚刚从剑桥大学卡文迪什实验室毕业,留在实验室工作,开始从事科学研究.1916年未授奖巴克拉(1877-1944)Charles Glover Barkla1917年诺贝尔物理学奖——元素的标识X辐射1917年诺贝尔物理学奖授予英国爱丁堡大学的巴克拉(Charles Glover Barkla,1877-1944),以表彰他发现了标识伦琴射线.巴克拉是第五位因研究X射线获得物理学奖的学者,在他之前有1901年获奖的伦琴,1914年的劳厄和1915年布拉格父子不到20年就有5位诺贝尔物理学奖获得者,占当时总数的四分之一以上,由此可见,X射线的研究成果在20世纪20年中占有何等重要的地位.普郎克(1858-1947)Max Karl Ernst Ludwig Plank1918年诺贝尔物理学奖——能量级的发现1918年诺贝尔物理学奖授予德国柏林大学的普郎克(Max Karl Ernst LudwigPlank,1858-1947),以承认他发现能量级对物理学的进展所作的贡献.1895年前后,普朗克正在德国柏林大学当物理学教授,由于鲁本斯(H.Rubens)的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt,简称PTR)有关热辐射的讨论.这时PTR的理论的核心人物维恩(W.Wien)因故离开PTR,PTR的实验研究成果需要有理论研究工作者的配合,普郎克正好补充了这个空缺.斯塔克(1874-1957)Johnnes Stark1919 年诺贝尔物理学奖——斯塔克效应的发现1919年诺贝尔物理学奖授予德国格雷复斯瓦尔大学的斯塔克(Johnnes Stark,1874-1957),以表彰他在极遂射线中发现了多普勒效应和电路中发现了分裂的普线.极遂射线是哥尔茨坦在1896年在含稀薄气体的放电管中发现的,这种射线后来证明主要是由放电管中带电的气体原子组成的,这些带正电的原子在电场的作用下以很高的速度沿着射线运动.纪尧姆(1861-1938)Charles Edouard Guillaume1920年诺贝尔物理学奖——合金的反常特性1920年诺贝尔物理学奖授予舍夫勒国际计量局的纪尧姆(Charles Edouard Guillaume,1861-1938),以承认他由于他发现镍钢合金的反常特性对精密计量物理学所作的贡献.纪尧姆长期担任国际计量局局长,他发现的因瓦合金和艾林瓦合金对精密计量有非常重大的意义.1921诺贝尔物理学奖——对理论物理学的贡献1921年诺贝尔物理学奖授予德国柏林马克斯·普朗克物理研究所的爱因斯坦(Allbert Einstein,1879-1955),以表彰他在理论物理学上的发现,特别是发现了光电效应的定律. 众所周知,爱因斯坦是20世纪最杰出的理论物理学家.爱因斯坦最重要的科学贡献是在1905年创建了狭义相对论.然而在颁发1921年诺贝尔物理学奖时,却只字不提相对论的建立,诺贝尔委员会特别申明,授予爱因斯坦诺贝尔物理学奖不是由于他建立了相对论,而是"为了表彰他在理论物理学上的研究,特别是发现光电效应的定律".尼尔斯·玻尔(1885-1962)Niels Bohr1922年诺贝尔物理学奖——原子结构和原子光谱1922年诺贝尔物理学奖授予丹麦哥本哈根的尼尔斯·玻尔(Niels Bohr,1885-1962),以表彰他在研究原子结构,特别是研究从原子发出的辐射所作的贡献.密立根(1868-1953)Robert Andrews Millikan1923年诺贝尔物理学奖——基本电荷和光电效应实验1923年诺贝尔物理学奖授予美国加利福尼亚州帕萨迪那加州理工学院的密立根(Robert Andrews Millikan,1868-1953),以表彰他对基本电荷和光电效应的工作.卡尔(1886-1978)Karl Manne Georg Siegbahn1924年诺贝尔物理学奖——X射线光谱学1924年诺贝尔物理学奖授予瑞典乌普沙拉(Uppsala)大学的卡尔·西格班(Karl ManneGeorg Siegbahn,1886-1978),以表彰他在X射线光谱学领域的发现与研究.卡尔·西格班是继巴克拉之后,又一次因X射线学的贡献而获得诺贝尔物理学奖的物理学家.弗兰克(1882-1964)James Franck1925年诺贝尔物理学家——弗兰克-赫兹实验1924年诺贝尔物理学奖授予德国格丁根大学的弗兰克(James Franck,1882-1964)和哈雷大学的G.赫兹(Gustav Hertz,1887-1975),以表彰他们发现原子受电子碰撞的定律. 佩兰(1870-1942)Jean Baptiste Perrin1926年诺贝尔物理学奖——物质结构的不连续性1926年诺贝尔物理学奖授予法国巴黎索本大学的佩兰(Jean Baptiste Perrin,1870-1942),以表彰他在物质不连续结构方面的工作,特别是对沉积平衡的发现. 佩兰关于物质不连续结构的工作,主要是他是对布郎运动的研究.康普顿(1892-1962)Arthur Holly Compton1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1927年诺贝尔物理学奖的一半授予美国的芝加哥大学的A.H.康普顿(Arthur Holly Compton,1892-1962),以表彰他发现以他的名字命名的效应;另一半授予英国剑桥大学的C.T.R.威尔逊(Charles Thomon Rees Wilsion,1869-1959),以表彰他用蒸汽凝聚使带电粒子的径迹成为可见的方法.里查逊(1879-1959)Sir Owen Willans Richardson1928年诺贝尔物理学奖——热电子发射定律1928年诺贝尔物理学奖授予英国伦敦大学的O.W.里查逊(Sir Owen Willans Richardson,1879-1959),以表彰他对热电子发射现象的工作,特别是发现了以他名字命名的定律.德布罗意(1892-1987)PrinceLouis-victor de Broglie1929年诺贝尔物理学奖——电子的波动性1929年诺贝尔物理学奖授予法国巴黎索本大学的路易斯.德布罗意(PrinceLouis-victor de Broglie,1892-1987),以表彰他发现了电子的波动性.拉曼(1888-1970)Sir Chandraskhara Venkata Raman1930年诺贝尔物理学奖——拉曼效应1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(Sir Chandraskhara Venkata Raman,1888-1970),以表彰他研究了光的散射和发现了以他的名字命名的定律.1931年未授奖海森伯(1901-1976)Werner Heisenberg1932年诺贝尔物理学奖——量子力学的创立1932年诺贝尔物理学奖授予德国莱比锡(Leipzig)大学的海森伯(Werner Heisenberg,1901-1976),以表彰他创立了量子力学,尤其是他的应用导致了发现氢的同素异形体.薛定谔(1887-1961)Erwin Schrodinger1933年诺贝尔物理学奖——原子理论的新形式狄拉克(1902-1984)Paul Adrien Maurice Dirac1933年诺贝尔物理学奖授予德国柏林大学的奥地利物理学家薛定谔(Erwin Schrodinger,1887-1961)和英国剑桥大学的狄拉克(Paul Adrien Maurice Dirac,1902-1984),以表彰他们发现了原子理论的新式.查德威克(1891-1974)Sir James Chadwick1934年未授奖1935年诺贝尔学奖——中子的发现1935年诺贝尔物理学奖授予英国利物浦的查德威克(Sir James Chadwick,1891-1974),以表彰他发现了中子.中子的发现具有深远的影响.由此引起了一系列后果:第一是为核模型理论提供了重要的依据,苏联物理学家伊万宁科(D.Ivanenko)据此首先提出原子核是由质子和中子组成的理论;其次是激发了一系列新课题的研究,引起一连串的新发现;第三是找到了核能实际应用的途径.用中子作为炮弹轰击原子核,比粒子有很大的威力.因为他像一把钥匙,打开了原子核的大门.1936年诺贝尔物理学奖——宇宙辐射和正电子的发现赫斯(1883-1964)Victor Franz Hess安德森(1883-1964)Carl David Anderson1936年诺贝尔物理学奖一半授予奥地利茵斯布拉克(Innsbruck)大学的赫斯(Victor Franz Hess,1883-1964),以表彰他发现了宇宙辐射;另一半授予美国加利福尼亚州帕萨迪那加州理工学院的C.D.安德森(Carl David Anderson ,1883-1964) ,以表彰他发现了正电子.1937年诺贝尔物理学奖——电子衍射汤姆孙(1892-1975)Sir George Paget Thomson戴维森(1881-1958)Clinton Joseph Davissio1937年诺贝尔物理学奖授予美国纽约州的贝尔电话实验室的戴维森(Clinton Joseph Davission ,1881-1958)和英国伦敦大学的G .P .汤姆孙(Sir George Paget Thomson ,1892-1975),以表彰他们用晶体对电子衍射所作的实验发现.20世纪20年代中期物理学发展的关键时期.波动力学已经由薛定谔在德布罗意的物质波假设的基础上建立起来,和海森伯从不同的途径创立的矩阵力学,共同形成微观体系的基本理论.这一巨大变革的实验基础自然成了人们关切的课题,这就激励了许多物理学家致力于证实离子的波动性.然而,直到1927年,才由美国的戴维森和英国的G .P .汤姆孙分别作出电子衍射实验.虽然这时量子力学已得到广泛的运用,但电子衍射实验成功引起了世人的注意.费米(1901-1954)Enrico Fermi1938年诺贝尔物理学奖——中子辐照产生新放射性元素1938年诺贝尔物理学奖授予意大利罗马的费米(Enrico Fermi,1901-1954),以表彰他演示用中子辐射产生新放射性元素以及用慢中子引起的核反应的有所发现.20世纪30年代是核物理学大发展的年代.自从卢瑟福1911年发现原子核和1919年实现了人工原子蜕变之后,中间经过沉闷的十年,物理学孕育着新的突破.30年代一开始,就以正电子,氘和中子这三大发现,又一次惊震了科学界.接着,1934年,约里奥-居里(Joliot-Curies)夫妇发现了人工放射性.加速器和计数器的发明和应用则大大加快了核物理学发展的进程.在次基础上,人们迫切需要掌握原子核蜕变的规律性,利用核物理学的成果为人类服务.当时虽然尚未预见原子能的巨大价值,但元素之间的相互转变有可能把人类带进新的世界,却早日是指日可待的了.劳伦斯(1901-1958)Ernest Orlando Lawrence1939年诺贝尔物理学奖——回旋加速器的发明1939年诺贝尔物理学奖授予美国加利福尼亚伯克利加州大学的劳伦斯,以表彰他发明和发展了回旋加速器,以及用之所得到的结果,特别是人工放射性元素.核物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式改变自然,探索自然,开发自然和更充分地利用大自然的潜力.各种加速器的发明对核物理学的发展起了很大的作用,而劳伦斯的回旋加速器则是这类创造中最有成效的一项.1940年未授奖1941年未授奖斯特恩(1888-1969)Otto Stem1942年未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1943年诺贝尔物理学奖授予美国宾夕法尼亚州皮兹堡的卡内奇技术学院的德国物理学家斯特恩,以表彰他在发展分子束方法上所作的贡献和发现了质子的磁矩.拉比(1898-1988)Isidor Isaac Rabi1944年诺贝尔物理学奖——原子核的磁特性1944年诺贝尔物理学奖授予美国纽约州纽约市哥伦比亚大学的拉比(Isidor Isaac Rabi ,1898-1988),以表彰他用共振方法纪录原子核磁特性.拉比的最大功绩是发展了斯特恩的分子束法,并用之于磁共振.分子束磁共振在研究原子和原子核特性方面有独特的功能,后来形成了一系列的物理学分支.泡利(1900-1958)Wolfgang Pauli1945年诺贝尔物理学奖——泡利不相容原理1945年诺贝尔物理学奖授予美国新泽西州普林斯顿大学的奥地利物理学家泡利(Wolfgang Pauli,1900-1958),以表彰他发现所谓泡利不相容原理.不相容原理是原子理论中重要的原理,是1925年1月由泡利提出的.这一原理可以表述为:对于完全确定的量子态来说,每一量子态不可能存在多于一个粒子.泡利后来用量子力学理论处理了h/4p自旋问题,引入了二分量波函数的概念和所谓的泡利自旋矩阵.通过泡利等人对量子场的研究,人们认识到只有自旋为半径整数的粒子(即费米子)才受不相容原理的限制,从而确立了自旋统计关系.布里奇曼(1882-1961)Percy Williams Bridgman1946年诺贝尔物理学奖——高压物理学1946年诺贝尔物理学奖授予美国妈萨诸塞州坎伯利基哈佛大学的布里奇曼(Percy Williams Bridgman,1882-1961),以表彰他发明了产生极高压强的设备,并用这些设备在高压物理领域中所作出的发现.阿普顿(1892-1965)Sir Edward Victor Appleton1947年诺贝尔物理学奖——电离层的研究1947年诺贝尔物理学奖授英国林顿科学与工业研究部的阿普顿(Sir Edward Victor Appleton ,1892-1965),以表彰他对上大气层物理的研究,特别是发现了所谓的阿普顿层.电离层的研究对通讯事业有极大意义.电离层是从离地面约50km开始一直伸展到约1000km高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射\反射和散射,产生极化面的旋转并受到不同程度的吸收. 布拉开(1897-1974)Lord Patrick M.S.Blackett1948年诺贝尔物理学奖——云室方法的改进1948年诺贝尔物理学奖授予英国曼彻斯特维克托利亚大学的布拉开(Lord Patrick M.S.Blackett ,1897-1974),以表彰他发展了威尔逊云室方法,以及这一方法在核物理和宇宙辐射领域所作的发现.汤川秀树(1907-1981)YukawaHideki1949年诺贝尔物理学奖——预言介子的存在1949年诺贝尔物理学奖授予日本东京帝国大学的汤川秀树(YukawaHideki, 1907-1981),以表彰他在核力的理论基础上预言了介子的存在.汤川秀树是日本著名的理论物理学家,他于1935年在大阪写了一篇划时代的论文,发表在《日本数学和物理学会杂志》上.尽管这篇论文不够全面,但他有些重要的新思想极富有创造性,对未来物理学的发展有着深远的影响.鲍威尔(1903-1969)Cecil Frank Powell1950年诺贝尔物理学奖——核乳胶的发明1950年诺贝尔物理学奖授予英国布利斯托尔大学的鲍威尔(Cecil Frank Powell ,1903-1969),以表彰他发现了研究核过程的光学方法,并用这一方法作出的有关介子的发现.所谓研究核过程的光学方法,指的是运用特制的照相乳胶记录核反应和粒子径迹的方法,这种特制的乳胶就叫核乳胶.1951年诺贝尔物理学奖——人工加速带电粒子1951年诺贝尔物理学奖授予英国哈维尔(Harwell)原子能研究所署的考可饶夫(Sir John Douglas Cockcroft ,1897-1967)和爱尔兰都在柏林大学的瓦尔顿(Ernest Thomas Sinton Walton ,1903-1995),以表彰他们在发展用人工加速原子性粒子的方法使原子。
历届诺贝尔物理学奖得主及成就

诺贝尔物理学奖诺贝尔物理学奖是1900年6月根据诺贝尔的遗嘱设立的,属诺贝尔奖之一。
该奖项旨在奖励那些对人类物理学领域里作出突出贡献的科学家。
由瑞典皇家科学院颁发奖金,每年的奖项候选人由瑞典皇家自然科学院的瑞典或外国院士、诺贝尔物理和化学委员会的委员、曾被授与诺贝尔物理或化学奖金的科学家、在乌普萨拉、隆德、奥斯陆、哥本哈根、赫尔辛基大学、卡罗琳医学院和皇家技术学院永久或临时任职的物理和化学教授等科学家推荐。
奖项由来诺贝尔生于瑞典的斯德哥尔摩,诺贝尔一生致力于炸药的研究,在硝化甘油的研究方面取得了重大成就。
他不仅从事理论研究,而且进行工业实践。
他一生共获得技术发明专利355项,并在欧美等五大洲20个国家开设了约100家公司和工厂,积累了巨额财富。
1896年12月10日,诺贝尔在意大利逝世。
逝世的前一年,他留下了遗嘱,设立诺贝尔奖。
据此,1900年6月瑞典政府批准设置了诺贝尔基金会,并于次年诺贝尔逝世5周年纪念日,即1901年12月10日首次颁发诺贝尔奖。
自此以后,除因战时中断外,每年的这一天分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆举行隆重授奖仪式。
1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济奖(全称为瑞典中央银行纪念阿尔弗雷德·伯恩德·诺贝尔经济科学奖金,亦称纪念诺贝尔经济学奖,并于1969年开始与其他5项奖同时颁发。
诺贝尔经济学奖的评选原则是授予在经济科学研究领域作出有重大价值贡献的人,并优先奖励那些早期作出重大贡献者。
颁奖时间每次诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。
为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
这一有特殊意义的做法一直沿袭到如今。
评选过程每年9月至次年1月31日,接受各项诺贝尔奖推荐的候选人。
通常每年推荐的候选人有1000— 2000人。
历年诺贝尔奖名单列表

历年诺贝尔奖名单列表篇一:诺贝尔奖是是世界上最负盛名的奖项之一,由瑞典化学家阿尔弗雷德·诺贝尔(Alfred Nobel)于1895年创立,旨在奖励在物理学、化学、医学、和平等方面做出杰出贡献的人。
自1901年以来,诺贝尔奖已经颁发了220多次,共有68,000多人获得了该奖项。
以下是历年诺贝尔奖名单列表:1. 1901年 - 化学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)2. 1902年 - 和平奖:约翰·卡尔·马克思(John卡尔·马克思,德国哲学家、政治经济学家和社会主义思想家)3. 1906年 - 物理学奖:约翰·泰勒(John J.泰勒,英国物理学家)4. 1907年 - 化学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)5. 1911年 - 和平奖:马丁·路德·金(Martin Luther King,美国民权运动领袖)6. 1912年 - 物理学奖:约翰·普雷斯珀·洛伦兹(John P.L.洛伦兹,英国物理学家)7. 1914年 - 化学奖:约翰·冯·诺伊曼(John von诺伊曼,德国物理学家)8. 1915年 - 和平奖:罗伯特·麦克斯韦(Robert麦克斯韦,苏格兰物理学家)9. 1916年 - 物理学奖:雅各布·伯努利(Jacques Burney,英国物理学家)10. 1919年 - 化学奖:约瑟夫·冯·汤姆生(Joseph von汤姆生,德国化学家)11. 1920年 - 和平奖:约瑟夫·冯·李斯特(Joseph von李斯特,德国军官和教育家)12. 1921年 - 物理学奖:雅各布·亨里克斯·泽尔金(Jacques Henighan泽尔金,英国物理学家)13. 1922年 - 化学奖:约瑟夫·冯·施密特(Joseph von施密特,德国化学家)14. 1924年 - 和平奖:乔治·梅特林(George Metlin,美国教育家和社会活动家)15. 1925年 - 物理学奖:爱德华·泰勒(Edward deBroglie,英国物理学家)16. 1926年 - 化学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)17. 1927年 - 和平奖:马丁·布伦茨(Martin Buber,德国哲学家和社会学家)18. 1929年 - 物理学奖:约翰·开普勒(JohnKepler,英国物理学家)19. 1930年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)20. 1931年 - 和平奖:尼古拉·卡西姆·马尔科姆(Niels Bohr,美国物理学家和工程师)21. 1932年 - 物理学奖:爱德华·泰勒(Edward deBroglie,英国物理学家)22. 1933年 - 化学奖:雅各布·伯克(Jacques Burney,英国物理学家)23. 1934年 - 和平奖:雅各布·切博维茨(Jacques Chebois,法国社会活动家)24. 1935年 - 物理学奖:乔治·伽莫夫(George G.伽莫夫,美国物理学家)25. 1936年 - 化学奖:约瑟夫·冯·诺伊曼(Joseph von诺伊曼,德国物理学家)26. 1937年 - 和平奖:尼尔斯·玻尔(Niels Bohr,美国物理学家和工程师)27. 1938年 - 物理学奖:约翰·普雷斯珀·洛伦兹(John P.L.洛伦兹,英国物理学家)28. 1939年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)29. 1940年 - 和平奖:罗伯特·麦克斯韦(Robert麦克斯韦,苏格兰物理学家)30. 1941年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein,德国物理学家)31. 1942年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)32. 1944年 - 和平奖:约翰·冯·诺伊曼(John von诺伊曼,德国物理学家)33. 1945年 - 物理学奖:乔治·伽莫夫(George G.伽莫夫,美国物理学家)34. 1946年 - 化学奖:雅各布·伯克(Jacques Burney,英国物理学家)35. 1947年 - 和平奖:约瑟夫·冯·李斯特(Joseph von李斯特,德国军官和教育家)36. 1948年 - 物理学奖:尼尔斯·玻尔(Niels Bohr,美国物理学家和工程师)37. 1949年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)38. 1950年 - 和平奖:约翰·卡西姆·马尔科姆(John C. R. Martin,美国教育家和社会活动家)39. 1951年 - 物理学奖:乔治·伽莫夫(George G.伽莫夫,美国物理学家)40. 1952年 - 化学奖:罗伯特·弗罗斯特(Robert F.斯特灵,美国化学家)41. 1953年 - 和平奖:马丁·布伦茨(Martin Buber,德国哲学家和社会学家)42. 1954年 - 物理学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)43. 1955年 - 化学奖:爱德华·泰勒(Edward deBroglie,英国物理学家)44. 1956年 - 和平奖:尼尔斯·玻尔(Niels Bohr,美国物理学家和工程师)45. 1957年 - 物理学奖:乔治·伽莫夫(George G.伽莫夫,美国物理学家)46. 1958年 - 化学奖:雅各布·伯克(Jacques Burney,英国物理学家)47. 1959年 - 和平奖:约翰·卡西姆·马尔科姆(John C. R. Martin,美国教育家和社会活动家)48. 1960年 - 物理学奖:乔治·伽莫夫(George G.伽莫夫,美国物理学家)49. 1961年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)50. 1962年 - 和平奖:约瑟夫·冯·李斯特(Joseph von李斯特,德国军官和教育家)51. 1963年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein,德国物理学家)52. 1964年 - 化学奖:约翰·卡西姆·马尔科姆(John C. R. Martin,美国教育家和社会活动家)53. 1965年 - 和平奖:马丁·布伦茨(Martin Buber,德国哲学家和社会学家)54. 1966年 - 物理学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)55. 1967年 - 化学奖:雅各布·伯克(Jacques Burney,英国物理学家)56. 1968年 - 和平奖:尼尔斯·玻尔(Niels Bohr,美国物理学家和工程师)57. 1969年 - 物理学奖:约翰·普雷斯珀·洛伦兹(John P.L.洛伦兹,英国物理学家)58. 1970年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德,法国化学家)59. 1971年 - 和平奖:约瑟夫·冯·李斯特(Joseph von李斯特,德国军官和教育家)60. 1972年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein,德国物理学家)61. 1973年 - 化学奖:罗伯特·弗罗斯特(Robert F.斯特灵,美国化学家)62. 1974年 - 和平奖:马丁·布伦茨(Martin Buber,德国哲学家和社会学家)63. 1975年 - 物理学奖:阿尔弗雷德·诺贝尔(Alfred Nobel)64. 1976年 - 化学奖:路易·巴斯德(Louis巴尔扎克·巴斯德篇二:历年诺贝尔奖名单列表以下是历年诺贝尔奖的列表,包括获奖人、奖项和获奖领域。
历年诺贝尔物理学奖

J.斯坦伯格
英国 粒子对称结构进行论证
1989 N.F.拉姆齐
美国
W.保罗
德国
H.G.德梅尔特 美国
发明原子铯钟及提出氢微波 激射技术 创造捕集原子的方法以达到 能极其精确地研究一个电子 或离子
1990 J.杰罗姆 H.肯德尔 R.泰勒
美国 美国 加拿大
发现夸克存在的第一个实验 证明
年份 获奖者 1991 P.G.德燃纳 1992 J.夏帕克
德国 法国
获奖原因
发现标识元素的次级伦琴 辐射
研究辐射的量子理论,发 现基本量子,提出能量量 子化的假设,解释了电磁 辐射的经验定律
发现阴极射线中的多普勒 效应和原子光谱线在电场 中的分裂
发现镍钢合金的反常性以 及在精密仪器中的应用
年份 获奖者
国籍
获奖原因
1921 A.爱因斯坦
德国
对现物理方面的贡献,特 别是阐明光电效应的定律
发明点燃航标灯和浮标灯 的瓦斯自动调节器
在低温下研究物质的性质 并制成液态氦
发现伦琴射线通过晶体时 的衍射,既用于决定X射 线的波长又证明了晶体的 原子点阵结构
用伦琴射线分析晶体结构
年份 获奖者 1917 C.G.巴克拉 1918 M.V.普朗克
1919 J.斯塔克 1920 C.E.吉洛姆
国籍 英国 德国
1922 N.玻尔
丹麦 研究原子结构和原子辐射, 提出他的原子结构模型
1923 R.A.密立根
美国
研究元电荷和光电效应,
通过油滴实验证明电荷有
最小单位
1924 K.M.G.西格班 瑞典
伦琴射线光谱学方面的发 现和研究
1925 J.弗兰克 G.L.赫兹
德国 德国
历年诺贝尔物理学奖

历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501941年诺贝尔物理学奖——未授奖1942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1982年诺贝尔物理学奖——相变理论1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖——W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。
从诺贝尔物理学奖历届获奖研究方向中总结近百年来物理学科的发展方向

从诺贝尔物理学奖历届获奖研究方向中总结近百年来物理学科的发展方向诺贝尔物理学奖是根据瑞典化学家诺贝尔遗嘱所设的系列奖项之一,也是举世瞩目的最高科学大奖,是科学家们最梦想得到的奖项。
诺贝尔物理学奖的颁发已经持续一百余年了。
这一百余年正是现代物理学大发展的时期。
诺贝尔物理学奖包括了物理学的许多重大研究成果,遍及现代物理学的各个主要领域。
一百多年来的颁奖显示了现代物理学发展的轨迹。
可以说,诺贝尔物理学奖显示了现代物理学伟大成就的缩影,折射出了现代物理学的发展脉络。
诺贝尔物理学奖的颁发体现了物理学新成果的社会价值和历史价值,对科学进步有举足轻重的影响。
(注:摘自郭奕玲沈慧君《物理学史》)下面,我们把一百多年来历届诺贝尔物理学奖跟物理学的发展联系起来,把从1901年开始到1976年分为三个25年,也就是三个时代,从1777年到至今称为第四个时代,从这四个时代的诺贝尔得主的研究方向总结归纳出现代物理的发展轨迹及方向。
在第一个25年里,是一个从理论物理过度到量子物理的重要时期。
这一时期中,X射线的研究起到了十分重要的作用,首届诺贝尔物理学奖授予伦琴就是由于他发现了X射线,正是这一发现拉开了现代物理学革命的序幕。
X射线的发现和随后和放射性和电子的发现以及作为其起因的阴极射线的研究相继在1902年、1903年、1905年、1906年被授予诺贝尔物理学奖。
贝克勒尔和居里夫妇对放射性的工作获得了1903年的诺贝尔物理学奖,这些工作再加上卢瑟福对α射线的研究,使人们认识到以前被看成大概是没有结构的原子实际上包含了非常小而又非常紧凑的核。
人们还发现,有些原子核不稳定,会发射α,β等辐射。
在当时这可以说是一种革命性的简介,后来和物理学其他领域的并行工作一起,导致了创立第一章有用的原子结构图像。
X射线的研究,特别是X射线光谱学的研究,为原子结构提供了详细的信息,为此劳厄、亨利布拉格和劳伦斯布拉格、巴拉克以及曼妮西格班相继于1914年、1915年、1917年、1924年获得了诺贝尔物理学奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1955年诺贝尔物理学奖
1955年的物理学奖,被美国的两位物理学家分享,他们是威利斯·兰姆(Willis mb)和波利卡普·库什(Polykarp Kusch)。
兰姆使用微波技术探究氢原子的精细结构,发现了兰姆位移;库什使用射频束精确地测量了电子的磁矩,完善了核理论。
二人都对量子电动力学的创立和发展起到重大的推动作用。
兰姆和库什都是在第二次世界大战前不久进入哥伦比亚大学辐射实验室的,两人都是拉比的追随者与合作者。
兰姆先是从事理论研究,发表过多篇论文。
库什则直接参与了拉比的磁共振方法研究。
他们二人在第二次世界大战期间都从事过雷达技术的工作,从而促使他们对微波有所了解,并在后来的实验中用到这一技术。
他们在同一个实验室中工作,但分别领导着一个小组,在同一年完成并且可以用同样的原理来解释各自的发现,这一原理就是关于电子与电磁辐射相互作用的理论。
显然,他们的研究工作是相互促进的,尽管使用的方法与实验装置有所不同。
威利斯·尤金·兰姆(Willis Eugene Lamb,1913—2008),出生于美国加利福尼亚州的洛杉矶,父亲是一位电话工程师。
1930年,兰姆进入伯克利加州大学,1934年获化学学士学位。
随后在奥本海默的指导下研究理论物理学,1934年获得博士学位。
1938年,兰姆到哥伦比亚大学任教。
从1943年到1951年,兰姆在哥伦比亚大学辐射实验室工作,在那里完成了他的主要成就。
2008年,逝世于亚利桑那洲的图森。
1
兰姆的发现与氢原子有关,氢原子中有一个电子,沿一系列的轨道绕其核旋转,每条轨道对应于确定的能级,各能级都具有精细结构。
长期以来,精细结构的解释是使用狄拉克的相对论性量子力学,并且得到了公认。
然而,用光学方法验证狄拉克的精细结构理论,历经一二十年,始终未获得成功。
氢光谱作为最典型、最简单的一种原子光谱,对它的研究历时一百多年。
1885年,巴耳末发现14根氢谱线的波长可以用一个简单的公式来表示,这就是巴耳末公式。
随后不久的1887年,迈克尔逊和莫雷发现这一谱系的第一条谱线Hα线有精细结构,当时由于谱线本底太强,无法分辨结构的细节,只能认为是由双线组成。
后人根据谱线强度的包络线作出种种猜测,例如,有人认为里面包含五条强度不等的细线。
1913年,玻尔提出定态跃迁原子模型,成功地推出了巴耳末公式,然而仍不能解释精细结构。
1916年,索末菲对玻尔的理论进行了修正,计算出了双线的理论值,与实验所得基本吻合。
1926年,海林堡等人用量子力学计算能级,与索末菲的结果稍有出入。
1928年,狄拉克用相对论量子力学,考虑到自旋和轨道耦合,提出了狄拉克方程,可以描述氢原子的能级,据此得出氢光谱中Hα的精细结构。
只是由于与Hα有关的能级中22S1/2和22P1/2、32S1/2和32P1/2、32S3/2和32P3/2能级分别相等,所以实际上Hα只有五个成分。
为了检验狄拉克理论的正确性,人们对氢光谱作了大量的光学实验,均未有定论。
其中只有加州理工学院的豪斯顿(W.V.Houston)和谢玉铭的实验取得了明确结论,他们的实
2
3
验结果表明,氢光谱的双线间隔比狄拉克理论预测的大约窄了3%,超出了实验误差。
他们指出,可能是狄拉克未考虑到电子与辐射场的相互作用所致。
据此,帕斯特奈克(S.Pasternack )提出,只要假设子能级22S 1/2比22
P 1/2高出0.033cm -1,就可以消除这一分歧。
1945年夏,兰姆从文献中得知,曾有人试图检测气体放电中氢原子的短波射频吸收,却由于微波技术欠佳而未获得成功。
现在微波技术发展了,应该能够做出准确的判断。
于是,他说服学生雷瑟福和他一起做这个实验。
然而,实验开始时并不顺利,在气体放电过程中,氢原子的短波射频吸收受到强烈的干扰。
兰姆经过分析,认为必需创造一种条件,以便利用氢原子中可能具有的亚稳态22S 1/2来做实验。
当氢原子发生射频辐射从22S 1/2跃迁到22P 1/2时,亚稳态将会消失,在大约10-9秒内发出辐射而回到基态,使得亚稳态的氢原子明显减少。
因此,可以通过这种方法对亚稳态进行精确测定。
他们的实验方案如图所示。
兰姆位移实验原理图
把氢气输入到2500K 的加热炉中,约有64%的氢分子离解,形成氢原子束,在输出的途中被加速到10.2eV
的横向电子束
激发到n=2的各个状态。
而处于22P1/2和22P3/2态的氢原子在很短的时间内就会自发地跃迁到基态12S1/2,处于22S1/2态的氢原子受选择定则的限制不能做这样的跃迁,因而形成亚稳态。
氢原子束在前进途中要经过一个射频区域,这是磁共振方法的基本部件,由电磁铁和微波系统组成。
电磁铁提供0.3T以上的连续可调的恒定磁场,其作用是使氢原子产生塞曼能级分裂。
微波系统可使氢原子产生2S和2P态的塞曼能级之间的共振跃迁。
不同的磁场强度对应于不同的共振频率,这样就可以通过调整磁场强度,选择共振频率,而微波的频率是固定的。
发生共振时,2S亚稳态氢原子由于跃迁到2P态而减少,因此,这一装置可以通过调整共振频率严格控制产生的2S亚稳态氢原子的数量。
当亚稳态和基态的氢原子打到钨接收板P时,因为钨的逸出功小于10.2eV,亚稳态氢原子有足够的能量使之电离,而基态氢原子则不能。
在装置中,集电极A对P保持3V年—4V的电压,从P逸出的电子能够被集电极A收集形成集电极电流,送往静电计测量,测量结果可以直观反应亚稳态氢原子的数量。
这样,就可以在共振频率与亚稳态氢原子之间建立联系,从而测定产生亚稳态时的共振频率。
兰姆和雷瑟福的实验结果确切地表明,根据狄拉克理论计算的共振频率与实际测量的共振频率相差1000MHz,正好等于预期的位移值0.033cm—1。
进一步改进设备与测量方法后,他们得到的谱线移动(对应的共振频率位移)为1057.77±0.10MHz。
按照(后来发展的)量子电动力学的计算,氢原子n=2时兰姆位移的理论值为1057.56±0.10MHz,
4
两者相符得很好。
兰姆位移实验,直接促使了量子电动力学的诞生,足可进入十大物理实验的排名。
此后,兰姆在物理上还有很多发现,他在研究核外电子对外磁场的屏蔽作用时,凝聚态中的核磁共振现象还未被发现。
然而,在拉比的分子束磁共振实验中,需要准确地知道外场在核处的有效场应该是多少。
为了解决这个问题,兰姆发表了著名的核磁屏蔽公式。
1963年,兰姆发现了所谓的著名的兰姆凹陷。
兰姆凹陷可用于激光稳频。
波利卡普·库什(Polykarp Kusch,1911—1993),生于德国的布兰肯堡(Blankenburg),1岁时全家迁往美国,成为美国公民,定居于俄亥俄州克利夫兰。
他原先打算学化学,但一进入大学(凯斯技术学院)就改变了志向,改学物理学。
1931年大学毕业,进入伊利诺斯大学继续攻读研究生,1936年获得博士学位。
1937年进入哥伦比亚大学。
二战时期离开学校,先后到威斯汀豪斯公司和贝尔实验室工作,掌握了微波和真空管技术,为日后的研究打下了基础。
战后,他又回到哥伦比亚大学。
库什在哥伦比亚大学期间,很早就跟随拉比使用分子束磁共振从事原子、分子和核物理方面的研究,成为拉比学派中重要的成员。
他本人的研究方向,主要是对原子分子组成成分以及与外加场的相互作用。
战后,他开始研究电子的反常磁矩并且精确测定其数值。
1925年,乌兰贝克(G.E Uhlenbeck)和古德斯密(S.A.Goudsmit)为了解释从光谱实
5
验中得到的数据,曾提出过两个假设。
第一,电子具有内禀角动量;第二,电子具有磁偶磁矩,这个数值等于eh/4πmc,即玻尔磁矩μB。
1928年,狄拉克提出的相对论性量子力学把他们的假设自动地包括在内。
不过,狄拉克理论并没有考虑量子化电磁场与电子的相互作用。
电子磁矩(以玻尔磁子为单位)与其角动量(以h/2π为单位)之比通称g因子,g L表示电子的轨道g因子,而g S表示电子自旋的g因子。
根据狄拉克理论,g S等于2。
1938年,库什与拉比联合发表过一篇论文,内容关于测定g值的分子束磁共振实验。
1947年初,拉比和合作者发现,氢能级的超精细结构也与狄拉克理论不完全符合。
伯莱特(G.Breit)建议,可能是电子的磁矩与玻尔磁子有微波差别所致,他怀疑电子的g S值是否等于2。
于是,库什决定对这个问题进行判决性实验。
他和弗利(H.foley)用分子束磁共振方法做了一系列精确实验,他们以镓和钠为对象用射频激励原子能级。
1948年,他们宣布,电子的内禀磁矩不是精确地等于一个玻尔磁子,而是等于1.00119±0.00005玻尔磁子,或者说电子的g因子(g S)不等于2,而是g S=2×(1.00119±0.00005)。
正好就在这个时候,施温格(J.Schwinger,1965年诺贝尔物理学奖得主)在同一期《物理评论》上发表了他用量子电动力学方法所得的理论计算结果为g S=2×1.0016。
这一巧合表明,量子电动力学在一开始就得到了电子反常磁矩的精确验证。
6。