【精品】2020年北京市中考数学一模试卷及答案解析
2020年北京市海淀区中考数学一模试题(解析版)

2020年北京市海淀区中考数学一模试卷一.选择题1. 2的相反数是()A. 2B. -2C. 12D. 12-【答案】B【解析】【详解】2的相反数是-2.故选:B.2. 下列几何体中,主视图为矩形的是( )A. B.C. D.【答案】B【解析】【分析】根据主视图是从物体正面看,所得到的图形,分别得出四个几何体的主视图,即可解答.【详解】解:A、圆锥的主视图是等腰三角形,不符合题意;B、长方体的主视图是矩形,符合题意;C、球的主视图是圆形,不合题意;D、该几何体的主视图是梯形,不符合题意;故选:B.【点睛】本题考查了简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.3. 北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破19000000人次大关.将19000000用科学记数法可表示为( )A. 0.19×108B. 0.19×107C. 1.9×107D. 19×106【答案】C【解析】【分析】直接利用科学记数法的定义结合科学记数法形式:a×10n,其中1≤a<10,n为正整数,进而得出答案.【详解】解:将19000000用科学记数法表示为:1.9×107.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 如图是北京大兴国际机场俯视图的示意图.下列说法正确的是()A. 这个图形是轴对称图形,但不是中心对称图形B. 这个图形是中心对称图形,但不是轴对称图形C. 这个图形既是轴对称图形,又是中心对称图形D. 这个图形既不是轴对称图形,也不是中心对称图形【答案】A【解析】【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,根据中心对称图形的定义:绕对称中心旋转180°后得到的图形与原图形重合,那么这个图形就是中心对称图形,即可判断得出答案.【详解】由图可知,图形关于中间轴折叠能完全重合,\此图形是轴对称图形,但绕中心旋转180°后,图形不能完全重合,\此图形不是中心对称图形.故选:A.【点睛】本题考查了轴对称图形和中心对称图形,解题关键是熟练掌握轴对称图形和中心对称图形的定义.5. 将抛物线2y x=向下平移3个单位长度所得到的抛物线是()2A. 22(3)=- D.=- C. 2y x2323y x=+ B. 2y x22(3)y x =+【答案】B【解析】【分析】根据“上加下减”即可求出平移后抛物线解析式.【详解】解:根据“上加下减”即可求出向下平移3个单位长后的抛物线解析式为:2=23y x -.故选:B .【点睛】本题考查了抛物线平移问题,熟练掌握左加右减,上加下减是解题的关键.6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC ,若OC =12OA ,则∠C 等于( )A. 15°B. 30°C. 45°D. 60°【答案】B【解析】【分析】连接OB ,构造直角△,结合已知条件推知直角△ABO 的直角边OB 等于斜边OA 的一半,则∠A=30°.【详解】如图,连接OB .∵AB 与⊙O 相切于点B ,∴∠ABO=90°.∵OB=OC ,12OC OA =,∴∠C=∠OBC ,OB=12OA ,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选:B.【点睛】本题考查了切线的性质,圆的切线垂直于过切点的半径;在直角三角形中30°角所对的边等于斜边的一半.7. 若实数m,n,p,q在数轴上的对应点的位置如图所示,且n与q互为相反数,则绝对值最大的数对应的点是( )A. 点MB. 点NC. 点PD. 点Q 【答案】C【解析】【分析】根据数轴可以得到实数m,n,p,q的大小关系,再根据n与q互为相反数,可以得到原点所在的位置,从而可以得到绝对值最大的数对应的点是哪个点.【详解】解:由数轴可得,p<n<m<q,∵n与q互为相反数,∴原点在线段NQ的中点处,∴绝对值最大的数对应的点是点P,故选:C.【点睛】考查实数与数轴、相反数,解题的关键是明确题意,利用数形结合的思想.8. 如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为a,且sin cosa a>,则点M所在的线段可以是( )A. AB和CDB. AB和EFC. CD和GHD. EF和GH【答案】D【解析】【分析】分情况考虑:先考虑点M 分别在边PQ 上的线段AB 和CD 上的情况,根据正弦、余弦函数的定义判断即可;再考虑点M 分别在边QR 上的线段EF 和GH 上的情况,根据正弦、余弦函数的定义判断即可.【详解】如图,当点M 在线段AB 上时,连接OM .sin PM OM a =Q ,cos OP OMa =,OP PM >,sin cos a a \<,同法可证,点M 在CD 上时,sin cos a a <,如图,当点M 在EF 上时,作MJ OP ^于J .sin MJ OM a =Q ,cos OJ OMa =,OJ MJ <,sin cos a a \>,同法可证,点M 在GH 上时,sin cos a a >,故选:D .【点睛】本题考查了正方形的性质,三角函数中正弦和余弦的定义,涉及到分类讨论,关键是构造直角三角形,从而可在直角三角形中利用正余弦的定义进行.二.填空题9. 若代数式1x -在实数范围内有意义,则x 的取值范围是_______.【答案】1x ³【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:范围内有意义,∴x -1≥0,解得x ≥1.故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.10. 如图,在Rt △ABC 中,∠C =90°,BC =2,且tan A =13,则AC =_____.【答案】6【解析】【分析】根据正切的定义列式计算,得到答案.【详解】解:∵ tan A =13,∴13BC AC =,即213AC =,解得,AC =6,故答案为:6.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.11. 分解因式:22ab ac -=_________________________.【答案】()()a b c b c +-.【解析】【详解】试题分析:原式=22()a b c -=()()a b c b c +-,故答案为()()a b c b c +-.考点:提公因式法与公式法的综合运用.12. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13. 某校初三年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室.为了解初三年级学生的答疑情况,学校教学管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为_____.【答案】47【解析】【分析】根据概率公式即可求出该教室是数学答疑教室的概率.【详解】根据题意可知:共开放7网络教室,其中4个是数学答疑教室,3个是语文答疑教室,管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为47.故答案为:47.【点睛】考查了列表法与树状图法求概率,解题关键是会列列表或树状图和掌握概率公式.14. 如图,在▱ABCD 中,延长CD 至点E ,使DE =DC ,连接BE 与AC 于点F ,则BF FE的值是_____.【答案】12【解析】【分析】在▱ABCD 中,AB ∥CD ,AB =CD ,根据DE =DC ,可得AB =CD =DE =12CE ,再由AB ∥CD ,可得△ABF ∽△CEF ,对应边成比例即可求得结论.【详解】解:在▱ABCD 中,AB ∥CD ,AB =CD ,∵DE =DC ,∴AB =CD =DE =12CE ,∵AB ∥CD ,∴△ABF ∽△CEF ,∴12BFAB FE CE ==.故答案为:12.【点睛】考查了相似三角形的判定与性质、平行四边形的性质,解题关键是掌握并运用了相似三角形的判定与性质.15. 为了丰富同学们的课余生活,某年级买了3个篮球和2个足球,共花费了474元,其中篮球的单价比足球的单价多8元,求篮球和足球的单价,如果设篮球的单价为x 元,足球的单价为y 元,依题意可列方程组为_____.【答案】324748x y x y +=ìí-=î【解析】【分析】根据“3个篮球的价钱+2个足球的价钱=474和篮球单价﹣足球的单价=8元”可列方程组.【详解】设篮球的单价为x 元,足球的单价为y 元,根据题意可列方程组为324748x y x y +=ìí-=î,故答案为:324748x y x y +=ìí-=î.【点睛】考查了实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目蕴含的相等关系,再设未知数,列出方程组.16. 如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形.下面四个结论中:①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;②存在无数个直角梯形,其四个顶点在同一条抛物线上;③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上;④至少存在一个直角梯形,其四个顶点在同一个圆上.所有正确结论的序号是_____.【答案】①②③【解析】【分析】根据直角梯形的性质,画出图形利用图象法一一判断即可.【详解】①如图1中,点P 是正方形ABCD 的边AD 上的任意一点,则四边形ABCP 是直角梯形,这样的直角梯形有无数个,故①正确.②如图2中,四边形ABCO 样的直角梯形有无数个,故②正确.③如图3中,四边形ABCD 是直角梯形,这样的直角梯形有无数个,故③正确.④直角梯形的四个顶点,不可能在同一个圆上,故④错误,故答案为:①②③.【点睛】考查了直角梯形的定义,二次函数的性质,反比例函数的性质,四点共圆等知识,解题关键是理解题意,学会利用图象法解决问题.三.解答题17. 计算:()02122sin 30-+-°+.【答案】【解析】【分析】利用二次根式的性质和特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简,再相加减即可.【详解】原式2×12﹣【点睛】考查了实数的运算,解题关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18. 解不等式组:()3121212x x x x ì-<ïí-+>ïî.【答案】﹣1<x <3【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】()3121212x x x x ì-<ïí-+>ïî①②,由①得:x <3,由②得:x >﹣1,所以不等式组的解集为﹣1<x <3.【点睛】考查了求不等式组的解集,解题关键是熟练掌握求公共部分的方法:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19. 如图,已知等边三角形ABC ,延长BA 至点D ,延长AC 至点E ,使AD =CE ,连接CD ,BE .求证:△ACD ≌△CBE .【答案】见解析【解析】【分析】根据等边三角形的性质求得AC =BC ,∠DAC =∠BCE ,再根据SAS 证明△ACD ≌△CBE .【详解】证明:∵△ABC 是等边三角形,∴AC =BC ,∠CAB =∠ACB =60°,∴∠DAC =∠BCE =120°,在△ACD 和△CBE 中AC BC DAC BCEAD CE =ìïÐ=Ðíï=î,∵AD =CE ,∴△ACD ≌△CBE (SAS ).角形的判定定理.20. 已知关于x 的一元二次方程x 22﹣x +2m 1=0﹣.(1)当m =1﹣时,求此方程的根;(2)若此方程有两个实数根,求m 的取值范围.【答案】(1)x =﹣1或x =3;(2)m ≤1【解析】【分析】(1)将m =1﹣代入方程,再利用因式分解法求解可得;(2)根据方程有两个实数根得出△=b 24﹣ac ≥0,据此列出关于m 的不等式求解可得.【详解】解:(1)将m =1﹣代入方程,得:x 22﹣x 3=0﹣,∵(x +1)(x 3﹣)=0,∴x +1=0或x 3=0﹣,解得x =1﹣或x =3;(2)∵方程有两个实数根,∴△=(﹣2)24×1×﹣(2m 1﹣)≥0,解得m ≤1.【点睛】本题考查了解一元二次方程和根的判别式,熟悉相关性质是解题的关键.21. 如图,在▱ABCD 中,∠ABC =60°,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接DF .(1)求证:△ABF 是等边三角形;(2)若∠CDF =45°,CF =2,求AB 的长度.【答案】(1)见解析;(2)31【解析】【分析】(1)根据在▱ABCD 中,∠ABC =60°,可以得到∠DAB 的度数,然后根据AF 平分∠DAB ,可以得到∠F AB 的度数,然后等边三角形的判定方法即可得到△ABF 是等边三角形;(2)作FG ⊥DC 于点G ,然后根据直角三角形中30°角所对的直角边等于斜边的一半,可以得到CG 、FG 的长,然后即可得到DG 的长,从而可以得到DC 的长,然后即可得到AB 的长.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠DAB +∠ABC =180°,∵∠ABC=60°,∴∠DAB=120°,∵AF平分∠DAB,∴∠F AB=60°,∴∠F AB=∠ABF=60°,∴∠F AB=∠ABF=∠AFB=60°,∴△ABF是等边三角形;(2)作FG⊥DC于点G,∵四边形ABCD是平行四边形,∠ABC=60°,∴DC∥AB,DC=AB,∴∠FCG=∠ABC=60°,∴∠GFC=30°,∵CF=2,∠FGC=90°,,∴CG=1,FG=3∵∠FDG=45°,∠FGD=90°,∴∠FDG=∠DFG=45°,,∴DG=FG∴DC=DG+CG+,1∴AB+,1即AB+.1【点睛】本题考查等边三角形的判定与性质、角平分线的性质、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22. 致敬,最美逆行者!病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500):b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:919,997,1045,1068,1101,1159,1179,1194,1195,1262.根据以上信息回答问题:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数 A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是 ,其中医务人员人数超过1000人的省共有 个.(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1).【答案】(1)B;(2)1021人,15;(3)90后”大约有1.2万人【解析】【分析】(1)根据题意列式计算即可得到正确的选项;(2)根据频数(率)分布直方图中的信息和中位数的定义即可得到结论;(3)根据样本估计总体,可得到“90后”大约有1.2万人.【详解】解:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数为384787381=31097﹣(人),故选B ;(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是997104522101+=(人);其中医务人员人数超过1000人的省(区、市)共有15(个);故答案为:1021人,15;(3)4041038342000118001614338148++´»++(人),答:“90后”大约有1.2万人.【点睛】本题考查了频数(率)分布直方图,样本估计总体,熟悉相关性质是解题的关键.23. 在平面直角坐标系xOy 中,直线x =3与直线y =12x +1交于点A ,函数y =k x(k >0,x >0)的图象与直线x =3,直线y =12x +1分别交于点B ,C .(1)求点A 的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数y =k x(k >0,x >0)的图象在点B ,C 之间的部分与线段AB ,AC 围成的区域(不含边界)为W .①当k =1时,结合函数图象,求区域W 内整点的个数;②若区域W 内恰有1个整点,直接写出k 的取值范围.【答案】(1)A(3,52);(2)①在W区域内有1个整数点;②当区域W内恰有1个整点时,1≤k<2或16<k≤20【解析】【分析】(1)根据题意列方程即可得到结论;(2)①当k=1时,求得B、C的坐标,根据图象得到结论;②分两种情况根据图象即可得到结论.【详解】解:(1)直线x=3与直线y=12x+1交于点A,∴3112xy xìïïïí==+ïïïî,解得352xy=ìïí=ïî,∴A(3,52);(2)①当k=1时,根据题意B(3,13),C(1-+,12+),由图像可得,在W区域内有1个整数点:(2,1);②若区域W内恰有1个整点,当C点在直线x=3的左边时,如图1,在W区域内有1个整数点:(2,1),∴1≤k<2;当C点在直线x=3的右边时,如图2,在W区域内有1个整数点:(4,4),∴16<k≤20;综上,当区域W内恰有1个整点时,1≤k<2或16<k≤20【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合思想解决问题是本题的关键.24. 如图,在Rt△ABC中,∠BAC=90°,点D为BC边的中点,以AD为直径作⊙O,分别与AB,AC交于点E,F,过点E作EG⊥BC于G.(1)求证:EG是⊙O的切线;(2)若AF=6,⊙O的半径为5,求BE的长.【答案】(1)见解析;(2)8【解析】【分析】(1)先判断出EF是⊙O的直径,进而判断出OE∥BC,即可得出结论;(2)先根据勾股定理求出AE,再判断出BE=AE,即可得出结论.【详解】(1)证明:如图,连接EF,∵∠BAC=90°,∴EF是⊙O的直径,∴OA=OE,∴∠BAD=∠AEO,∵点D是Rt△ABC的斜边BC的中点,∴AD=BD,∴∠B=∠BAD,∴∠AEO=∠B,∴OE∥BC,∵EG⊥BC,∴OE⊥EG,∵点E在⊙O上,∴EG是⊙O的切线;(2)∵⊙O的半径为5,∴EF=2OE=10,在Rt△AEF中,AF=6,,根据勾股定理得,AE EF AF=-由(1)知OE∥BC,∵OA=OD,∴BE=AE=8.【点睛】此题主要考查了圆的有关性质,切线的判定,直角三角形斜边的中线是斜边的一∥是解本题的关键.半,勾股定理,能判断出EF BC25. 某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.根据上表回答下列问题:(1)第一组一共进行了 场比赛,A队的获胜场数x为 ;(2)当B队的总积分y=6时,上表中m处应填 ,n处应填 ;(3)写出C队总积分p的所有可能值为: .【答案】(1)10,3;(2)0:2, 2:0;(3)9或10【解析】【分析】(1)按照5个队中每个队都要和另外4个队进行一场比赛,而A与B和B与A属于同一场比赛,列式计算或直接从表中数一下即可得比赛场数;根据表中比赛结果可直接得出A队的获胜场数x的值;(2)每场比赛的结果有四种:0:2,1:2,2:1,2:0,设以上四种得分为a,b,c,d,且a<b<c<d,根据E和A的总分可得关于a,b,c,d的等式,化简即可得出a,b,c,d的值,设m对应的积分为x,根据题意得关于x的方程,解得x的值,则可得答案;(3)C队胜2场,分两种情况:当C、B的结果为2:0时;当C、B的结果为2:1时,分别计算出p的值即可.【详解】解:(1)∵()55110´-=(场),∴第一组一共进行了10场比赛;∵每场比赛采用三局两胜制,A、B的结果为2:1,A、C的结果为2:0,A、E的结果为2:0,∴A队的获胜场数x为3;故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b <c<d,根据E的总分可得:a+c+b+c=9,∴a=1,b=2,c=3,根据A的总分可得:c+d+b+d=13,∴d=4,设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,∴x=1,∴m处应填0:2;∴B:C=0:2,∴C:B=2:0,∴n处应填2:0;(3)∵C队胜2场,∴分两种情况:当C、B的结果为2:0时,p=1+4+3+2=10;当C、B的结果为2:1时,p=1+3+3+2=9;∴C队总积分p的所有可能值为9或10.故答案为:9或10.【点睛】本题考查了统计表在比赛积分问题中的应用,读懂表格中的数据,理清题中的数量关系是解题的关键.26. 在平面直角坐标系xOy 中,抛物线222y x mx m m =-+-+的顶点为A(1)求抛物线的顶点坐标(用m 表示);(2)若点A 在第一象限,且2OA =,求抛物线的解析式;(3)已知点(1,2)B m m --,(2,2)C ,若抛物线与线段BC 有公共点,结合函数图象,直接写出m 的取值范围【答案】(1)(,)m m ;(2)22y x x =-+或写为:2(1)1y x =--+;(3)2m £,或3m ³.【解析】【分析】(1)化抛物线为顶点式,即可写出顶点坐标;(2)求出点AO ,列方程求解即可;(3)考虑点C 在抛物线上时m 的值,再结合图形,分情况进行讨论.【详解】(1)∵2222()y x mx m m x m m =-+-+=--+,∴抛物线的顶点A 坐标为(,)m m .(2)点A 在第一象限,∴OA =,∵OA =∴1m =抛物线的表达式为22y x x =-+,或写为:2(1)1y x =--+(3)把22C (,)代入222y x mx m m =-+-+,得22224m m m =-+-+,解得2m =或3,结合图象可得:当2m £时,抛物线与线段BC 有公共点,当23m <<时,抛物线与线段BC 无公共点,当3m ³时,抛物线与线段BC 有公共点;综上,当2m £或3m ³时,抛物线与线段BC 有公共点.【点睛】本题考查了二次函数的综合,解决本题的关键是掌握二次函数的图象和性质.27. 已知∠MON =α,A 为射线OM 上一定点,OA =5,B 为射线ON 上一动点,连接AB ,满足∠OAB ,∠OBA 均为锐角.点C 在线段OB 上(与点O ,B 不重合),满足AC =AB ,点C 关于直线OM 的对称点为D ,连接AD ,OD .(1)依题意补全图1;(2)求∠BAD 的度数(用含α的代数式表示);(3)若tanα=34,点P 在OA 的延长线上,满足AP =OC ,连接BP ,写出一个AB 的值,使得BP ∥OD ,并证明.【答案】(1)补全图见解析;(2)180°2α﹣;(3,理由见解析【解析】【分析】(1)根据要求画出图形即可.(2)首先证明∠D+∠ABO=180°,再利用四边形内角和定理解决问题即可.(3)假设PB∥OD,求出AB的值即可.【详解】解:(1)图形,如图所示.(2)CQ,D关于AO对称,\D@D,AOD AOCÐ=Ð=,D ACO\Ð=Ð,AOD AOC a=Q,AC AB\Ð=Ð,ACB ABCÐ+Ð=°Q,ACO ACB180\Ð+Ð=°,D ABC180\Ð+Ð=°,180DAB DOBÐ=Q,DOB a2DAB a\Ð=°-.1802(3)如图2中,不妨设//^于J.OD PB.作AH BC^于H,BJ OA在Rt AOH D 中,5OA =Q ,3tan 4AOH Ð=,3AH \=,4OH =,设CH BH x ==,则2BC x =,//OD BP Q ,DOA OPB \Ð=Ð,DOA AOB Ð=ÐQ ,AOB OPB \Ð=Ð,4PB OB x \==+,BJ OP ^Q ,549OP OA AP x x =+=+-=-,1(9)2OJ JP x \==-,cos OH OJ AOH OA OB Ð==Q ,\1(9)4254x x-=+,解得1x =,1BH \=,AB \【点睛】本题属于几何变换综合题,考查了轴对称,等腰三角形的判定和性质,四边形内角和定理,解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.28. ,A B 是圆上的两个点,点P 在⊙C 的内部.若APB Ð为直角,则称APB Ð为AB 关于⊙C 的内直角,特别地,当圆心C 在APB Ð边(含顶点)上时,称APB Ð为AB 关于⊙C 的最佳内直角.如图1,AMB Ð是AB 关于⊙C 的内直角,ANB Ð是AB 关于⊙C 的最佳内直角.在平面直角坐标系xOy 中.(1)如图2,⊙O 的半径为5,()0,5,(4,3)A B -是⊙O 上两点.①已知()()()1231,003-21P P P ,,,,,在123,,,APB AP B AP B ÐÐÐ中,是AB 关于⊙O 的内直角的是______;②若在直线2y x b =+上存在一点P ,使得APB Ð是AB 关于⊙O 的内直角,求b 的取值范围.(2)点E 是以(),0T t 圆心,4为半径的圆上一个动点,⊙T 与x 轴交于点D (点D 在点T 的右边).现有点()()1,0,0,M N n ,对于线段MN 上每一点H ,都存在点T ,使DHE Ð是DE 关于⊙T 的最佳内请直接写出n 的最大值,以及n 取得最大值时t 的取值范围.【答案】(1)①23,AP B AP B ÐÐ,②55b -<£;(2)2,515t -+£<【解析】【分析】(1)判断点123,,P P P 是否在以AB 为直径的圆弧上即可得出答案;(2)求得直线AB 的解析式,当直线2y x b =+与弧AB 相切时为临界情况,证明OAH BAD D D :,可求出此时5b =,则答案可求出;(3)可知线段MN 上任意一点(不包含点M )都必须在以TD 为直径的圆上,该圆的半径为2,则当点N 在该圆的最高点时,n 有最大值2,再分点H 不与点M 重合,点M 与点H 重合两种情况求出临界位置时的t 值即可得解.【详解】解:(1)如图1,点23,P P 在以AB 为直径的圆上,所以23,AP B AP B ÐÐ是AB 关于O e 的内直角。
2020年北京市东城区中考数学一模试卷含答案解析

2020年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有______;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2020年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)根据一元二次方程的根的判别式,直接计算即可;(2)根据求根公式,求出两根,由抛物线与x轴的两个交点的横坐标都为正整数,求出m 的值,可得抛物线解析式;(3)画出图象,找到当y1=y2时,a的值,根据图象,直接判断即可.【解答】解:(1)由题意可知,△=b2﹣4ac=(3m+1)2﹣4m×3=(3m﹣1)2>0,解得m≠,∵mx2+(3m+1)x+3=0是一元二次方程,∴m≠0,。
2020年北京市东城区中考数学一模试题有答案精析

2020年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有______;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2020年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.。
2020年北京市通州区中考数学一模试卷 (解析版)

2020年中考数学一模试卷一、选择题(共8小题)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×1062.下列图形中,是轴对称图形的是()A.B.C.D.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.44.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C .D .6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣37.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.18.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是元.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.18.解不等式组.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是,公民科学素质水平增速最快的城市是.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.22.已知:△ABC为等边三角形.(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.①根据题意,将(1)中图形补全;②求证:EF∥BC;③若DE=2,求EF的长.23.如图,四边形ABCD为矩形,点E为边AB上一点,连接DE并延长,交CB的延长线于点P,连接PA,∠DPA=2∠DPC.求证:DE=2PA.24.已知:在平面直角坐标系xOy中,对于任意的实数a(a≠0),直线y=ax+a﹣2都经过平面内一个定点A.(1)求点A的坐标;(2)反比例函数y=的图象与直线y=ax+a﹣2交于点A和另外一点P(m,n).①求b的值;②当n>﹣2时,求m的取值范围.25.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如表所示:x1=AP012345θ=∠QMPα85°130°180°145°130°小芸同学在读书时,发现了另外一个函数:对于自变量x2在﹣2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1)表格中α的值为.(2)如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.26.在平面直角坐标系xOy中,存在抛物线y=x2+2x+m+1以及两点A(m,m+1)和B(m,m+3).(1)求该抛物线的顶点坐标;(用含m的代数式表示)(2)若该抛物线经过点A(m,m+1),求此抛物线的表达式;(3)若该抛物线与线段AB有公共点,结合图象,求m的取值范围.27.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M 为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.28.如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.参考答案一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:将200000用科学记数法表示应为2×105,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.4【分析】由题意得出2≤a<2.5,根据2﹣a的取值范围,即可得到结果.解:根据表示实数a的点的位置可得,2≤a<2.5,∵﹣0.5<2﹣a≤0,∴2﹣a的值可以为0,故选:C.【点评】本题考查了实数与数轴,正确的理解题意是解题的关键.4.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多【分析】根据三角形的三边关系和四边形的不稳定性即可得到结论.解:以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出无限多个四边形,故选:D.【点评】本题考查了三角形的三边关系,四边形的性质,熟练掌握四边形的不稳定性是解题的关键.5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C.D.【分析】依题意,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,则两者之间是正比例函数.解:把一个实心铁块缓慢浸入这个容器的水中,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,即y是x的正比例函数.自变量x的取值范围是0≤x≤3.故选:A.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+a=1,整体代入计算可得.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.7.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.1【分析】利用x=﹣1时,y<2和当x=2时,y>3得到a的范围,然后对各选项进行判断.解:∵x=﹣1时,y<2,即a<2;当x=2时,y>3,即4a>3,解得a >,所以<a<2.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.8.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④【分析】根据概率公式、样本估计总体思想的运用、中位数和平均数的定义逐一判断可得.解:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率为=0.3,使用B支付方式的概率为=0.25,此推断合理;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有1000×=400(人),此推断合理;③样本中仅使用A种支付方式的同学,第15、16个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数无法估计,此推断不正确.故推断正确的有①②③,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握熟练概率公式、样本估计总体思想的运用、中位数和平均数的定义.二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如0℃可以表示温度正负分界等(答案不唯一).【分析】根据数学中0表示数的意义解答即可.解:在实际中,数字“0”表示正负之间分界点,如:0℃可以表示温度正负分界等(答案不唯一).故答案为:0℃可以表示温度正负分界等(答案不唯一).【点评】此题考查了正数和负数的意义,熟练掌握既不是正数,也不是负数的0的意义是解本题的关键.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为540°.【分析】通过内角求出外角,利用多边形外角和360度,用360°除以外角度数即可求出这个正多边形的边数即可解答.解:∵正多边形的每个内角都相等,且为108°,∴其一个外角度数为180°﹣108°=72°,则这个正多边形的边数为360÷72=5,∴这个正多边形的内角和为108°×5=540°.故答案为:540°.【点评】本题主要考查了多边形的内角与外角公式,求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为4mn+m+n.【分析】直接利用多项式乘以多项式计算进而得出答案.解:∵(4m+1)(4n+1)=4K+1,∴16mn+4m+4n+1=4K+1,则4K=16mn+4m+4n,故K=4mn+m+n.故答案为:4mn+m+n.【点评】此题主要考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为1.【分析】根据线段的和差关系可求图2中小正方形ABCD的边长,再根据正方形面积公式即可求解.解:3﹣2=1,1×1=1.故图2中小正方形ABCD的面积为1.故答案为:1.【点评】考查了勾股定理的证明,全等图形,关键是求出图2中小正方形ABCD的边长.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙.【分析】分别计算平均数和方差后比较即可得到答案.解:甲的平均数为:(36.1×5+36.4×5+36.5×5+36.8×5)=36.45;乙的平均数为:(36.1×6+36.4×4+36.5×4+36.8×6)=36.45;丙的平均数为:(36.1×4+36.4×6+36.5×6+36.8×4)=36.45;甲的方差为:[5×(36.1﹣36.45)2+5×(36.4﹣36.45)2+5×(36.5﹣36.45)2+5×(36.8﹣36.45)2]=0.0625;乙的方差为:[6×(36.1﹣36.45)2+4×(36.4﹣36.45)2+4×(36.5﹣36.45)2+6×(36.8﹣36.45)2]=0.0745;丙的方差为:[4×(36.1﹣36.45)2+6×(36.4﹣36.45)2+6×(36.5﹣36.45)2+4×(36.8﹣36.45)2]=0.064;∵0.064<0.625<0.0745,∴在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙,故答案为:丙.【点评】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为2.【分析】证出BE=2AE,∠CBD=∠C'BD=∠EDB=30°,得出DE=BE=2AE,求出AE=1,得出DE=2即可.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC=3,AD∥BC,∴∠CBD=∠EDB,由折叠的性质得:∠CBD=∠C'BD,∵∠ABE=30°,∴BE=2AE,∠CBD=∠C'BD=∠EDB=30°,∴DE=BE=2AE,∵AD=AE+DE=3,∴AE+2AE=3,∴AE=1,∴DE=2;故答案为:2.【点评】本题考查了翻折变换的性质、矩形的性质、含30°角的直角三角形的性质、等腰三角形的判定等知识;熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是98或77元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为整数的值).解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是①②③④.【分析】连接AC、BD,根据三角形中位线定理得到PQ∥AC,PQ=AC,MN∥AC,MN=AC,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.解:①当AC与BD不平行时,中点四边形MNPQ是平行四边形;故存在无数个中点四边形MNPQ是平行四边形;②当AC与BD相等且不平行时,中点四边形MNPQ是菱形;故存在无数个中点四边形MNPQ是菱形;③当AC与BD互相垂直(B,D不重合)时,中点四边形MNPQ是矩形;故存在无数个中点四边形MNPQ是矩形;④如图所示,当AC与BD相等且互相垂直时,中点四边形MNPQ是正方形.故存在两个中点四边形MNPQ是正方形.故答案为:①②③④.【点评】本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1=﹣1﹣2×+4=3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.18.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≥1,得:x≥1,解不等式3(x﹣2)>2﹣x,得:x>2,则不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.【分析】(1)分m﹣2=0和m﹣2≠0两种情况,其中m﹣2≠0时根据根的判别式求解可得;(2)在所求范围内取一m的值代入方程,再解之即可得.解:(1)∵关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根,∴①当m﹣2=0,即m=2;②当m﹣2≠0,即m≠2时,△=(﹣3)2﹣4×(m﹣2)×(﹣2)≥0,解得m≥且m≠2;综上,m≥;(2)取m=3,此时方程为x2﹣3x﹣2=0,利用公式法求解得:x=(答案不唯一).【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.【分析】(1)直接根据题意画出图形即可;(2)直接利用基本作图方法结合正方形的判定方法得出答案.解:(1)如图所示:(2)证明:∵直线l垂直平分AB,∴AC=BC,BD=AD,∠AOC=∠AOD=90°,在△AOC和△AOD中,∴△AOC≌△AOD(SAS),∴AC=BC=BD=AD,∴四边形ACBD是菱形,又∵OA=OB=OC=OD,∴∠CAD=45°+45°=90°,∴菱形ACBD为正方形.【点评】此题主要考查了基本作图以及正方形的判定,正确掌握正方形的判定方法是解题关键.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京,公民科学素质水平增速最快的城市是重庆.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为 6.2%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数少于女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.【分析】(1)利用统计图1中信息判断即可.(2)利用表格和图2信息,解决问题即可.(3)答案不唯一,说法合理即可.解:(1)由2015和2018年我国各直辖市公民科学素质发展状况统计图如图1得知,上海:22%﹣19%=3%,北京:21.5%﹣17.5%=4%,天津:14%﹣12%=2%,重庆:8%﹣4.5%=3.5%,故在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京;上海:3%÷19%≈16%,北京:4%÷21.5%≈19%,天津:2%÷12%≈17%,重庆:3.5%÷4.5%=78%,故公民科学素质水平增速最快的城市是重庆;故答案为:北京,重庆;(2)∵在2015年的调查样本中,男女公民的比例约为1:1,∴2015年我国公民的科学素质水平为(9.0%+3.4%)÷2=6.2%,设男性公民占x%,则有11.1%×x%+6.2%×(1﹣x%)=8.5%,解得x=47,∴男性公民人数少于女性公民人数,故答案为6.2,少于.(3)①能实现.理由如下:2015年我国公民的科学素质水平为6.2%,2018年我国公民的科学素质水平为8.5%,平均每年的增幅平均为0.77%,如果按照匀速增长的速度推断,2020年我国公民的科学素质水平达到10.3%,由此可知,“2020年我国公民科学素质提升到10%以上”的目标能够实现.②条件不足,无法判断.理由如下:一种情形同①,能实现目标.另一种情形,无法判断.因为不知道2018~2020年间我国公民的科学素质水平的增从速度是加快还是减缓,所以无法判断,2020年能否实现目标.。
2020年北京密云区九年级中考数学一模试卷带讲解

评价数量
APP
五星
四星
三星
二星
一星
合计
甲
562
286
79
48
25
1000
乙
517
393
52
21
17
1000
丙
504
210
136
116
34
1000
(说明:网上对于口语APP的综合评价从高到低依次为五星、四星、三星、二星和一星).
小明选择________(填“甲”、“乙”或“丙”)款英语口语APP,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.
5.实数 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )
A. B. C. D.
【5题答案】
C
【分析】根据数轴判断出 的正负情况以及绝对值的大小,然后解答即可.
【详解】由图可知, ,且 ,
∴ , , , ,
∴关系式不成立的是选项C.
故选C.
【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.
选择丙款口语APP获得良好口语辅助练习(即评价不低于四星)的可能ቤተ መጻሕፍቲ ባይዱ为 ,
∵0.91>0.848>0.714,
∴选择乙款英语口语APP,能获得良好口语辅助练习(即评价不低于四星),乙的可能性最大.
故答案为:乙.
【点睛】本题考查简单概率的计算及比较可能性大小注意掌握可能性等于所求情况数与总情况数之比.
16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2F2,如图(3)中阴影部分;如此下去…,则正六角星形AnFnBnDnCnEnFn的面积为_______.
2020年北京市西城区九年级一模数学试题(解析版)

2020年北京市西城区九年级一模数学试题一、选择题1. 北京大兴国际机场目前是全球建设规模最大的机场,2019年,9月25日正式通航,预计到2022年机场旅客吞吐量将达到45 000 000人次,将45 000 000用科学记数法表示为()A. 45×610 D. 0.45×10 C. 4.5×810 B. 4.5×7910【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将数据45000000用科学记数法可表示为:4.5×107.故答案选:B.【点睛】此题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.2. 如图是某个几个几何体的三视图,该几何体是()A. 圆锥B. 圆柱C. 长方体D. 正三棱柱【答案】B【解析】【分析】由主视图和俯视图确定是柱体,由左视图确定具体形状.【详解】解:从主视图和俯视图可以确定是柱体,然后由左视图可以确定此物体为一个横放着的圆柱.故答案为:B.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称和中心对称的定义及性质直接判断即可.【详解】解:A选项旋转180 度后与原图不重合,不是中心对称图形,故A不符合题意;B选项不是轴对称图形,故B不符合题意;C选项旋转180度后与原图重合,是中心对称图形,同时也是轴对称图形,故C选项符合题意;D选项旋转180度后与原图不重合,不是中心对称图形,故D不符合题意;故选C.【点睛】本题考查轴对称和中心对称的判断,解题关键是熟知轴对称和中心对称定义及性质.4. 在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=22,则点A,点B表示的数分别是(), C. 0,,【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】解:由A、B表示的数互为相反数,且,点A在点B的左侧,得点A,点B表示的数分别是故选:A.【点睛】本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是解题的关键.5. 如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A. 65°B. 35°C. 32.5°D. 25°【答案】D【解析】【分析】首先利用直径所对的圆周角是直角得到∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等即可得到答案.【详解】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=∠ACB -∠CAB=90°-65°=25°,∵∠ADC和∠ABC所对的弧相同∴∠ADC=∠ABC=25°,故选:D.【点睛】本题考查了圆周角的知识,解题的关键是掌握直径所对的圆周角为直角.6. 甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是( )A. 甲=x 乙,s 甲2>s 乙2 B. x 甲=x 乙,s 甲2<s 乙2C.x甲>x乙,s 甲2>s 乙2D.x甲<x乙,s 甲2<s 乙2【答案】A 【解析】【分析】分别计算平均数和方差后比较即可得到答案.【详解】解:(1)10=1x 甲(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s 甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s 乙2=110[3×(8﹣9)2+4×(9﹣)2+3×(10﹣9)2]=0.7;∴=x x甲乙,s 甲2>s 乙2,故选:A .【点睛】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7. 如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1m 的竹竿落在地面上的影长为0.9m ,在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上,他测得这棵树落在地面上的影长BD 为2.7m ,落在墙面上的影长CD 为1.0m ,则这棵树的高度是( )A. 6.0mB. 5.0mC. 4.0mD. 3.0m【答案】C 【解析】【分析】根据在同一时刻物高和影长比值相同,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【详解】解:延长AC 交BD 延长线于点E ,根据物高与影长成正比得:109CD DE .=,∵CD=1,∴1109DE .=解得:DE=0.9,则BE=2.7+0.9=3.6米,∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB BE CD DE=,即36109AB ..=,解得:AB=4,即树AB 的高度为4米,【点睛】本题考查了相似三角形的性质,解决本题的关键是作出辅助线得到AB的影长.8. 设m是非零实数,给出下列四个命题:①若-1<m<0,则1m <m<2m;②若m>1,则1m<2m<m;③若m<1m <2m,则m<0;④2m<m<1m,则0<m<1.其中命题成立的序号是()A. ①③B. ①④C. ②③D. ③④【答案】B【解析】【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例.【详解】解:①若-1<m<0,则1m <m<2m,成立,是真命题;②若m>1,取m=2时,m2=4, m<m2,原命题不成立;③若m<1m <2m,取m=-12时,1m=-2,m>1m,原命题不成立;④2m<m<1m ,则0<m<1,成立,是真命题;成立的有①④,故选:B.【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质.二、填空题9. 若代在实数范围内有意义,则x的取值范围是_______.【答案】1x³【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】解:实数范围内有意义,∴x-1≥0,故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.10. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.【答案】6【解析】【分析】设这个多边形的边数为n ,根据多边形内角和公式和多边形外角和为360°建立方程求解即可.【详解】解:设这个多边形的边数为n ,由题意得,()18023602n °´-=°´,解得6n =,∴这个多边形的边数为6,故答案为:6.【点睛】本题主要考查了多边形内角和和外角和综合,熟知多边形内角和公式和多边形外角和为360°是解题的关键.11. 已知y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,写出一个满足上述条件的二次函数表达式_______.【答案】y=x 2-1.【解析】【分析】直接利用二次函数的性质得出其顶点坐标为(0,-1),然后写出一个满足题意的二次函数即可.【详解】解:∵y 是以x 为自变量的二次函数,且当x=0时,y 的最小值为-1,∴二次函数对称轴是y 轴,且顶点坐标为:(0,-1),抛物线开口向上,故满足上述条件的二次函数表达式可以为:y=x 2-1.故答案为:y=x 2-1.【点睛】此题主要考查了二次函数的性质,正确得出其顶点坐标是解题关键.12. 如果21a a +=,那么代数式2111a a a ---的值是______.【答案】1【解析】【分析】先根据分式的运算法则将2111a a a ---进行化简,再将21a a +=的值代入即可.【详解】解:2111a a a ---()()1111a a a a -=-+-()()111a aa a a a +=-++()11a a =+21a a =+∵21a a +=∴原式211a a==+故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.13. 如图,在正方形ABCD 中,BE 平分∠CBD ,EF ⊥BD 于点F ,若,则BC 的长为_________.1+【解析】【分析】根据正方形的性质,角平分线的性质可得到△DEF为等腰直角三角形,然后设BC=CD=x,利用勾股定理解答即可.【详解】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形,∴DF=EF,设BC=CD=x,∵DE=2,,即,∴在Rt△DEF中,222=+,DE DF EF∴((222+=x x解得1∴11.【点睛】本题考查了正方形的性质,角平分线的性质,勾股定理,熟练掌握相关图形的性质是解题的关键.14. 如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为________,BD的长为_________.【答案】①. 5 .②3【解析】【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【详解】如图所示:由勾股定理得:AC=2234+=5,S△ABC=12BC×AE=12×BD×AC,∵AE=3,BC=5,即12×3×5=12×5BD,解得:BD=3.故答案为:5;3.【点睛】本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出AC的长,此题难度一般.15. 如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为___________.【答案】(6,6)【解析】【分析】如图:由题意可得M在AB、BC的垂直平分线上,则BN=CN;证得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【详解】解:如图∵圆M是△ABC的外接圆∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,点M的坐标为(6,6).故答案为(6,6).【点睛】本题考查了三角形的外接圆与外心、坐标与图形性质、等腰直角三角形的判定与性质等知识,其中判定△OMN为等腰直角三角形是解答本题的关键.16. 某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表:根据以上信息,以下四个判断中,正确的是_________.(填写所有正确结论的序号)①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10广域网人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为3.10【答案】①④【解析】【分析】利用统计图与统计表获取的信息逐项判定即可.【详解】解:①根据统计表可得日接待游客人数10≤x< 15为拥挤,15≤x< 20为严重拥挤,由统计图可知,游玩环境评价为重拥挤”,1日至5日有2天,25日-30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x < 5的有16天,从而中位数位于0≤x< 5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2-5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为323´=,故④正确.5410故答案为①④.【点睛】本题考查了中位数、平均数及可能性等知识,利用统计图与统计表获取的有效信息是解答本题的关键.三、解答题17.计算:101((1||2sin 602-++-°.【答案】3【解析】【分析】先运用负整数次幂、零次幂、取绝对值和特殊角的三角函数对原式化简,然后进行计算即可.【详解】解:101()(1||2sin 602-+-+-°=3【点睛】本题主要考查了负整数次幂、零次幂、取绝对值和特殊角的三角函数等知识点,灵活应用相关运算法则是解答本题的关键.18. 解不等式组3(2)22254x x x x -<-ìïí+<ïî.【答案】52<x <4【解析】【分析】先分别求出各不等式的解析,然后各不等式解集的公共部分即为不等式组的解集.【详解】解:3(2)22254x x x x -<-ìïí+<ïî①②由①得x <4由②得x >52所以不等式组的解集为:52<x <4【点睛】本题考查了解一元一次不等式组,根据不等式的解集确定不等式组的解集是解答本题的关键.19. 关于x 的一元二次方程22(21)0x m x m -++=有两个实数根(1)求m的取值范围;(2)写出一个满足条件的m的值,求此时方程的根.【答案】(1)m≥1-;(2) 当m=0时,方程的根为x1=1,x2=0.4【解析】【分析】(1)根据根的判别式列出不等式并求解即可;(2)确定一个满足条件且方便计算的m,然后解一元二次方程即可.△2-4m2≥0,解得:m≥1【详解】解:(1)由题意得:=(2m+1)-;4x1=1,x2=0.(2)当m=0时,原方程为:2-=,解得x x【点睛】本题主要考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:①当△> 0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△< 0时,方程无实数根.20. 如图,在Y ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:Y ABCD是矩形;(2)若AD=,cos∠ABE=,求AC的长.【答案】(1)见解析;(2)5.【解析】【分析】(1)先说明.OA=OC,OB=OD,再证得AC=BD,即可证明Y ABCD是矩形;(2)先说明∠BAD=∠ADC=90°,再求得∠CAD=∠ABE,最后解直角三角形即可.【详解】(1)证明:∵四边形ABCD是平行四边形∴OA=OC,OB=OD又∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴Y OABCD是矩形;(2)解∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,=cos∠在Rt△ACD中,AD=25,cos∠CAD=ADAC∴AC=5.【点睛】本题考查了矩形的判定和性质、平行四边形的性质、解直角三角形等知识点,掌握矩形的判定和性质定理是解题答本题的关键.21. 先阅读下列材料,再解答问题.尺规作图△,D是边AB上一点,如图1,已知:ABC求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:请你参考小明的做法,再设计一一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【答案】见解析【解析】【分析】利用平行四边形的判定方法作图证明即可.【详解】解:(1)设计方案先画一个符合题意的草图,再根据两组对边分别相等的四边形是平行四边形.(2)设计作图步骤完成作图作法:如图:①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F,四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC∴四边形DBCF是平行四边形.【点睛】本题考查了尺规作图、平行四边形的判定等知识点,灵活应用平行四边形的判定方法是解答本题的关键.22. 运用语音识别输入统计可以提高文字输入的速度,为了解A,B两种语音识别输入软件的可读性,小秦同学随机选择了20段话,其中每段话都含有100个字(不计标点符号),在保持相同条件下,标准普通话来测试两种语音识别输入软件的准确性,整个测试分析过程如下,请补充完整.(1)收集数据:两种软件每次识别正确的字数记录如下:(2)整理,描述数据:根据上面得到的两组样本数据,绘制了分布直方图(3)分析数据:两组样本数据的平均数,众数,中位数,方差如下表所示(4)得出结论:根据以上信息.判断____种语音识别输入软件的准确性较好,理由如下.__ _____________(至少从两个不同的角度说明判断的合理性) .【答案】(2)见解析;(3)92,88.5;(4)见解析.【解析】【分析】(2)先统计数据,再补全频数分布直方图即可;(3)根据众数和中位数的定义计算即可;(4)从平均数、方差两个角度分析即可.【详解】解:(2)统计B组数据得到:60-70的频数为2,70-80的频数为4,则补全频数分布直方图如图所示:(3)在A组数据中92出现的次数最多,故A组的众数为92;B组的中位数为第10个和第11个数分别为88和89,则中位数为(88+89)÷2=88.5.故答案如图:(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴84.7> 83.7,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91< 184.01,故A种语音识别的准确性较好.【点睛】本题考查频数分布直方图、频数分布表、方差等知识,明确题意、灵活应用所学知识是解答本题的关键.23. 如图,四边形OABC中,90OAB°Ð=.OA=OC, BA=BC.以O为圆心,以OA为半径作☉O(1)求证:BC是☉O的切线:(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与此的延长线交于点F若»»=.AD AC①补全图形;②求证:OF=OB.【答案】(1)证明见解析(2)①图见解析(2)证明见解析【解析】【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【详解】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB =90°,∴BA 是⊙O 的切线,又BC 是⊙O 的切线,∴BA =BC ,∵BA =BC ,OA =OC ,∴BD 是AC 的垂直平分线,∴»»AD CD =,∵»»AD AC =,∴»»AD CD ==»AC,∴∠AOC =120°,∴∠AOB =∠COB =∠COE =60°,∴∠OBF =∠F =30°,∴OF =OB .【点睛】本题考查的是切线的判定、垂径定理、切线长定理的应用,掌握切线的判定定理、圆心角和弧之间的关系定理是解题的关键.24. 如图,在△ABC 中,AB=4cm .BC=5cm ,P 是»AB上的动点.设A ,P 两点间的距离为xcm ,B ,P 两点间的距离为1y cm ,C ,P 距离为2y cm .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象:(3)结合函数图象.①当△PBC 为等腰三角形时,AP 的长度约为____cm .②记»AB所在圆的圆心为点O ,当直线PC 恰好经过点O 时,PC 的长度约为_____cm .【答案】(1)3.09(答案不唯2)见解析;(3)①0.83或2.49(答案不唯一).②5.32(答案不唯一).【解析】【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB 、PC=BC 、PB=BC 三种情况,分别求解即可;②当直线PC 恰好经过点O 时,PC 的长度取得最大值,观察图象即可求解.【详解】解:(1)由画图可得,x=4时,y 1≈3.09cm (答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).【点睛】本题考查函数的图象,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.25. 在平面直角坐标系xOy中,直线L:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数my=(x>0)的图象的交点第一象限.x(1)若点P的坐标为(1,6),①求m的值及点A的坐标;=_________;②PBPA(2)直线h:y=2kx-2与y轴交于点C,与直线L1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤PA时,求m的取值范围.;(2)①P(1,3k)②m≥3【答案】(1)①6;(−2,0)②13【解析】【分析】(1)①把P(1,6)代入函数my=(x>0)即可求得m的值,直线l1:y=kxx+2k (k >0)中,令y =0,即可求得x 的值,从而求得A 的坐标;②把P 的坐标代入y =kx +2k 即可求得k 的值,进而求得B 的坐标,然后根据勾股定理求得PB 和PA ,即可求得PB PA的值;(2)①把x =1代入y =kx +2k ,求得y =3k ,即可求得P (1,3k );②分别过点P 、Q 作PM ⊥x 轴于M ,QN ⊥x 轴于N ,则点M 、点N 的横坐标1,2+2k,若PQ =PA ,则PQ PA =1,根据平行线分线段成比例定理则PQ PA =MN MA=1,得出MN =MA =3,即可得到2+2k−1=3,解得k =1,根据题意即可得到当PQ PA =MN MA≤1时,k ≥1,则m =3k ≥3.【详解】(1)①令y =0,则kx +2k =0,∵k >0,解得x =−2,∴点A 的坐标为(−2,0),∵点P 的坐标为(1,6),∴m =1×6=6;②∵直线l 1:y =kx +2k (k >0)函数m y x=(x >0)的图象的交点P ,且P (1,6),∴6=k +2k ,解得k =2,∴y =2x +4,令x =0,则y =4,∴B (0,4),∵点A 的坐标为(−2,0),∴PA=PB =∴PB PA 13=,故答案为13;(2)①把x=1代入y=kx+2k得y=3k,∴P(1,3k);②由题意得,kx+2k=2kx−2,解得x=2+2k,∴点Q的横坐标为2+2k,∵2+2k>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标为1,2+2k,若PQ=PA,则PQPA=1,∴PQPA =MNMA=1,∴MN=MA,∴2+2k−1=3,解得k=1,∵MA =3,∴当PQ PA =MN MA≤1时,k ≥1,∴m =3k ≥3,∴当PQ ≤PA 时,m ≥3.【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,勾股定理的应用,利用函数图象解决问题是本题的关键.26. 已知抛物线y=ax 2+bx+a+2(a≠0)与x 轴交于点A(x 1,0),点B(x 2,0),(点A 在点B 的左侧),抛物线的对称轴为直线x=-1.(1)若点A 的坐标为(-3,0),求抛物线的表达式及点B 的坐标;(2)C 是第三象限的点,且点C 的横坐标为-2,若抛物线恰好经过点C ,直接写出x 2的取值范围;(3)抛物线的对称轴与x 轴交于点D ,点P 在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P 恰有4个,结合图象,求a 的取值范围.【答案】(1)21322y x x =--+,(1,0);(2)-1<x 2<0;(3)a <-2.【解析】【分析】(1)由题意可知抛物线的对称轴为12b x a=-=-,求出b=2a ,将点A 的坐标代入抛物线的表达式,即可求解;(2)根据题意可得点C 在第三象限,即点A 在点C 和函数对称轴之间,故-2<x 1<-1,继而进行分析即可求解;(3)根据题意可得满足条件的P 在x 轴的上方有2个,在x 轴的下方也有2个,则抛物线与y 轴的交点在x 轴的下方,即可求解.【详解】解:(1)抛物线的对称轴为12b x a=-=-,解得:b=2a ,故y=ax 2+bx+a+2=a (x+1)2+2,将点A 的坐标代入上式并解得:12a =-,故抛物线的表达式为:2221)2113(22y x x x =-++=--+;令y=0,即213220x x --+=,解得:x=-3或1,故点B 的坐标为:(1,0).(2)由(1)知:2(1)2y a x =++,点C 在第三象限,即点C 在点A 的下方,即点A 在点C 和函数对称轴之间,故-2<x 1<-1,而121(1)2x x +=-,即x 2=-2-x 1,故-1<x 2<0.(3)∵抛物线的顶点为(-1,2),∴点D (-1,0),∵∠DOP=45°,若抛物线上满足条件的点P 恰有4个,∴抛物线与x 轴的交点在原点的左侧,如下图,∴满足条件的P 在x 轴的上方有2个,在x 轴的下方也有2个,则抛物线与y 轴的交点在x 轴的下方,当x=0时,2220y ax bx a a =+++=+<,解得:a <-2,故a 的取值范围为:a <-2.【点睛】本题考查的是二次函数综合运用,涉及到解不等式、函数作图,解题的关键是通过画出抛物线的位置,确定点的位置关系,进而分析求解即可.27. 如图,在等腰直角△ABC 中,∠ACB=90 点P 在线段BC 上,延长BC 至点Q ,使得CQ=CP ,连接AP ,AQ .过点B 作BD ⊥AQ 于点D ,交AP 于点E ,交AC 于点F .K 是线段AD 上的一个动点(与点A ,D 不重合),过点K 作GN ⊥AP 于点H ,交AB 于点G ,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【答案】(1)见解析;(2)见解析;(3)BN=AE+GN,见解析.【解析】【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠PAC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【详解】(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,∵∠MFN=∠BFC,∴∠MFN=∠Q,同理,∠NMF=∠APQ,∴∠MFN=∠FMN,∴NM=NF;(3)连接CE,∵AC⊥PQ,PC=CQ,∴AP=AQ,∴∠PAC=∠QAC,∵BD⊥AQ,∴∠DBQ+∠Q=90°,∵∠Q+∠CAQ=90°,∴∠CAQ=∠QBD,∴∠PAC=∠FBC,∵AC=BC,∠ACP=∠BCF,∴△APC≌△BFC(AAS),∴CP=CF,∵AM=CP,∴AM=CF,∵∠CAB=∠CBA=45°,∴∠EAB=∠EBA,∴AE=BE,∵AC=BC,∴直线CE垂直平分AB,∴∠ECB=∠ECA=45°,∴∠GAM=∠ECF=45°,∵∠AMG=∠CFE,∴△AGM≌△CEF(ASA),∴GM=EF,∵BN=BE+EF+FN=AE+GM+MN,∴BN=AE+GN.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,等腰直角三角形的性质,线段垂直平分线的判定和性质,正确的识别图形是解题的关键.28. 对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M于点N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P在线段DE上运动(点P可以与点D,E 重合),连接OP,CP.①线段OP的最小值为_______,最大值为_______;线段CP的取值范直范围是_____;②在点O,点C中,点____________与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y b=+(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,1为半径作圆得到⊙H和K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.【答案】(1)①22CP££,②O;(2)13b³;(3)0<r≤3.【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP,CP的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线y b=+与x轴、y轴分别交于点F,G(0,b),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(0,3), ∴OD=1,OE =∴OE tan EDO OD Ð==,∴∠EDO=60°,当OP ⊥DE 时,•602OP OD sin =°=,此时OP 的值最小,当点P 与E 重合时,OP,当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =°=,当点P 与D 或E 重合时,PC 的值最大,最大值为2,故答案为:22CP ££.②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线y b =+与x 轴、y 轴分别交于点F ,G (0,b ),当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b ,∵线段FG 与⊙O 满足限距关系,∴1+b ≥2(1-b ),解得13b ³,∴b 的取值范围为131b £<.当1≤b ≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系,当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为121b -,最大距离为b+1,∵线段FG 与⊙O 满足限距关系,∴11212b b æö+³-ç÷èø,而11212b b æö+³-ç÷èø总成立,∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为13b ³.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r ≤3,故r 的取值范围为0<r ≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.。
2020年北京市东城区中考数学一模试卷(含答案解析)

2020年北京市东城区中考数学一模试卷一、选择题(本大题共7小题,共14.0分)1.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()A. m+nB. m−nC. n−mD. |m+n|2. 6.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b⋅c<0,则原点的位置()A. 点A的左侧B. 点A点B之间C. 点B点C之间D. 点C的右侧3.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A. π3B. 2π3C. 4π3D. 2π4.如图,把△ABC经过一定的变化得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A. (−x,y−2)B. (−x+2,y+2)C. (−x+2,−y)D. (−x,y+2)5.甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km,甲整修6km的工作时间与乙整修8km的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km?设甲每天整修xkm,则可列方程为()A. 6x−3=8xB. 6x=8x+3C. 6x+3=8xD. 6x=8x−36.四张质地、大小、背面完全相同的卡片上,正面分别画有正方体、圆锥、圆柱和球四个图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是柱体的概率是()A. 1B. 12C. 14D. 347.如图1为某立交桥示意图(道路宽度忽略不计),A−F−G−J为高架,以O为圆心的圆盘B−C−D−E位于高架下方,其中AB,AF,CH,DI,EJ,GJ为直行道,且AB=CH=DI=EJ,AF=GJ,弯道FG是以点O为圆心的圆上的一段弧(立交桥的上下高度差忽略不计),点B,C,D,E是圆盘O的四等分点.某日凌晨,有甲、乙、丙、丁四车均以10m/s的速度由A口驶入立交桥,并从出口驶出,若各车到圆心O的距离y(m)与从A口进入立交后的时间x(s)的对应关系如图2所示,则下列说法错误的是()A. 甲车在立交桥上共行驶10sB. 从I口出立交的车比从H口出立交的车多行驶30mC. 丙、丁两车均从J口出立交D. 从J口出立交的两辆车在立交桥行驶的路程相差60m二、填空题(本大题共8小题,共16.0分)8.若式子√2x−5在实数范围内有意义,则x的取值为______.9.因式分解:2a2−8a+8=______.10. 一个多边形的边数是10,则这个多边形的内角和是______°. 11. 计算:1xy ÷(1y −1x )=______.12. 如图△ABC 中,∠C =90°,D 、E 分别是BC 、AB 上两点,DE//AC ,BD =2,CD =1,∠BED =30°,则AE 的长为______.13. 将一次函数y =3x −1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为___________.14. 甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:9、5、7、8、7、6、8、6、7、7;乙:7、8、6、8、6、5、9、10、7、4经过计算,两人射击环数的平均数均为7,S 甲2=1.2,S 乙2=______,因为S 甲2______S 乙2,所以______的成绩更稳定.15. 已知⊙O 的半径是4,则该圆的内接正方形的边长是______ . 三、计算题(本大题共3小题,共17.0分)16. 计算:4sin60°−|3−√12|+(12)−1−(2018−π)017. 解不等式组{3(x −1)≤5x +12x <9−x 4并写出它的所有整数解.18.已知抛物线y=mx2+(3−2m)x+m−2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.四、解答题(本大题共9小题,共51.0分)19.22.如图1,已知ΔABC中,点D在AB边上,DE//BC交边AC于点E,且DE平分∠ADC.(1)求证:DB=DC;(2)如图2,在BC边上取点F,使∠DFC=60∘,若BC=7,BF=2,求DF的长。
2020年北京市朝阳区中考数学一模试卷 (含答案解析)

2020年北京市朝阳区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.2017年4月8日,中国财经新闻报道中国3月外汇储备30090.9亿,这个数据用科学记数法表示为()A. 3.00909×104B. 3.00909×105C. 3.00909×1012D. 3.00909×10132.某几何体的三种视图如图所示,则该几何体是().A. 三棱柱B. 长方体C. 圆柱D. 圆锥3.已知实数a、b在数轴上的对应点的位置如图所示,那么√a+√−b是一个()A. 非负数B. 正数C. 负数D. 以上答案均不对4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. 18B. 13C. 38D. 355.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 36.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,已知tan∠CDB=34,BD=5,则OH的长度为()A. 23B. 56C. 1D. 767.如图,AB//CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F等于()A. 9.5°B. 19°C. 15°D. 30°8.根据下表中的信息解决问题:数据3738394041频数845a1若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共8小题,共16.0分)有意义,则x的取值范围是______.9.要使分式3x−110.分解因式:2mx2−4mx+2m=______ .11.如图所示,△ABC中,点D、E分别在AB、AC上,DE//BC,若AE=3,EC=1,,则BC=______且知DE=7212.如图,在边长为1的小正方形组成的网格中,则sin∠ABC的值为______.13.四边形ABCD中,若∠A:∠B:∠C:∠D=7:6:5:4,则它们的外角的比是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年北京市中考数学一模试卷
一、单选题(共0分)
1.(本题0分)某几何体从三个不同方向看到的形状图如图,则该几何体是( )
A.圆锥B.圆柱C.球D.长方体
2.(本题0分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()
A.268×103B.26.8×104C.2.68×105D.0.268×106
3.(本题0分)如图所示,BE,CF是直线,OA,OD是射线,其中构成对顶角的是( )
A.∠AOE与∠COD B.∠AOD与∠BOD
C.∠BOF与∠COE D.∠AOF与∠BOC
4.(本题0分)下列轴对称图形中,对称轴最多的图形是()
A.B.C.D.
5.(本题0分)将一个n边形变成(n+2)边形,内角和将()
A.减少180 B.增加180°C.减少360°D.增加360°
6.(本题0分)数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为2015cm的线段AB,则线段AB盖住的整点的个数为()
A.2015 B.2014 C.2015或2014 D.2015或2016
7.(本题0分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()
A .16
B .13
C .12
D .23 8.(本题0分)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )
A .正比例函数关系
B .一次函数关系
C .二次函数关系
D .反比例函数关系
二、填空题(共0分)
9.(本题0分)要使分式有意义,则x 的取值范围是 .
10.(本题0分)已知关于 x 的一元二次方程20x k -+= 有两个相等的实数根,则 k 的值为_____.
11.(本题0分)若a 是一个含有根号的无理数,且3<a <4.写出任意一个符合条件的值____. 12.(本题0分)对于两个实数,m n ,定义一种新运算,规定2m n m n =+☆,例如
3523511=⨯+=☆,若2a b ☆且21b a =☆,则b a =__________.
13.(本题0分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点(-1,3)且与y 轴垂直,则l 也会经过的点是_____(填A 、B 、C 或D )
14.(本题0分)如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件__________.
15.(本题0分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)
16.(本题0分)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.
三、解答题(共0分)
17.(本题0分)
计算:11
()4523---︒
18.(本题0分)解不等式组()32421112
2x x x x ⎧--≥⎪⎨-++≥⎪⎩①②. 19.(本题0分)不解方程组23532x y x y +=⎧⎨-=-⎩
,求(2x+y)(2x-3y)+3x(2x+y)的值 20.(本题0分)等角转化;如图1,已知点A 是BC 外一点,连结AB 、AC ,求∠BAC +∠B +∠C 的度数.
(1)阅读并补充下面的推理过程
解:过点A 作ED ∥BC ,
∴∠B =∠EAB ,∠C = ( )
又∵∠EAB +∠BAC +∠DAC =180°
∴∠B+∠BAC+∠C=180°
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.
21.(本题0分)如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.
(1)求证:ABCD是矩形;
(2)若AD=cos∠,求AC的长.
22.(本题0分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式.
(2)动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
23.(本题0分)如图,ABC 中,ACB 90∠=,D 为AB 上一点,以CD 为直径的O 交BC 于点,连接AE 交CD 于点,交O 于点F ,连接DF ,CAE ADF ∠∠=.
()1判断AB 与O 的位置关系,并说明理由.
()2若PF :PC 1=:2,AF 5=,求CP 的长.
24.(本题0分)在平面直角坐标系中,直线l 1:y=﹣
12
x+4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y=x 于点C .
(1)如图①,求出B 、C 两点的坐标; (2)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式.
(3)如图②,在(2)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.
25.(本题0分)学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.
(1)求该学校的人均存款数;
(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?
26.(本题0分)在平面直角坐标系xOy 中,抛物线()2
420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).
(1)求抛物线()2
420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示); (2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.
①当2a =时,请直接写出“W 区域”内的整点个数;
②当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.
27.(本题0分)如图,在平面直角坐标系中,点A(4,0),B(0,3),以线段AB 为边在第一象限内
作等腰直角三角形ABC ,∠BAC =90°
.若第二象限内有一点P 1,2a ⎛⎫ ⎪⎝⎭
,且△ABP 的面积与△ABC 的面积相等.
(1)求直线AB 的函数表达式.
(2)求a 的值.
(3)在x轴上是否存在一点M,使△MAC为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.
28.(本题0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B
两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.
(1)求抛物线的函数表达式;
(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y
轴右侧),连接CP,CQ,若△CPQ的面积为
1
-
4
,求点P,Q的坐标;
(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK 绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.。