02.自定义坐标系和投影变换

合集下载

坐标系统、基准、投影

坐标系统、基准、投影
遗憾的是,该椭球并未依据当时我国的天文观测资料进行重新定位,而是由前苏联西伯利亚地区的一等锁,经我国的东北地区传算过来的,该坐标系的高程异常是以前苏联1955年大地水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956年青岛验潮站的黄海平均海水面为基准。
1954年北京坐标系建立后,全国天文大地网尚未布测完毕,因此,在全国分期布设该网的同时,相应地进行了分区的天文大地网局部平差,以满足经济和国防建设的需要。局部平差是按逐级控制的原则,先分区平差一等锁系,然后以一等锁环为起算值,平差环内的二等三角锁,平差时网区的连接部仅作了近似处理,如有的仅取两区的平差值,当某些一等锁环内的二等网太大,在当时的计算条件下无法处理时,也进行了分区平差,连接部仍采用近似处理的方法。
(2-10)
(2-11)
(2-12)
其中:
(2-13)
(2-14)
空间坐标系与平面直角坐标系间的转换采用的是投影变换的方法。在我国一般采用的是高斯投影。关于高斯投影,请参见有关文献。
高斯正算公式如下:
(2-15)
(2-16)
其中:
为子午线弧长;
为卯酉圈半径;
为经差;
为中央子午线经度。
为从赤道到投影点的椭球面弧长,可用下式计算:
WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。

测绘中常用的坐标系与坐标转换方法

测绘中常用的坐标系与坐标转换方法

测绘中常用的坐标系与坐标转换方法在测绘学中,坐标系和坐标转换方法是重要的概念。

测绘工程师和地理信息专家经常需要使用不同的坐标系来描述和分析地球表面的特征。

本文将介绍几种常用的坐标系以及常见的坐标转换方法。

首先,让我们来了解一下常见的坐标系。

地球是一个复杂的三维球体,在测绘中我们需要将其简化为二维平面来表示。

为此,人们开发了各种各样的坐标系。

最常见的是地理坐标系和投影坐标系。

地理坐标系以地球的经度和纬度作为坐标来表示地点的位置。

经度是指一个位置相对于地球上的子午线的角度,范围从-180度到180度。

纬度是指一个位置相对于赤道的角度,范围从-90度到90度。

地理坐标系非常适合描述较大范围的地理位置,比如国家、大洲、全球等。

然而,由于地球不是一个完美的球体,而是稍微扁平的。

所以地理坐标系并不适合描述局部地区的位置。

在局部地区,我们更常用的是投影坐标系。

投影坐标系通过将地球表面投影到一个平面上来表示地点的位置。

最常见的投影方法是经纬度投影。

这种方法将地球的经纬度网格映射到一个平面上,以实现局部位置的表示。

常见的经纬度投影有墨卡托投影、兰伯特投影和正轴等距投影等。

当需要在不同坐标系之间进行转换时,我们需要使用坐标转换方法。

常见的坐标转换方法有三角法、相似变换和大地测量等。

三角法是一种基础的坐标转换方法,它使用三角形相似性定理来计算两个坐标系之间的转换参数。

这种方法在测量小范围地区时非常实用,但对于大范围地区的坐标转换则会产生较大的误差。

相似变换是一种更复杂的坐标转换方法,它使用不同比例尺的相似形状来表示两个坐标系之间的转换。

这种方法适用于小范围和中等范围的坐标转换,但对大范围地区的转换也会有误差。

大地测量是一种比较准确的坐标转换方法,它基于地球的椭球体形状和地球椭球体的参数来计算坐标之间的转换。

大地测量方法适用于任意范围的坐标转换,但计算复杂度较高。

除了以上介绍的常用坐标系和坐标转换方法,还有一些其他的坐标系统和转换方法。

如何进行地理坐标转换和投影变换

如何进行地理坐标转换和投影变换

如何进行地理坐标转换和投影变换地理坐标转换和投影变换是地理信息系统 (Geographic Information System, GIS) 中非常重要的概念和技术。

它们在各种地图制作、地理空间分析和空间数据处理任务中起到了核心作用。

本文将介绍地理坐标转换和投影变换的基本原理和常用方法。

一、地理坐标转换1. 简介地理坐标转换是将一个地理位置点的坐标从一种坐标系统转换到另一种坐标系统的过程。

在地理信息系统中,常见的地理坐标系统有经纬度坐标系统 (WGS84)和投影坐标系统 (UTM) 等。

由于不同坐标系统间的坐标表示方式不同,因此需要进行坐标转换。

2. 原理地理坐标转换的原理是通过数学运算将坐标从一个坐标系统转换到另一个坐标系统。

这需要考虑坐标轴的旋转、尺度变换和坐标原点的平移等因素。

通常使用的方法有三参数法、七参数法和分区法等,根据不同的坐标系统和需求选择合适的方法。

3. 方法地理坐标转换的方法有多种,其中最常见的是使用地理坐标转换软件,如ArcGIS、QGIS等。

这些软件可以通过设置坐标系统和输入需转换的坐标来完成转换工作。

另外,也可以通过编程语言如Python中的库,如pyproj来实现地理坐标转换。

二、投影变换1. 简介投影变换是将地球表面的三维地理坐标转换为平面坐标的过程,也被称为地理坐标投影。

这是由于地球是一个三维椭球体,而平面地图是一个二维平面,因此需要将地球表面上的点投影到一个平面上。

2. 原理投影变换的原理是通过将地球椭球体投影到一个平面上,从而将三维地理坐标转换为二维平面坐标。

常见的投影方法有等距圆柱投影、等角圆锥投影和等面积投影等。

每种投影方法都有其特点和适用范围,根据需求选择合适的投影方法。

3. 方法投影变换的方法有多种,其中最常用的是使用地理信息系统软件进行投影变换,如ArcGIS、QGIS等。

这些软件提供了多种投影方法和参数设置,可以根据需求进行选择。

此外,也可以使用编程语言中的库,如Python中的proj4库进行投影变换。

如何进行投影转换(西安80 北京54 CGCS2000)

如何进行投影转换(西安80 北京54 CGCS2000)

利用ARCGIS进行自定义坐标系和投影转换ARCGIS种通过三参数和其参数进行精确投影转换简介投影变换(Projection Transformation)是将一种地图投影点的坐标变换为另一种地图投影的坐标的过程。

本产品提供对影像文件格式转换的功能。

软件右侧中间实用工具区域,鼠标移动到处,弹出使用实用工具面板,选择“”按钮。

如下图所示为格式转换主界面:投影变换如下图所示为投影变换对话框,说明如下:1. 源文件表示需要进行变换的影像图;2. 源投影是读取源文件采用的地图投影或地理坐标系;3. 新文件表示转换后生成新的影响图;4. 目标坐标系表示需要变换到另一个投影坐标系或地理坐标系;5. 重采样算法表示影像转换重新采样使用的算法,列表中列出常用的三种算法;6. 指定变换参数表示当地坐标系统与wgs84变换参数。

如果用户有当地坐标系转换wgs84地方参数时,可以填写7参数或者3参数,如下图所示为填写当地参数:目标坐标系目标坐标系包括地理坐标系(Geographic Coordinate System)和投影坐标系(Projected Coordinate Systems)两种。

如下图中,在变换对话框中列出常用坐标系,前3个为地理坐标系,第4个为WGS84 Mercator投影坐标系。

选择“更多…”可查看更多坐标系,如下图所示。

其中同样包含投影坐标系、地理坐标系,选择需要的目标坐标系即可,如Xian 1980、Beijing 1954、CGCS2000投影坐标系中包括各分度带投影坐标系。

如下图37所示:分度带查询投影变换时选择你卫片所在的分度带及带号,可以通过经纬度判断代号。

以四川成都成华区为例,成华区的经纬度在,经度为104,通过上面的对应表能够看出104度对于的三度带为35带,对于的六度带为18度。

重采样算法目前采用了常用的重采样算法,根据这三种算法的特点按需选择采样算法。

1. 最邻近采样算法速度快,效果相对其他方式稍差;2. 双线性内插值采样效果较前一种好些,速度也相对慢一点;3. 立方卷积采样是这三种方式中最好的,速度相对也会慢一些。

平面向量的坐标投影变换与投影变换矩阵

平面向量的坐标投影变换与投影变换矩阵

平面向量的坐标投影变换与投影变换矩阵平面向量的坐标投影变换是线性代数中的一个重要概念,它可以帮助我们理解和计算向量在不同坐标系下的投影。

投影变换矩阵是描述这种变换过程的数学工具。

本文将为您介绍平面向量的坐标投影变换以及投影变换矩阵的相关内容。

1. 坐标投影变换平面向量的坐标投影变换是指将一个向量投影到另一个坐标系中的过程。

假设我们有一个平面向量v,它在坐标系A中的坐标表示为 [x, y],我们希望将这个向量投影到另一个坐标系B中,那么它在坐标系B中的坐标表示为 [x', y']。

坐标投影变换可以描述为以下的数学运算:[x', y'] = M * [x, y]其中,M是一个2x2的矩阵,称为投影变换矩阵。

投影变换矩阵的元素决定了向量在不同坐标系下的投影变换规律。

2. 投影变换矩阵投影变换矩阵M是一个重要的数学工具,它用于描述向量在不同坐标系之间的投影关系。

投影变换矩阵可以通过以下的方式构造: M = [u1, v1][u2, v2]其中,u1和u2是向量v在坐标系A中的基向量,v1和v2是向量v 在坐标系B中的基向量。

投影变换矩阵的作用是将向量在坐标系A中的坐标转换为在坐标系B中的坐标。

通过矩阵乘法运算,我们可以得到向量v在坐标系B中的坐标表示。

3. 投影变换矩阵的性质投影变换矩阵具有一些重要的性质:- 投影变换矩阵是一个方阵,因为它将一个二维向量映射到另一个二维向量。

- 投影变换矩阵是一个线性变换矩阵,因为它满足线性运算的性质。

- 投影变换矩阵的逆矩阵存在当且仅当该矩阵是可逆矩阵。

- 投影变换矩阵的行列式等于1,即det(M) = 1。

这些性质为我们分析和计算投影变换提供了重要的数学基础。

4. 投影变换的应用平面向量的坐标投影变换在许多领域都有广泛的应用,尤其在计算机图形学中。

在计算机图形学中,我们经常需要将一个三维向量投影到二维平面上进行渲染。

这时,我们可以使用投影变换矩阵将三维向量映射到二维平面上的坐标系中。

ArcGIS10.2 学习课程——2.坐标系基础和投影变换

ArcGIS10.2 学习课程——2.坐标系基础和投影变换

坐标是GIS数据的骨骼框架,能够将我 们的数据定位到相应的位置,为地图 中的每一点提供准确的坐标。 如经纬度下经度、纬度, 平面中,Y
Page
3
中国信息化高级技术培训中心欢迎你
什么是坐标系?
比方说,公路里碑上的公里数,通常是从 大城市起算的;说某某建筑有多高,一般 是从地面算起。这就是说,地球上任何一 点的位置都是相互联系,都有一定相对关 系。我们测绘地面上点的位置,也是一样, 也要有一个起算标准,不然就分不出高低、 这了。测绘地面上某个点的位置时,需要 两个起算点:一是平面位置,一是高程。 计算这两个位置所依据的系统,就叫坐标 系统和高程系统。
二、坐标系介绍
1.ArcGIS的坐标,投影文件的含义 2.北京54坐标系、西安80坐标系、WGS84的区 别 3.3度,6度分带含义 4.ArcGIS坐标系统文件说明 5.ArcGIS坐标系中两个坐标系统 6.定义坐标系 7.常见问题解决
Page 16
中国信息化高级技术培训中心欢迎你
二、坐标系统介绍
Page 6
中国信息化高级技术培训中心欢迎你
椭球体(Spheroid)
众所周知我们的地球表面是一个凸凹不平的表面,而对于地 球测量而言,地表是一个无法用数学公式表达的曲面,这样 的曲面不能作为测量和制图的基准面。假想一个扁率极小的 椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球 椭球体。地球椭球体表面是一个规则的数学表面,可以用数 学公式表达,所以在测量和制图中就用它替代地球的自然表 面。因此就有了地球椭球体的概念。 地球椭球体有长半径和短半径之分,长半径(a)即赤道半径, 短半径(b)即极半径。f=(a-b)/a为椭球体的扁率,表示椭球 体的扁平程度。由此可见,地球椭球体的形状和大小取决于a、 b、f 。因此,a、b、f 被称为地球椭球体的三要素。

如何进行地理坐标系与投影坐标系的转换

如何进行地理坐标系与投影坐标系的转换

如何进行地理坐标系与投影坐标系的转换地理坐标系与投影坐标系的转换是地理信息系统(GIS)领域中一个重要的话题。

在GIS中,地理坐标系用经度和纬度表示地球上的位置,而投影坐标系则通过将地球的曲面投影到平面上来表示。

本文将从基础概念开始,介绍如何进行地理坐标系与投影坐标系之间的转换。

一、地理坐标系与投影坐标系的基本概念地理坐标系是基于地球的椭球体来定义的,通过经度(Longitude)和纬度(Latitude)来表示地球上的位置。

经度是指从地球中心引出的经线,在东经0度和西经0度之间取值,范围为-180度到180度;纬度是指从地球中心引出的纬线,在赤道和两极之间取值,范围为-90度到90度。

投影坐标系是将地球的曲面投影到平面上来表示地球上的位置,使得较大范围的地理信息能够在平面上得到合理的表示。

投影坐标系是二维的,使用直角坐标系来表示地球上的位置。

常见的投影方式有墨卡托投影、等经纬度投影、兰伯特等角投影等。

二、地理坐标系到投影坐标系的转换方法在GIS中,经常需要将地理坐标系转换为投影坐标系,以适应不同的应用需求。

下面介绍几种常见的转换方法。

1. 坐标参照系统(Coordinate Reference System,简称CRS)的设定CRS是地理信息数据的基础,它定义了地理坐标系和投影坐标系之间的关系。

在进行转换之前,首先需要确定数据使用的CRS。

2. 数据预处理在转换之前,需要对待转换的数据进行预处理。

这包括检查数据质量、确定数据坐标系,并进行必要的数据清洗和转换。

3. 地理坐标系到投影坐标系的转换转换地理坐标系到投影坐标系可以通过数学计算来实现。

通过使用已知的转换公式和参数,将经纬度坐标转换为直角坐标。

4. 空间插值和逆变换进行地理坐标系到投影坐标系的转换后,往往需要进行空间插值或逆变换来处理不同投影坐标系之间的差异。

空间插值方法可以校正因投影而引入的形变和失真。

三、常见的地理坐标系与投影坐标系的转换工具在实际应用中,有许多工具可以用来进行地理坐标系与投影坐标系的转换。

坐标转换与投影浅析

坐标转换与投影浅析

坐标转换与投影浅析摘要:本文主要介绍不同坐标系下测绘成果进行高程和平面坐标系之间转换的基本方法、地图投影的基本类型。

关键词:坐标系、高程异常、正常高、大地高、坐标转换、投影、七参数、四参数Abstract:This paper mainly introduce suerveying coordinates conversion methods and typical mapping projection types , these coordinates usually based on the different coordinate system .Keywords: coordinate system, Height anomaly, normal height, ellipsoidal height, coordinates conversion, mapping projection, Seven parameters convert, three parameters convert.概述在城市和工程勘察设计过程中,我们经常会遇到某个区域中已有地图资料坐标系不统一,或者在已有部份地图的情况下,我们需要将GPS测量数据、谷歌地球、SRTM网格数据与已有地图资料一起利用进行规划,这时我们就需要将不同来源的数据统一在一个常用的坐标系中,从而在减少外业数据采集工作量的前提下获取满足用图要求的三维地理数据。

笔者经常会遇到工程技术人员提出坐标转换中遇到的问题:转换出来的成果往往与地图资料之间存在差异,分析原因主要还是因为对坐标转换的原理不熟悉,使用软件转换坐标过程中参数设置不正确造成的。

下面就高程和平面坐标转换原理及方法进行一些简单分析。

二、坐标系统我国现有测绘资料平面坐标系基准主要有以下几种:Beijing54坐标系、Xi’an80坐标系、2000坐标系、地方或城市独立坐标系。

高程系统基准有1954黄海高程基准、1985国家高程基准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 概述1.1 地理投影的基本原理常用到的地图坐标系有2种,即地理坐标系和投影坐标系。

地理坐标系是以经纬度为单位的地球坐标系统,地理坐标系中有2个重要部分,即地球椭球体(spheroid)和大地基准面(datum)。

由于地球表面的不规则性,它不能用数学公式来表达,也就无法实施运算,所以必须找一个形状和大小都很接近地球的椭球体来代替地球,这个椭球体被称为地球椭球体,我国常用的椭球体如下表所示。

表:我国常用椭球体椭球体名称年代长半轴(米)短半轴(米)扁率WGS84 1984 6378137.0 6356752.3 1:298.257克拉索夫斯基(Krasovsky)1940 6378245.0 6356863.0 1:298.3Xian_1980 1975 6378140.0 6356755.3 1:298.257CGCS2000(CRS80) 2008 6378137.0 6356752.3 1:298.257我国规定1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万比例尺地形图,均采用高斯克吕格投影。

1:2.5万至1:50万比例尺地形图采用经差6度分带,1:1万和1:2.5万比例尺地形图采用经差3度分带。

1.2 国内坐标系介绍大地坐标,在地面上建立一系列相连接的三角形,量取一段精确的距离作为起算边,在这个边的两端点,采用天文观测的方法确定其点位(经度、纬度和方位角),用精密测角仪器测定各三角形的角值,根据起算边的边长和点位,就可以推算出其他各点的坐标。

这样推算出的坐标,称为大地坐标。

我国1954年在北京设立了大地坐标原点,由此计算出来的各大地控制点的坐标,称为1954年北京坐标系。

为了适应大地测量的发展,我国于1978年采用国际大地测量协会推荐的Xian_1980地球椭球体建立了我国新的大地坐标系,并在1986年宣布在陕西省泾阳县设立了新的大地坐标原点,由此计算出来的各大地控制点坐标,称为1980年大地坐标系。

随着社会的进步,国民经济建设、国防建设和社会发展、科学研究等对国家大地坐标系提出了新的要求,迫切需要采用原点位于地球质量中心的坐标系统作为国家大地坐标系。

2000国家大地坐标系(China Geodetic Coordinate System 2000,CGCS2000)是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心,CGCS2000是我国当前最新的国家大地坐标系。

我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。

从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。

表:北京54、西安80和2000坐标系参数列表坐标名称投影类型椭球体基准面北京54Gauss Kruger(Transverse Mercator)Krasovsky D_Beijing_1954西安80Gauss Kruger(Transverse Mercator)IAG75D_Xian_1980 CGCS2000Gauss Kruger(Transverse Mercator)CGCS2000D_China_20001.3 参数的获取对于地理坐标,只需要确定两个参数,即椭球体和大地基准面。

对于投影坐标,投影类型为Gauss Kruger(Transverse Mercator),除了确定椭球体和大地基准面外,还需要确定中央经线。

大地基准面的确定关键是确定7个参数(或者其中几个参数),北京54基准面可以用三个平移参数来确定,即"-12,-113,-41,0,0,0,0",很多软件近似为Krasovsky(0,0,0,0,0,0,0)基准面;西安80的7参数比较特殊,各个区域不一样。

一般有两个途径:一是直接从测绘部门获取;二是根据三个以上具有西安80坐标系与其他坐标系的同名点坐标值,利用软件来推算,有一些绿色软件具有这个功能,如Coord MG。

中央经线获取可有以下两种方法,第一种根据已知带号计算,6度带用6*N-3,3度带用3*N;第二种方法是根据经度从下图中查找。

图:高斯——克吕格投影的分带2. 详细操作步骤ENVI中的坐标定义文件存放在安装路径下的map_proj文件夹内,在不同的ENVI版本中路径稍有不同,分别为:∙ENVI 4.x:HOME\ITT\IDLXX\products\envi4X\map_proj∙ENVI 5.x:HOME\Exelis\ENVI5X\classic\map_proj在map_proj文件夹内有三个文本文件记录了坐标信息,分别为:∙ellipse.txt 椭球体参数文件∙datum.txt 基准面参数文件∙map_proj.txt 坐标系参数文件在ENVI中自定义坐标系分三步:定义椭球体、基准面和定义坐标参数。

2.1 添加椭球体修改文件为ellipse.txt,语法为<椭球体名称>,<长半轴>,<短半轴>。

这里的逗号为英文半角输入状态下的逗号,建议直接复制文件中已有的椭球体进行修改。

这里将下面三行加在ellipse.txt文件的末尾,保存关闭即可。

最终效果如下图所示。

∙Krasovsky,6378245.0,6356863.0∙Xian_1980,6378140.0,6356755.3∙CGCS2000,6378137.0,6356752.3注:ellipse.txt文件中已经有了克拉索夫斯基椭球,由于翻译原因,这里的英文名称是Krassovsky,为了让其他软件平台识别,这里新建一个Krasovsky椭球体。

图:定义椭球体2.2 添加基准面修改文件为datum.txt,语法为<基准面名称>,<椭球体名称>,<平移三参数>。

这里将下面三行添加在datum.txt文件末尾,保存关闭即可。

最终效果如下图所示。

∙D_Beijing_1954, Krasovsky, -12, -113, -41∙D_Xian_1980,IAG-75,0,0,0∙D_China_2000,CGCS2000,0,0,0注:为了更好的与ArcGIS系列产品兼容,从ENVI 4.7开始,所有产品包括ENVI、ENVI+IDL、ENVI Zoom 和ENVI Ex,全部采用ArcGIS投影转换引擎(ENVI4.7之前的版本用的是GCTP——常规制图转换包)。

对用户来说,ENVI菜单中所有的投影操作不变,同时还直接支持ArcGIS中的投影类型。

但是自定义坐标系时有一些改变,需要基准面名称、投影坐标系名称与ArcGIS完全一致即可,字母的大小写也要相同。

图:定义基准面2.3 定义坐标系在ENVI任何用到投影坐标的功能模块中都可以新建坐标系(在任何地图投影选择对话框中,点击"New"按钮即可)。

下面我们以ENVI Classic为例,添加一个北京54坐标系,信息如下:北京54坐标系、带号为20、中央经线117E、不添加带号信息。

操作步骤如下:1.打开ENVI Classic,选择Map > Customize Map Projection工具;2.在弹出的Customized Map ProjectionDefinition对话框内填写如图所示参数,其中Projection Name保持与ArcGIS中的名称一致;3.选择Projection > Add New Projection…,保存投影坐标系;4.选择File > Save Projections…,在弹出对话框中点击OK,将新建坐标系保存在map_proj.txt文件内,以便下次启动ENVI后依然可以使用。

注:投影类型选择Transverse Mercator,Scale factor填写1,与Gauss-Kruger 等同。

False easting中如果把带号,即20500000,得到的坐标就带有带号。

图:自定义北京54坐标系参数设置2.4 使用自定义坐标系下面将利用自定义坐标系将一副北京54坐标系图像转化为2000坐标系。

试验的栅格数据是一幅北京54坐标系的栅格数据,投影参数如下:∙投影类型:Transverse Mercator∙椭球:Krassovsky∙基准面:Krassovsky(D_Beijing_1954)∙中央经线:117E∙东向偏移:500000m由于数据的投影信息不是国际标准或者说其参数名称不是标准的,所以在ENVI中有可能不能读取数据的投影信息(如下图-左),这个时候就需要重新设定投影信息。

定义投影步骤如下:1.按照2.3节的步骤进行北京54坐标系的自定义;2.打开文件"…\数据\f49e011021.img",在Available Bands List中右键点击文件列表下的Map Info,选择Edit Map Information…;3.在弹出的Edit Map Information对话框中点击Change Proj…按钮,选择新建好的北京54坐标系,点击OK。

ENVI将自动为f49e011021.img的头文件中添加Map Info,识别结果如下图-右所示。

图:未能识别投影坐标系(左),定义坐标系后(右)图:定义输入文件的投影坐标系下面介绍将北京54坐标系转换为2000坐标系的步骤: 1. 2.3节的步骤定义2000坐标系,参数如下图所示。

图:自定义2000坐标系参数2. 投影转换,选择Map > Convert Map Projection工具,选择输入文件f49e011021.img(已经定义为北京54坐标系),点击OK;3. 出的Convert Map Projection Parameters对话框中点击Change Proj…按钮,选择新建的2000坐标系,点击OK;4. onvert Map Projection Parameters面板右侧修改转换参数(如下图所示),选择输出路径,点击OK即可。

5. 投换结果如图所示。

图:投影转换参数设置图:投影转换结果3. 使用ArcGIS 国内坐标系通过以上操作可以看出,虽然在ENVI中自定义坐标系非常方便,但是由于每一个坐标系均存在3度和6度分带,并且分带较多,如果逐个定义也是非常繁琐的。

为了让用户更加方便使国内坐标系,我们定义好了国内坐标系文件,只要替换三个txt文件并重启ENVI 即可使用所有分带的国内坐标系。

文件路径为"…\02.自定义坐标系(北京54、西安80、2000坐标系)\数据\国内坐标系文件"。

相关文档
最新文档