正多边形和圆同步练习(含答案)

合集下载

正多边形和圆练习题及答案

正多边形和圆练习题及答案

正多边形和圆练习一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶33.正五边形共有__________条对称轴,正六边形共有__________条对称轴.4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴.2.同圆的内接正三角形与内接正方形的边长的比是( )A.26B.43C.36D.34 3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 34.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练) 1.正六边形的两条平行边之间的距离为1,则它的边长为( ) A.63 B.43 C.332 D.33 2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a ,所以AD ∶OA ∶OD=3∶2∶1.答案:A 3.答案:5 64.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n ︒360,所以n=8. 答案:85.思路解析:由切线长定理及三角形周长可得.答案:6二、课中强化(10分钟训练)1.思路解析:因为正n 边形的外角为n︒360,一个内角为n n ︒•-180)2(, 所以由题意得n︒360=32·n n ︒•-180)2(,解这个方程得n=5.答案:5 2. 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A.答案:A3.思路解析:周长相等的正多边形的面积是边数越多面积越大.答案:B4. 思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法:①作直径AC;②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°.∴DE 为⊙O 的内接正十二边形的一边.三、课后巩固(30分钟训练)1. 思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33.答案:D 2.思路解析:将问题转化为直角三角形,由直角边的比知应选B.答案:B3.答案:184.答案:144.5思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3.6.解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n ︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN. ∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。

九年级数学 圆内接正多边形 专题练习(含解析)

九年级数学 圆内接正多边形 专题练习(含解析)

C.连接 AD,则 AD 分别平分∠EAC 与∠EDC D.图中一共能画出 3 条对称轴
答案:B 解析:解答: A.∵多边形 ABCDEF 是正六边形, ∴△ACE 是等边三角形,故本选项正确; B.∵△ACE 是等边三角形,∴是轴对称图形,不是中心对称图形,故本选项错误; C.∵△ACE 是等边三角形,∴连接 AD,则 AD 分别平分∠EAC 与∠EDC,故本选项正确; D.∵△ACE 是等边三角形,∴图中一共能画 3 条对称轴,故本选项正确. 故选 B. 分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.
C.18
D.36
答案:C
解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,
等边三角形的边长是 2 ,高为 3,
因而等边三角形的面积是 3 ,
∴正六边形的面积=18 , 故选 C. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.
12.已知某个正多边形的内切圆的半径是 ()
∴△OAB 是等边三角形, ∴OB=AB=24cm,
∴ 60 ´ 24 = 8 180
故选 B 分析:连接 OA、OB,得出等边三角形 AOB,求出 OB 长和∠AOB 度数,根据弧长公式求
出即可.
10.若一个正六边形的半径为 2,则它的边心距等于( )
A.2 B.1 C.
D.2
答案:C 解析:解答:已知正六边形的半径为 2,则正六边形 ABCDEF 的外接圆半径为 2, 如图:
连接 OA,作 OM⊥AB 于点 M, 得到∠AOM=30°,
则 OM=OA•cos30°= .
则正六边形的边心距是 .
故选 C. 分析:根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角 关系即可求出.

24.3+正多边形和圆同步练习2024-2025学年人教版数学九年级上学期

24.3+正多边形和圆同步练习2024-2025学年人教版数学九年级上学期

24.3 正多边形和圆同步练习2024-2025学年九年级上学期数学人教版基础题夯实知识点1正多边形的有关概念1.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A.正三角形B.正方形C.正五边形D.正七边形2.下列说法:①矩形是正多边形;②菱形是正多边形;③各角相等的圆内接多边形是正多边形;④各边相等的圆内接多边形是正多边形.其中结论正确的个数是( )A.0B.1C.2D.33.第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9B.10C.11D.12知识点2 正多边形的有关计算4.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD 的度数为 .5.⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是 .6.如图,正八边形的边长为2,对角线AB,CD 相交于点E,则线段 BE 的长为 .7.半径为 R 的圆内接正十二边形的面积为( )A.R 24B.12R2 C.3R² D.6R²8.分别求半径为R 的圆内接正三角形、正方形、正六边形的边长、边心距、周长和面积.(直接写出结果)边长边心距周长面积圆内接正三角形圆内接正方形圆内接正六边形中档题运用̂上,Q是DF̂的中点,则∠CPQ的度数为 .9.如图,正六边形ABCDEF内接于⊙O,点P在AB10.如图,点P₁∼P₁是⊙O 的八等分点.若△P₁P₁P₁,四边形P₁P₁P₁P₁的周长分别为a,b,比较a,b的大小 .11.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .12.如图,⊙O 的半径为R,六边形 ABCDEF 是圆内接正六边形,四边形 EFGH 是正方形.(1)求∠OGF 的度数;(2)求正六边形与正方形的面积比.综合题探究13.如图1,正五边形ABCDE 内接于⊙O,阅读以下作图过程,并解答下列问题,作法如图2.步骤如下:①作直径AF;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点 M,N;③连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN 是正三角形吗? 请说明理由;(3)从点 A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.。

人教版九年级数学上册24.3 正多边形和圆同步练习含答案【2021年新编版】

人教版九年级数学上册24.3 正多边形和圆同步练习含答案【2021年新编版】

第24章 24.3《正多边形和圆》同步练习及答案 (1) 1.边长为a的正六边形的边心距是__________,周长是____________,面积是___________。

2.如图1,正方形的边长为a,以顶点B、D为圆心,以边长a为半径分别画弧,在正方形内两弧所围成图形的面积是___________。

(1) (2) (3)3.圆内接正方形ABCD的边长为2,弦AE平分BC边,与BC交于F,则弦AE的长为__________。

4.正六边形的面积是183,则它的外接圆与内切圆所围成的圆环面积为_________。

5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________。

6.正三角形的内切圆半径、外接圆半径和高的比为___________。

7.在半径为R的圆中,内接正方形与内接正六边形的边长之比为___________。

8.同圆的内接正n边形与外切正n边形边长之比是______________。

9.正三角形与它的内切圆及外接圆的三者面积之比为_____________。

10.正三角形的外接圆半径为4cm,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________。

B卷1.正方形的内切圆半径为r,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。

2.如果正三角形的边长为a,那么它的外接圆的周长是内切圆周长的_______倍。

3.如图2,正方形边长为2a,那么图中阴影部分的面积是__________。

4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。

5.半径为R的圆的内接正n边形的面积等于__________。

6.如果圆的半径为a,它的内接正方形边长为b,该正方形的内切圆的内接正方形的边长为c,则a,b,c间满足的关系式为___________。

7.如图3,正△ABC内接于半径为1cm的圆,则阴影部分的面积为___________。

2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步测试题(附答案)

2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步测试题(附答案)

2021-2022学年北师大版九年级数学下册《3.8圆内接正多边形》同步测试题(附答案)一.选择题(共10小题,满分40分)1.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径作,,若AB =1,则阴影部分图形的周长是()A.π+1B.πC.π+1D.π2.如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:①AO⊥BE,②∠CGD=∠COD+∠CAD,③BM=MN=NE.其中正确的结论是()A.①②B.①③C.②③D.①②③3.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20°D.9°4.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°5.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD 的度数为()A.30°B.36°C.60°D.72°6.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度7.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是()A.83°B.84°C.85°D.94°8.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°9.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO的度数为()A.24°B.48°C.60°D.72°10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7二.填空题(共10小题,满分40分)11.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.12.如图,正五边形形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.(结果保留π)13.已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.14.阅读下列材料:问题:如图1,正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=2,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.15.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.16.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.17.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.18.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=.19.如图,正五边形ABCDE内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是.(填序号)20.如图,正三角形AMN与正五边形ABCDE内接于⊙O,则∠BOM的度数是.三.解答题(共4小题,满分40分)21.O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为;②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为;(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为;②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.22.如图,正五边形ABCDE中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.23.比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①;②.不同点:①;②.24.如图,分别是正方形、正五边形和正六边形,(1)试分别计算这三种正多边形的相邻两条对角线的夹角的度数;(2)探究正n边形相邻两条对角线的夹角满足的规律.参考答案一.选择题(共10小题,满分40分)1.解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴的长=的长==π,∴阴影部分图形的周长=的长+的长+BC=π+1.故选:A.2.解:∵A、B、C、D、E是⊙O上的5等分点,∴=,∴AO⊥BE,故①正确;∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°,∴∠COD=72°,∵∠COD=2∠CAD,∴∠CAD=36°;连接CD∵A、B、C、D、E是⊙O上的5等分点,∴===,∴∠BDC=∠DCE=∠CAD=36°,∴∠CGD=108°,∴∠CGD=∠COD+∠CAD,故②正确;连接AB,AE,∴∠MBA=∠MAB=36°,∴AM=BM,∵∠MAN=36°,∠ANM=∠DAE+∠AEB=72°,∴AM≠MN,∴BM≠MN③错误!则∠BAM=∠ABM=∠EAN=∠AEN=36°,∵AB=AE,∴△ABM≌△AEN(ASA),∴BM=EN=AM=AN,∵∠MAN=36°,∴AM≠MN,∴③错误.故选:A.3.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.4.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.5.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.6.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON(SAS)∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故选:C.7.解:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°﹣72°﹣60°=48°,∴∠AOB=360°﹣108°﹣48°﹣120°=84°,故选:B.8.解:设点E第一次落在圆上时的对应点为E′,连接OA、OB、OE′,如图,∵五边形ABCDE为正五边形,∴∠EAB=108°,∵正五边形ABCDE绕点A逆时针旋转,点E第一次落在圆上E′点,∴AE=AE′=3,∵OA=AB=OB=OE′=3,∴△OAE′、△OAB都为等边三角形,∴∠OAB=∠OAE′=60°,∴∠E′AB=120°,∴∠EAE′=12°,∴当点E第一次落在圆上时,则点C转过的度数为12°.故选:A.9.解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠BOA=360°﹣120°﹣108°=132°,∵AO=BO,∴∠ABO=∠OAB==24°故选:A.10.解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:D.二.填空题(共10小题,满分40分)11.解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.12.解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.13.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故答案为:72°.14.解:(1)如图2.∵△BPC绕点B逆时针旋转90°,得到了△BP′A,∴∠P′BP=90°,BP′=BP=,P′A=PC=1,∠BP′A=∠BPC,∴△BPP′为等腰直角三角形,∴PP′=PB=2,∠BP′P=45°,在△APP′中,AP=,PP′=2,AP′=1,∵()2=22+12,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°∴∠BP′A=45°+90°=135°,∴∠BPC=∠BP′A=135°;(2)如图3.∵六边形ABCDEF为正六边形,∴∠ABC=120°,把△BPC绕点B逆时针旋转120°,得到了△BP′A,∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,∴∠BP′P=∠BPP′=30°,过B作BH⊥PP′于H,∵BP′=BP,∴P′H=PH,在Rt△BP′H中,∠BP′H=30°,BP′=4,∴BH=BP′=2,P′H=BH=2,∴P′P=2P′H=4,在△APP′中,AP=2,PP′=4,AP′=2,∵(2)2=(4)2+22,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°,∴∠BP′A=30°+90°=120°,∴∠BPC=120°,过A作AG⊥BP′于G点,∴∠AP′G=60°,在Rt△AGP′中,AP′=2,∠GAP′=30°,∴GP′=AP′=1,AG=GP′=,在Rt△AGB中,GB=GP′+P′B=1+4=5,AB===2,即正六边形ABCDEF的边长为2.故答案为135°;120°,2.15.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.16.解:∵AF是⊙O的直径,∴=,∵五边形ABCDE是⊙O的内接正五边形,∴=,∠BAE=108°,∴=,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,故答案为:54.17.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.18.解:连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM﹣∠AOB=48°,故答案为:48°.19.解:①∵∠BCD=180°﹣72°=108°,∠E=108°,∴∠ADE=×(180°﹣108°)=36°,∴∠ADC=108°﹣36°=72°,∴∠BCD+∠ADC=108°+72°=180°,∴BC∥AD,故本选项正确;②∵∠BAE=108°,∠CAD=×=36°,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,,∴△BAC≌△EAD(SSS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为:①②③.20.解;连接AO,∵正三角形AMN与正五边形ABCDE内接于⊙O,∴∠AOM=×360°=120°,∴∠AOB=×360°=72°,∵∠BOM=∠AOM﹣∠AOB,∴∠BOM=120°﹣72°=48°故答案为:48°三.解答题(共4小题,满分40分)21.解:(1)①a;(1分)②a;(2分)(2)①a;(3分)②正方形ABCD的边被扇形纸板覆盖部分的总长度为a.(4分)理由:证明:连接OA、OD∵四边形ABCD是正方形,点O为中心∴OA=OD,∠OAM=∠ODN=45°又∵∠AOD=∠POQ=90°∴∠AOM+∠AOQ=90°∠DON+∠AOQ=90°∴∠AOM=∠DON∴△AOM≌△DON∴AM=DN∴AM+AN=DN+AN=AD=a(8分)(3)∵正五边形的内角为(5﹣2)×180°÷5=108°∴当扇形纸板的圆心角α为72°时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(10分)(4)∵正多边形的中心角为,∴当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.(12分)22.(1)证明:∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD,(2分)∵F、G分别是BC、CD的中点,∴BF=CG,(4分)在△ABF和BCG中,AB=BC,∠ABC=∠BCD,BF=CG,(5分)∴△ABF≌△BCG;(6分)(2)解:由(1)知∠GBC=∠F AB,∵∠AHG=∠F AB+∠ABH=∠GBC+∠ABH=∠ABC(,7分)∵正五边形的内角为108°,∴∠AHG=108°.(9分)(注:本小题直接正确写出∠AHG=108°不扣分)23.解:相同点不同点①都有相等的边.①边数不同;②都有相等的内角.②内角的度数不同;③都有外接圆和内切圆.③内角和不同;④都是轴对称图形.④对角线条数不同;⑤对称轴都交于一点.⑤对称轴条数不同.24.解:(1)解:由正方形ABCD,可得:AC⊥BD,∴α4=90°;由正五边形ABCDE,可得:AB=BC=CD,∠ABC=∠BCD=108°,∴∠DBC=∠ACB==36°,∴α5=180°﹣∠DBC﹣∠ACB=108°;同理:α6=120°;(2).。

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。

2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。

在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。

《圆内接正多边形》同步练习 (精品)2022年 附答案

《圆内接正多边形》同步练习 (精品)2022年 附答案

3.8 圆内接正多边形1.以下边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形(2)正五边形(3)正六边形(4)正八边形A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(4)2.以下说法正确的选项是A.每个内角都是120°的六边形一定是正六边形.B.正n边形的对称轴不一定有n条.C.正n边形的每一个外角度数等于它的中心角度数.D.正多边形一定既是轴对称图形,又是中心对称图形.3.假设同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3,r4,r6,那么r3:r4:r6等于( )A.B.C.D.4.如图,假设正方形A1B1C1D1内接于正方形ABCD的内接圆,那么的值为〔〕A.B.C.D.5.正六边形ABCDEF内接于⊙O,图中阴影局部的面积为,那么⊙O的半径为______________________.第5题图第6题图6.如图,正方形ABCD内接于⊙O,点E在上,那么∠BEC= .7.将一块正六边形硬纸片〔图1〕,做成一个底面仍为正六边形且高相等的无盖纸盒〔侧面均垂直于底面,见图2〕,需在每一个顶点处剪去一个四边形,例如图中的四边形AGA/H,那么∠GA/H 的大小是度.8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,那么此正方形的边长为.9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。

(1)求图10-1中∠APN 的度数;(2)图10-2中,∠APN 的度数是_______,图10-3中∠APN 的度数是________。

(3)试探索∠APN 的度数与正多边形边数n 的关系〔直接写答案〕第17章 一元二次方程17.1 一元二次方程◆随堂检测1、判断以下方程,是一元二次方程的有____________.〔1〕; 〔2〕; 〔3〕;〔4〕;〔5〕;〔6〕.〔提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.〕2、以下方程中不含一次项的是〔 〕A .B .C .D .3、方程的二次项系数___________;一次项系数__________;常数项_________.4、1、以下各数是方程解的是〔 〕N 图10-1N 图10-2 A M 图10-3M 图10-4A、6B、2C、4D、05、根据以下问题,列出关于的方程,并将其化成一元二次方程的一般形式.〔1〕4个完全相同的正方形的面积之和是25,求正方形的边长.〔2〕一个矩形的长比宽多2,面积是100,求矩形的长.〔3〕一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.分析:此题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.解:〔1〕由题意得,时,即时,方程是一元一次方程.〔2〕由题意得,时,即时,方程、一次项系数是、常数项是.◆课下作业●拓展提高1、以下方程一定是一元二次方程的是〔〕A、 B、C、 D、2、是关于的一元二次方程,那么的值应为〔〕A、=2B、C、D、无法确定3.是一元二次方程的一个解,那么的值是〔〕A.-3 B.3 C.0 D.0或34.假设是关于的方程的根,那么的值为〔〕A.1 B.2 C.-1 D.-25.根据以下表格对应值:A、 B、3.24<C、5<D、<6.假设一元二次方程有一个根为1,那么_________;假设有一个根是-1,那么b与、c之间的关系为________;假设有一个根为0,那么c=_________.7.下面哪些数是方程的根?-3、-2、-1、0、1、2、3、0,求的值是多少?9.关于的方程.〔1〕为何值时,此方程是一元一次方程?〔2〕为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形和圆知识点相等,______________也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是________________,它的中心角等于______________________________________________.3.一个正多边形的外接圆的____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正n边形的半径为R,边心距为r,边长为a,(1)中心角的度数为:______________.(2)每个内角的度数为:_______________________.(3)每个外角的度数为:____________.(4)周长为:_________,面积为:_________.5.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,并且还是中心对称图形;当边数为奇数时,它只是_______________.(填“轴对称图形”或“中心对称图形”)一、选择题1.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A.6,32B.32,3 C.6,3 D.62,324. 如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().第4题A .60°B .45°C .30°D .22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为 ( ) A.1:2:3 B.3:2:1 :2:1 :2:36. 圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ).A .36°B .60°C .72°D .108°7.(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( ).5 C D. 78.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O的内接正方形,BC ∥QR ,则∠AOQ 的度数是 ( )° ° ° °二、填空题9.一个正n 边形的边长为a ,面积为S ,则它的边心距为__________.10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm 2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM=BN ,点O 是正八边形的中心,则∠MON =_____________.14.边长为a 的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要__________cm .16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________. 第6题第7题 第8题 第13题17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________.不同点:(1)____________________________________________________________________;(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R、边心距r6、面积S6.第18题第20题21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A .(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.23.如图1、图2、图3、…、图n ,M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连结OM 、ON .(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是_________,图3中∠MON 的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 第21题第22题参考答案知识点1.各边 各角2.正多边形 正多边形每一边所对的圆心角3.圆心 半径 圆心角 距离4.360(2)180360(1)(2)(3)(4)(5)2n nar na n n n ︒-︒︒g 轴对称图形一、选择题解:根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .二、填空题 9. 2Sna11.4cm ° :2:3 15. 16.四 :3三、解答题19.相同点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆).不同点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5条,正六边形的对称轴是6条. 20. 222266266.=606=6,11632263331663354326,33,543.OA,OB.O OG AB G AOB OA OBAOB OA OB R OA OB OG ABAG AB Rt AOG r OG OA AG S R cm r cm S cm ⊥∠︒=∴∆∴===⊥∴==⨯=∴∆==-=-==⨯⨯⨯=∴===Q Q 解:连接过点作于,是等边三角形即在中, 21.解:连结OB∵在Rt △AOC 中,AC =2221OA OC -=-=1 ∴AC =OC ∴∠AOC =∠OAC =45°∵OA =OB OC ⊥AB∴AB =2AC =2 ∠AOB =2∠OAC =2×45°=90°∴这个内接正多边形是正方形.∴面积为22=4∴中心角为90°,边长为2,面积为4.22. (1)作法:①作直径AC ;②作直径BD ⊥AC ;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形; ④分别以A 、C 为圆心,以OA 长为半径作弧,交⊙O 于E 、H 、F 、G ; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.第22题六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE .∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =90°-60°=30°. ∴DE 为⊙O 的内接正十二边形的一边.23.(1)方法一:连结OB 、OC .∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN (SAS ).∴∠BOM =∠CON .∴∠MON =∠BOC =120°.方法二:连结OA 、OB .∵正△ABC 内接于⊙O ,∴AB =AC ,∠OAM =∠OBN =30°, ∠AOB =120°.又∵BM =CN ,∴AM =BN .又∵OA =OB ,∴△AOM ≌△BON (SAS ).∴∠AOM =∠BON .∴∠MON =∠AOB =120°.(2)90° 72°(3)∠MON =n ︒360.。

相关文档
最新文档