八年级数学下册几何知识总结及试题

合集下载

初二下数学几何部分知识点背诵

初二下数学几何部分知识点背诵

初二下数学几何部分知识点背诵一、勾股定理1、勾股定理的公式:勾²+股²=弦²用字母表示为:a ²+b ²=c ² (a,b 为直角边,c 为斜边)可变形为:a ²=c ²-b ²b ²=c ²-a ² 可推导出:b a c 22+=a cb 22-= b c a 22-=2、勾股定理的逆定理:如果一个三角形的三边长a,b,c 满足:a ²+b ²=c ²,那么这个三角形就是直角三角形。

(通常我们在验证时要知道,最长的边一定是斜边)勾股定理的逆定理用于判断一个已知三边长的三角形是否是直角三角形。

二、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

通常用表示平行四边形2、平行四边形的性质:①对边平行②对边相等③对角相等④对角线互相平分3、平行四边形的判定方法:①定义法:两组对边分别平行的四边形是平行四边形。

②对边相等法:两组对边分别相等的四边形是平行四边形。

③对角相等法:两组对角分别相等的四边形是平行四边形。

④对角线平分法:对角线互相平分的四边形是平行四边形。

⑤平行相等法:一组对边平行且相等的四边形是平行四边形。

4、三角形的中位线:①定义:连接三角形两边中点的线段叫做三角形的中位线。

②中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

三、特殊的平行四边形----矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。

2、矩形的性质:①平行四边形有的性质它都有。

②矩形的四个角都是直角。

(特有)③矩形的对角线相等。

(特有)3、直角三角形的重要性质:直角三角形斜边上的中线等于斜边的一半。

4、矩形的判定方法:①定义法:有一个角是直角的的平行四边形是矩形。

②对角线法:对角线相等的平行四边形是矩形。

③直角法:有三个角是直接的四边形是矩形。

八年级数学(下册)几何知识总结和试题

八年级数学(下册)几何知识总结和试题

§9.1 图形的旋转概念:将图形绕一个顶点转动一定的角度.这样的图形运动称为图形的旋转.这个定点称为旋转中心.旋转的角度称为旋转角。

图形的旋转不改变图形的形状、大小.只改变图形上点的位置性质:一个图形和它经过旋转所得到的图形中.对应点到旋转中心距离相等.两组对应点分别与旋转中心连线所成的角相等。

基本画法:将图形上的一些特殊点与旋转中心连接.以旋转中心为圆心.连线段长为半径画图.按照旋转的角度来找出对应点.再画出所有的对应线段。

典型题:确定图形的旋转角度、确定图形的旋转中心、生活中的数学问题、作图题、§9.2 中心对称与中心对称图形1、中心对称的概念一个图形绕某点旋转180°.如果它能够与另一个图形重合.那么称这两个图形关于这点对称.也称这两个图形成中心对称。

这个点叫做对称中心.两个图形中的对应点叫做对称点。

2、中心对称的性质:成中心对称的两个图形中.对应点的连线经过对称中心.且被对称中心平分。

3、中心对称图形的定义及其性质把一个图形绕某点旋转180°,如果旋转后的图形能够与原来的图形互相重合.那么这个图形叫做中心对称图形.这个点叫做对称中心。

中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

§9.3 平行四边形1、平行四边形的概念:两组对边分别平行的四边形叫做平行四边形2、平行四边形的性质平行四边形的性质:〔1平行四边形的对边相等;〔2平行四边形的对角相等〔3平行四边形的对角线互相平分。

3、判定平行四边形的条件〔1两组对边分别平行的四边形叫做平行四边形〔概念〔2一组对边平行且相等的四边形叫做平行四边形〔3对角线互相平分的四边形叫做平行四边形〔4两组对边分别相等的四边形叫做平行四边形5、反证法反证法是一种间接证明的方法.不是从已知条件出发直接证明命题的结论成立.而是先提出与结论相反的假设.然后由这个"假设"出发推导出矛盾.说明假设是不成立的.因而命题的结论是成立的。

八年级下数学几何题(有答案)

八年级下数学几何题(有答案)

八年级下数学几何题(有答案)八年级下期末复习5如图1,四边形ABCD为正方形,E在CD上,∠DAE的平分线交CD于F,BG⊥AF于G,交AE于H.(1)如图1,∠DEA=60°,求证:AH=DF;(2)如图2,E是线段CD上(不与C、D重合)任一点,请问:AH与DF有何数量关系并证明你的结论;(3)如图3,E是线段DC延长线上一点,若F是△ADE中与∠DAE相邻的外角平分线与CD的交点,其它条件不变,请判断AH与DF的数量关系(画图,直接写出结论,不需证明).证明:(1)延长BG交AD于点S∵AF是HAS的角的平分线,BS⊥AF∴∠HAG=∠SAG,∠HGA=SGA=90°又∵AG=AG∴△AGH≌△AGS∴AH=AS,∵AB∥CD∴∠AFD=∠BAG,∵∠BAG+∠ABS=∠ABS+∠ASB=90°∴∠BAG=∠ASB∴∠ASB=∠AFD又∵∠BAS=∠D=90°,AB=AD∴△ABS≌△DAF∴DF=AS∴DF=AH.(2)DF=AH.同理可证DF=AH.(3)DF=AH如图,在△ABC中,点O是AC边上的一个动点(点O不与A、C 两点重合),过点O作直线MN ∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.(1)OE 与OF相等吗?为什么?(2)探究:当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)在(2)中,当∠ACB等于多少时,四边形AECF为正方形.(不要求说理由)解:(1)如图所示:作EG⊥BC,EJ⊥AC,FK⊥AC,F H⊥BF,因为直线EC,CF分别平分∠ACB与∠ACD,所以EG=EJ,FK=FH,在△EJO与△FKO中,∠AOE=∠CON ∠EJO=∠FKO EJ=FK ,所以△EJO≌△FKO,即OE=OF(2)当OA=OC,OE=OF时,四边形AECF是矩形,证明:∵OA=OC,OE=OF,∴四边形AECF为平行四边形,又∵直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.∴∠ACE=∠BCE,∠ACF=∠FCD,由∠BCE+∠ACE+∠ACF+∠FCD=180°,∴∠ECA+∠ACF=90°,即∠ECF=90°,∴四边形AECF为矩形;(3)由(2)可知,四边形AECF是矩形,要使其为正方形,再加上对角线垂直即可,即∠ACB=90°(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?即:FG=(AB+BC+AC)(直接写出结果即可)(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是解如图(1)FG=1 /2 (AB+BC+AC);(2)答:FG=1 /2 (AB+AC-BC);证明:延长AG交BC于N,延长AF交BC于M∵AF⊥BD,A G⊥CE,∴∠AGC=∠CGN=90°,∠AFB=∠BFM=90°在Rt△AGC和Rt△CGN中∠AGC=∠CGN=90°,CG=CG,∠ACG=∠NCG∴Rt△AGC≌Rt△CGN∴AC=CN,AG=NG同理可证:AF=FM,AB=BM.∴GF是△AMN的中位线∴GF=1/ 2 MN.∵AB+AC=MB+CN=BN+MN+CM+MN,BC=BN+MN+CM ∴AB+AC-BC=MN∴GF=1 /2 MN=1 /2 (AB+AC-BC);(3)线段FG与△ABC三边之间数量关系是:GF=1/ 2 (AC+BC-AB).已知:△ABC中,以AC、BC为边分别向形外作等边三角形ACD 和BCE,M为CD中点,N为CE 中点,P为AB中点.(1)如图1,当∠ACB=120°时,∠MPN的度数为;(2)如图2,当∠ACB=α(0°<α<180°)时,∠MPN的度数是否变化?给出你的证明.解:(1)∠MPN的度数为60°;(2)∠MPN的度数不变,仍是60°,理由如下:证明:取AC、BC的中点分别为F,G,连接MF、FP、PG、GN,∵MF是等边三角形ACD的中位线,∴MF=1 /2 AD=1 /2 AC,MF∥AD,∵PG是△ABC的中位线,∴PG=1/ 2 AC,PG∥AC,∴MF=PG,同理:FP=CG,∴四边形CFPG是平行四边形,∴∠CFP=∠CGP,∴∠MFC+∠CFP=∠CGN+∠CGP,即∠MFP=∠PGN,∴△MFP≌△PGN(SAS),∴∠FMP=∠GPN,∵PG∥AC,∴∠1=∠2,在△MFP中,∠MFC+∠CFP+∠FMP+∠FPM=180°,又∵∠MFC=60°,∴∠CFP+∠FMP+∠FPM=120°,∵∠CFP=∠1+∠3,∴∠1+∠3+∠FMP+∠FPM=120°,∵∠1=∠2,∠FMP=∠GPN,∴∠2+∠3+∠GPN+∠FPM=120°,又∵∠3+∠FPM+∠MPN+∠GPN+∠2=180°,∴∠MPN=60°.如图,在平面直角坐标系中,A是反比例函数y=k/x(x>0)图象上一点,作AB⊥x轴于B点,AC⊥y轴于C点,得正方形OBAC的面积为16.(1)求A点的坐标及反比例函数的解析式;.(2)点P(m,16/3 )是第一象限内双曲线上一点,请问:是否存在一条过P点的直线l与y轴正半轴交于D点,使得BD⊥PC?若存在,请求出直线l的解析式;若不存在,请说明理由;(3)连BC,将直线BC沿x轴平移,交y轴正半轴于D,交x轴正半轴于E点(如图所示),DQ⊥y轴交双曲线于Q点,QF⊥x轴于F点,交DE于H,M是EH的中点,连接QM、OM.下列结论:①QM+OM的值不变;②QM/OM的值不变.可以证明,其中有且只有一个是正确的,请你作出正确的选择并求值.解:(1)∵正方形OBAC的面积为16,∴A(4,4);(2分)将A点代入反比例函数y=k /x (x>0)中,得反比例函数的解析式:y=16/ x ;(2)将y=16/ 3 代入y=16 /x 得:P(3,16 /3 );设存在点D,延长PC交x轴于E点;∵∠COE=∠DOB=90°,∠ECO=∠DCP,∴∠CEO=∠ODB;而OC=OB,∴△COE≌△BOD,∴OE=OD;而C(0,4),P(3,16 /3 ),∴直线CP的解析式为y=4 /9 x+4;当y=0时,x=-9,∴E(-9,0),故D(0,9),∴直线l的解析式为:y=-11/ 9 x+9(3)选②,值为1.连FM,∵DE∥BC,∴OE=OD=QF,而M是Rt△FHE的斜边中点,∴EM=HM=FM;∵∠OEH=∠QFM=45°,∴△QMF≌△OME;∴QM=OM;∴QM OM =1.。

人教版八年级数学下册正方形知识点及同步练习、含答案

人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

八年级经典几何题

八年级经典几何题

八年级经典几何题一、三角形全等类。

题1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。

解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目所给条件)。

- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。

- AD = AD(公共边)。

2. 根据SSS(边 - 边 - 边)全等判定定理,可得△ABD≌△ACD。

题2:已知:如图,点B、E、C、F在同一直线上,AB = DE,AC = DF,BE = CF。

求证:∠A = ∠D。

解析:1. 因为BE = CF,所以BE+EC = CF + EC,即BC = EF。

2. 在△ABC和△DEF中:- AB = DE(已知)。

- AC = DF(已知)。

- BC = EF(已证)。

3. 根据SSS全等判定定理,△ABC≌△DEF。

4. 所以∠A = ∠D(全等三角形的对应角相等)。

二、等腰三角形性质类。

题3:等腰三角形的一个角是70°,求它的另外两个角的度数。

解析:1. 当70°角为顶角时:- 因为等腰三角形两底角相等,设底角为x。

- 根据三角形内角和为180°,则2x+70° = 180°。

- 2x = 180° - 70° = 110°,解得x = 55°。

- 所以另外两个角都是55°。

2. 当70°角为底角时:- 则另一个底角也是70°,顶角为180°-70°×2 = 180° - 140° = 40°。

- 所以另外两个角是70°和40°。

题4:已知等腰三角形ABC中,AB = AC,AD⊥BC于D,若∠BAD = 30°,求∠C的度数。

解析:1. 因为AB = AC,AD⊥BC,根据等腰三角形三线合一的性质,AD是∠BAC的平分线。

初二下册几何总结归纳知识点

初二下册几何总结归纳知识点

初二下册几何总结归纳知识点几何是数学中的一个分支,主要研究空间和形状的性质与变化。

在初二下册的几何学习中,我们学习了许多与点、线、面、体相关的知识点。

下面是对这些知识点进行总结归纳。

一、点、线、面的性质:1.1 点的性质:- 点是没有大小、形状的,只有位置的概念;- 三点确定一条直线;- 两点确定一条直线段;- 两点间的最短距离是直线段。

1.2 直线的性质:- 直线的长度是无限的;- 直线上的任意两点可确定唯一一条直线;- 平面内直线外的点到直线只有一条线段最短;- 两条直线相交于一点,则这两条直线确定一个平面。

1.3 面的性质:- 面是有无限多个点的集合;- 三点不共线确定一个平面;- 平面内两直线相交于一点,则它们在这个平面内共有一点或共线。

二、多边形的性质:2.1 三角形的性质:- 三角形的内角和为180度;- 三角形的外角等于与它不相邻的两个内角之和;- 三角形的任意两边之和大于第三边;- 等腰三角形的两底角相等;- 等边三角形的三个角都相等,都为60度。

2.2 四边形的性质:- 任意相邻两边的内夹角的度数和为180度;- 矩形的对角线相等;- 正方形是矩形的特例,四个角都为90度,且对角线相等;- 平行四边形的对角线互相平分;- 菱形的对角线互相垂直且互相平分。

三、圆的性质:3.1 圆的性质:- 圆是由平面上到一个确定点的距离相等的点的集合;- 圆心:确定圆的位置,通常表示为O;- 半径:圆心到圆上任一点的距离,通常表示为r;- 直径:通过圆心的两个点之间的距离,通常表示为d;- 周长:圆上任意两点间的弧长,通常表示为C=2πr;- 面积:圆内的所有点到圆心的距离之和,通常表示为S=πr²。

3.2 弧与弦:- 弧:在圆上两点间的部分;- 弦:圆上两点间的线段。

以上是初二下册几何学习的主要知识点总结归纳,通过系统学习这些知识点,我们可以更好地理解和运用几何知识,解决与点、线、面、多边形和圆相关的问题。

专题1.11 与角平分线有关的几何模型-2020-2021学年八年级数学下册基础知识专项讲练

专题1.11 与角平分线有关的几何模型-2020-2021学年八年级数学下册基础知识专项讲练

QPONMFAEBC D 2图A E BDFC1图F GE 图3D CNMBA专题1.11 与角平分线有关的几何模型(知识讲解)【知识回顾】1、角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

2、角平分线的性质:角的平分线的性质:角的平分线上的点到角两边的距离相等.3、角平分线的判定:在角的内部到角两边距离相等的点在这个角的平分线上. 【学习目标】1.了解几何模型的含义;2.掌握角平分线的几何模型,并运用几何模型解决问题. 【要点梳理】1、模型一、 角平分线+平行线模型如图,P 是∠MO 的平分线上一点,过点 P 作PQ ∥ON ,交OM 于点Q 。

结论:△POQ 是等腰三角形。

.+2.+3.+⇒⎫⎪⇒⇔⎬⎪⇒⎭拓展:1角平分线平行线等腰三角形角平分线等腰三角形平行线知二得一平行线等腰三角形角平分线 特别说明:有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

【典型例题】1、 解答下列问题:(1)如图①所示,在△ABC 中,EF ∥BC ,点D 在EF 上,BD 、CD 分别平分∠ABC 、∠ACB ,写出线段EF 与BE 、CF 有什么数量关系;(2)如图②所示,BD 平分∠ABC 、CD 平分∠ACG ,DE ∥BC 交AB 于点E ,交AC 于点F ,线段EF 与BE 、CF 有什么数量关系?并说明理由。

(3)如图③所示,BD 、CD 分别为外角∠CBM 、∠BCN 的平分线,,DE ∥BC 交AB 延长线于点E ,交AC 延长线于点F ,直接写出线段EF 与BE 、CF 有什么数量关系?.+⇒⇒思路分析:(1)BD.CD 为角平分线EF//CD ED=EB,FD=FC EF=BE+CF.+EF ⇒⇒⇒=(2)BD.CD 为角平分线EF//CD ED=EB,FD=FC EF=ED-FD EB-FD. .+EF DE DFEF ⇒⇒⇒=+⇒=(2)BD.CD 为角平分线EF//CD ED=EB,FD=FC EF=ED-FD EB+FD.举一反三:【变式】如图,点I 为△ABC 角平分线交点,AB =8,AC =6,BC =5,将△ACB 平移使其顶点C 与点I 重合,则图中阴影部分的周长为__.【答案】8【分析】此题有角平分线,平移可知ID//AC,BC//IE,构造平行线+角平分线解决问题:解:解:如图,连接AI ,BI , △点I 为△ABC 角平分线交点, △IA 和IB 分别平分△CAB 和△CBA , △△CAI =△DAI ,△CBI =△EBI , △将△ACB 平移,使其顶点与点I 重合, △DI ∥AC ,EI ∥BC ,△△CAI =△DIA ,△CBI =△EIB , △△DAI =△DIA ,△EBI =△EIB , △DA =DI ,EB =EI ,△DE+DI+EI =DE+DA+EB =AB =8. 即图中阴影部分的周长为8. 故答案为:8.【点拨】解题关键在于作辅助线构造平行线+角平分线几何模型。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册几何知识总结及试题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】§图形的旋转概念:将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

图形的旋转不改变图形的形状、大小,只改变图形上点的位置性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。

基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。

典型题:确定图形的旋转角度、确定图形的旋转中心、生活中的数学问题、作图题、§中心对称与中心对称图形1、中心对称的概念一个图形绕某点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。

这个点叫做对称中心,两个图形中的对应点叫做对称点。

2、中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

3、中心对称图形的定义及其性质把一个图形绕某点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。

中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

角线互相平分。

3、判定平行四边形的条件(1)两组对边分别平行的四边形叫做平行四边形(概念)(2)一组对边平行且相等的四边形叫做平行四边形(3)对角线互相平分的四边形叫做平行四边形(4)两组对边分别相等的四边形叫做平行四边形5、反证法反证法是一种间接证明的方法,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出矛盾,说明假设是不成立的,因而命题的结论是成立的。

常见题型:运用性质求值、添加条件题、实际问题相结合、体现数学思想的题型、例6:如图,在四边形ABCD中,AD∥BC,AD>BC,BC=6cm,点P、Q分别以A、C点同时出发,P以1cm/ s 的速度由点A向点D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=时,四边形ABQP是平行四边形.§矩形、菱形、正方形1、矩形的概念和性质有一角是直角的平行四边形叫做矩形,矩形也叫做长方形。

矩形是特殊的平时行不行,它除了具有平行四边形的一切性质外,还具有的性质:矩形的对角线相等,四个角都是直角2、判定矩形的条件(1)有一个角是直角的平行四边形是矩形(2)三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形3、菱形的概念与性质有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形,它除了具有平行四边形的一切性质外,还具有一些特殊的性质:菱形的四条边相等;菱形的对角线互相垂直。

4、判定菱形的条件(1)有一组邻边相等的平行四边形叫做菱形(概念)(2)四边相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形5、正方形的概念、性质和判定条件有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

正方形不仅是特殊的平行四边形,而且是有一组邻边相等的特殊的矩形,也是有一个角是直角的特殊的菱形。

它具有矩形和菱形的一切性质。

判定正方形的条件:(1)有一组邻边相等并且有一个角是直角的平行四边形叫做正方形(概念)(2)有一组邻边相等的矩形是正方形(3)有一个角是直角的菱形是正方形§三角形的中位线1、三角形中线的概念和性质连接三角形两边重点的线段叫做三角形的中位线。

三角形中位线平行且等于第三边的一半2、三角形的中位线与中线的区别(1)区别:三角形的中位线平分这个三角形的两条边,平行于第三边,且等于第三边的一半,但不经过这个三角形的任何顶点;而三角形的中线只平分这个三角形的一条边,不平行于这个三角形的任何边,但经过它所平分的边相对的顶点。

(2)联系:三角形的一边上的中线与这边对应的中位线能够互相平分。

1、如图,在平行四边形ABCD中,P是AB上一点,E、F分别是、BC、AD的中点,连接PE、PC、PD、PF.设平行四边形ABCD的面积为m,则S△PCE+S△PDF=() A 1/4mB 1/2mC 1/3MD 3/5 M2、在ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值范围是()(3)A 、AD>1 B 、 1<AD<9 C 、AD<9 D 、AD>93、如图,所示,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是cm2.4、如图,在△ABC中,M是BC边的中点,AP平分∠A,BP⊥AP于点P、若AB=12,AC=22,则MP的长为5如图,矩形ABCD 中,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当点P 在BC 上由B向C 移动时,点R 不动,那么EF 的长度(用“变大”、“变小”和“不变”填空)6:如图,在四边形ABCD 中,AD ∥BC ,点M 、N 分别是两条对角线BD 、AC 的中点,求证:MN ∥BC 且)(21AD BC MN -=7:如图,在ΔABC 中,AB=AC ,点O 在ΔABC 的内部,∠BOC=90°,OB=OC ,点D 、E 、F 、G 分别是边AB 、OB 、OC 、AC 的中点。

(1)求证:四边形DEFG 是矩形(2)若DE=2,EF=3,求△ABC 的面积8.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连结AE .F 为AE 上一点,且∠BFE =∠C . (1)求证:△ABF ∽△EAD ;(2)若AB =4, BE =3,求AE 的长;(3)在(1)、(2)的条件下,若AD =3,求BF 的长.9.如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥(2)当t 为何值时,线段EF 把梯形ABCD 的面积分成2: 3两部分。

(3)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.10、已知:如图,四边形ABCD 是菱形,∠A=60°,直线EF 经过点C ,分别交AB 、AD 的延长线于E 、F 两点,连接ED 、FB 相交于点H .(1) 找出图中与△BEC 相似的三角形,并选一对给予证明; (2) 如果菱形的边长是3,DF=2,求BE 的长; (3) 请说明BD2=DH ﹒DE 的理由.11.将边长OA=8,OC=10的矩形OABC 放在平面直角坐标系中,顶点O 为原点,顶点C 、A 分别在x 轴和y 轴上.在OA 、OC 边上选取适当的点E 、F ,连接EF ,将△EOF 沿EF 折叠,使点O 落在AB 边上的点D 处.图① 图② 图③(1)如图①,当点F 与点C 重合时,OE 的长度为 ;AHDCBE(2)如图②,当点F与点C不重合时,过点D作D G∥y轴交EF于点T,交OC于点G.求证:EO=DT;(3)在(2)的条件下,设(),,写出y与x之间的函数关系式为,自变量xT x y的取值范围是;(4)如图③,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作D G∥y轴交EF于点T,交OC于点G,求出这时()T x y,的坐标y与x之间的函数关系式(不求自变量x的取值范围)..(1).证出∠BAF=∠AED ,∠AFB=∠D 得出相似(2).用勾股定理求出AE=5(3).由(1)得:ADBFAE AB =,得BF=512 1).415,(2).516524或(3).S 五边形CDEPF =S △BCD =86 26、解:(1)△BE C ∽△AEF △BE C ∽△DCF …………………(2分)∵四边形ABCD 是菱形 ∴AB ∥CD ,BC ∥AD∴∠BE C=∠DCF ,∠BCE =∠DFC ∴△BE C ∽△DCF …………………(4分) (2)由题意可得,BC=CD=3 ∵△BE C ∽△DCF∴DF BC DC BE = 即233=BE∴BE= …………………(8分)(3)∵∠A=60°,∴△ABD 是等边三角形,∴BD=3 ∠EBD=∠FDB=120°又∵325.43==BE BD32=BD DF ∴BD DFBE BD = ∴△EBD ∽△BDF …………………(10分)∴∠BED=∠DBF 又∵∠BDH=∠HDB∴△EBD ∽△BHD∴EDBD BD DH =即BD2=DH ﹒DE …………………(12分)(2)证明:∵△EDF 是由△EFO 折叠得到的,∴∠1=∠2. 又∵DG ∥y 轴,∠1=∠3. ∴∠2=∠3.∴DE=DT . ∵DE=EO ,∴EO=DT . …………………………2分(3)41612+-=x y . …………………………3分4﹤x ≤8. ………………………………………………………………………………………4分(4)解:连接OT , 由折叠性质可得OT =DT . ∵DG=8,TG =y , ∴OT =DT =8-y .∵DG ∥y 轴,∴DG ⊥x 轴. 在Rt △OTG 中,∵222TG OG OT +=,∴222)8(y x y +=-.解:延长BP 与AC 相交于D ,延长MP 与AB 相交于E因为∠1=∠3,AP ⊥BD ,AP=AP 所以△ABP ≌△APD于是BP=PD,故PM∥AC所以∠2=∠3又因为∠1=∠3所以∠1=∠2,EP=AE= 12AB=1/2×12=6AD=2EP=2×6=12 DC=22-12=10PM=12DC=12×10=5故MP的长为5.故答案为5.。

相关文档
最新文档