八年级数学轴对称教案

合集下载

轴对称图形教案(6篇)

轴对称图形教案(6篇)

轴对称图形教案(6篇)轴对称图形教案篇一教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识对称图形。

2、使学生能根据对称图形初步认识,在图形中识别对称图形,用一些方法做出对称图形。

3、使学生在认识和制作简单的对称图形的过程中,感受到物体或图形的对称美。

激发数学学习的兴趣。

教学重点:对称图形的初步认识和制作。

教学难点:对称图形的初步认识。

教学准备:1.师:课件等2.生:剪刀、纸、等材料教学过程:一、谈话激趣。

1、你们喜欢玩吗?给你们一张纸,你们能玩吗?怎么玩?2、你们猜猜老师会玩吗?想知道老师是怎么玩的?(撕纸)只有一张纸,先对折,认真的撕一部分……同学们注意看老师是在很认真的撕……3、想学老师这样玩吗?请拿出纸玩玩。

(认真的撕)4、作品展示二、“认”对称,悟特征。

1.以撕(剪)出的图形为例。

撕(剪)出的图形,有什么特点?动手试一试,互相交换试试。

(对折,完全重合。

)师:像这样的图形,对称图形。

(板书课题)对折,两侧完全重合,这个图形就是对称图形,2、巩固判断对称图形。

课件①同学们,我们刚才认识了一种新的图形(对称图形)。

问:想一想,我们学过哪些图形?强调:有些图形看起来象是轴对称图形,但他们却不是轴对称图形;有些图形看起来不象是轴对称图形,但他们却是轴对称图形;折一折,看一看哪些是对称图形,投影出示,折一折,说明是否是对称图形,并说说各原因。

三、观对称,加强认识。

(课件)1、展示数学课件,欣赏图片。

今天,老师为同学们带来了一些美丽的'图案。

请看。

请判断这些图案是不是对称图形?(课件)2、判断电脑中的图案是否是对称的。

(学生说说判断的依据)。

四、猜图案自己想。

选择你喜欢的一个说说……奥运五环(奥运五环也称为奥林匹克环,从左至右为天蓝、黄、黑、绿、红五色。

五环的含义是“象征五大洲的团结,全世界的运动员以公正、坦率的比赛和友好的精神,在奥运会上相见”。

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

《轴对称图形》教案(最新5篇)

《轴对称图形》教案(最新5篇)

《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。

3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

教学重点:理解轴对称图形的特征。

教学难点:掌握并能准确辨别较为复杂的轴对称图形。

教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。

)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。

教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。

板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。

引导学生观察图片上的物体,说说它们有什么共同特征。

教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。

得出结论:这些图形对折后“两部分完全重合”。

介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。

(板书轴对称图形定义)。

中间这条折痕就是轴对称图形的对称轴。

(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1 轴对称图形的教案-沪科版八年级数学上册一、教学目标1.了解什么是轴对称图形。

2.能够判断一个图形是否具有轴对称性。

3.能够找到图形的对称轴。

4.能够根据对称轴绘制轴对称图形。

二、教学准备1.教师准备:–沪科版八年级数学上册课本。

–沪科版八年级数学上册教师用书。

–相应的课件和教学工具。

2.学生准备:–数学工具(尺子、直尺等)。

–笔记本和铅笔。

–沪科版八年级数学上册练习册。

三、教学过程导入新知1.让学生观察一些日常生活中的图形,让他们描述这些图形是否具有轴对称性。

引导学生思考什么是轴对称图形。

学习轴对称图形的定义1.教师给出轴对称图形的定义:“轴对称图形是指可以通过一个轴进行翻转,使图形重合的图形。

”2.教师通过示例和图示来解释和展示轴对称图形的特征。

判断图形是否具有轴对称性1.教师通过一些实例来让学生自己判断图形是否具有轴对称性。

2.教师提供一些简单的几何图形,让学生观察并试着找出图形的对称轴。

3.学生通过直观观察和推理来判断图形是否具有轴对称性,并找出对称轴。

绘制轴对称图形1.教师给出一个简单的图形,并指导学生根据对称轴绘制该图形的轴对称图形。

2.学生根据对称轴绘制图形的轴对称图形。

3.教师展示学生绘制的轴对称图形,并指导学生进行讨论和比较。

巩固练习1.学生进行练习册上相关的练习题,巩固所学知识。

拓展延伸1.提供更复杂的图形,让学生进行观察、判断和绘制轴对称图形。

四、教学总结通过本节课的学习,我们了解了轴对称图形的概念和特征,学会了判断图形是否具有轴对称性,并能够根据对称轴绘制轴对称图形。

五、课后作业1.完成课堂练习册上相关的练习题。

2.查找一些日常生活中的轴对称图形,并写下你的观察和思考。

注意:这是一个示例教案,教师根据具体情况可以适当调整教学内容和安排。

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇八年级数学上册轴对称的教案篇1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?Ⅱ.导入新课计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;如果括号前是负号,去掉括号后,括号里的各项都要变号。

轴对称图形教案(精选5篇

轴对称图形教案(精选5篇

轴对称图形教案(精选5篇一、教学内容本节课选自《中学数学》教材第四章第二节,主要讲解轴对称图形的概念、性质和应用。

详细内容包括:轴对称图形的定义、对称轴的判定、轴对称图形的性质、在实际问题中的应用等。

二、教学目标1. 理解并掌握轴对称图形的概念,能够识别常见的轴对称图形。

2. 学会判定轴对称图形的对称轴,了解轴对称图形的性质。

3. 能够运用轴对称图形的知识解决实际问题,提高空间想象能力和逻辑思维能力。

三、教学难点与重点教学难点:轴对称图形的判定、性质的理解和应用。

教学重点:轴对称图形的定义、对称轴的判定、性质及在实际问题中的应用。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:直尺、圆规、三角板、量角器。

五、教学过程1. 实践情景引入2. 知识讲解(1)轴对称图形的定义:介绍轴对称图形的概念,给出定义。

(2)对称轴的判定:讲解如何判断一个图形是否为轴对称图形,给出判定方法。

3. 例题讲解讲解典型例题,引导学生运用所学知识解决问题。

4. 随堂练习布置几道有关轴对称图形的练习题,让学生当堂完成,巩固所学知识。

5. 课堂小结六、板书设计1. 轴对称图形2. 定义:轴对称图形的概念3. 判定:对称轴的判定方法4. 性质:轴对称图形的性质5. 例题:典型例题及解答6. 练习题:随堂练习题七、作业设计1. 作业题目(1)判断下列图形是否为轴对称图形,若为轴对称图形,请指出对称轴。

(2)已知一个轴对称图形,求其对称轴。

(3)运用轴对称图形的性质,解决实际问题。

2. 答案(1)图形1、3、5为轴对称图形,对称轴分别为x轴、y轴、直线y=x。

(2)图形的对称轴为直线y=x。

(3)答案见作业解答。

八、课后反思及拓展延伸1. 反思:本节课学生对轴对称图形的概念和判定掌握较好,但在性质的理解和应用上存在一定难度,需要在今后的教学中加强训练。

2. 拓展延伸:引导学生探索轴对称图形在生活中的应用,如设计图案、建筑美学等,提高学生的创新意识和实践能力。

初中数学《生活中的轴对称》优秀教案

初中数学《生活中的轴对称》优秀教案

初中数学《生活中的轴对称》优秀教案
知识目标
1.掌握轴对称的概念及其表示方法;
2.理解轴对称的性质;
3.运用轴对称的知识,解决生活中有关轴对称的问题。

教学重点
1.轴对称的概念及其表示方法;
2.轴对称的性质。

教学难点
1.运用轴对称的知识,解决生活中有关轴对称的问题。

教学准备
1.准备一些有轴对称的物品照片;
2.让学生自带一些具有轴对称的物品。

教学过程
1. 导入
1.引入“轴对称”概念,并与学生共同探讨轴对称在生活中的应用;
2.给学生展示一些有轴对称的物品照片,引导学生尝试找出其中的轴对称轴线;
3.让学生自带一些有轴对称的物品并与全班分享。

2. 讲解
讲解轴对称的概念、表示方法及其性质,让学生对轴对称进行深入理解。

3. 实践
1.按照学生自带的轴对称物品,让学生分组讨论寻找它们的轴对称轴线,让每组发言表述他们的思路;
2.让每个小组选出一位代表,在班内展示他们找到的轴对称轴线;
3.集体讲解每个物品的轴对称轴线是否正确。

4. 练习
1.布置课堂作业,让学生完成练习册中有关轴对称的习题;
2.监督学生自主学习、相互合作解决问题。

教学反思
此次课堂,针对初中学生的认知能力及情感需求,采用了以实物为重点,注重小组讨论,共同的展示交流等方式来启发学生思考,激发学习兴趣,鼓励他们互相合作解决问题,提升了学生的自主学习能力和发现问题能力,课堂气氛融洽。

在下一次教学中,我们将针对学生能力水平的不同,采用不同的实践方式,以便更好地满足学生需求,使教学更高效。

人教初中数学八上《轴对称》教案 (公开课获奖) (3)

人教初中数学八上《轴对称》教案 (公开课获奖) (3)

《轴对称》【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。

(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。

(3)了解轴对称的性质。

2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。

3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。

【教学难点】轴对称的性质。

【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C 的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称(一)
教学目标:
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
教学重点:
轴对称图形的概念.
教学难点
能够识别轴对称图形并找出它的对称轴.
教具准备:三角尺
教学过程
一.创设情境,引入新课
1.举实例说明对称的重要性和生活充满着对称。

2. 对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
二.导入新课
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
2.观察:如图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?
3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.
4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意
刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三.随堂练习
1、课本30练习
2、P31练习
四.课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.
五.课后作业
习题12.1─1、2、6题.
轴对称(二)
教学目标
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
教学重点:
轴对称的性质,线段垂直平分线的性质
教学难点:
1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.
教具准备:圆规、三角尺、
一.创设情境,引入新课
1.什么样的图形是轴对称图形呢?
2.轴对称图形有哪些性质,从图形中能得到结论?
二.导入新课
1.如下图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、•B 、C 对称点,线段AA ′、BB ′、CC ′与直线MN 有什么关系?为什么?(学生思考并做小范围讨论)
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
2.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,•那么对称轴是任
何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对
对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]如下图.木条L 与AB 钉在一起,L 垂直平分AB ,P 1,P 2,P 3,…是L
上的点,•分别量一量点P 1,P 2,P 3,…到A 与B 的距离,你有什么发现?
证法一:利用判定两个三角形全等.
如下图,在△APC 和△BPC 中,
P C P C
P C A P C B R t A C B C =⎧⎪∠=∠=
∠⎨⎪=⎩
⇒ △APC ≌△BPC ⇒ PA=PB.
证法二:利用轴对称性质.
由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,
线段PA 与PB 是重合的,•因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
三.随堂练习课本P34练习
1.如下图,AD⊥BC,BD=DC,点C在AE的垂直平
分线上,AB、AC、CE的长度有什么关系?AB+BD与DE
有什么关系?
2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平
分线吗?四.课时小结:
这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
五.课后作业课本习题12.1 3、4、9题.
轴对称(三)
教学目标:
1.探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.
2.在探索的过程中,培养学生分析、归纳的能力.
教学重点:
轴对称图形对称轴的作法.
教学难点:
探索轴对称图形对称轴的作法.
教具准备:圆规、三角尺
教学过程
一.提出问题,引入新课
1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,•你能比较准备地作出轴对称图形的对称轴吗?
2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.
3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.
4.问题:如何作出线段的垂直平分线?
二.导入新课
1.要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.
[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?
已知:线段AB[如图(1)].
求作:线段AB的垂直平分线.
作法:如图(2)
(1).分别以点A、B为圆心,以大于1
2
AB的长为半径作弧,两弧相交于C和D两点;
(2).作直线CD.
直线CD就是线段AB的垂直平分线.
2.[例]图中的五角星有几条对称轴?作出这些对称轴.
作法:
1.找出五角星的一对对应点A和A′,
连结AA′.
2.作出线段AA′的垂直平分线L.
则L就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.
三.随堂练习
(一)课本35练习1、2、3
如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.
答案:与A成轴对称的是图形D(或B).
四.课时小结
本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的
方法:找出轴对称图形的任意一对对应点,连结这对对应点,•作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.
五.课后作业
课本P36-37习题12.1 5、10、11、12题.。

相关文档
最新文档