机床夹具设计原理
机床夹具概述

第一节
机床夹具概述
4)加工中需先试切一段行程,测量尺寸, 根据测量结果再调整铣刀的相对位置, 直至达到要求为止。 5)每加工一个工件均重复上述步骤。 • 这种装夹方法不但费工费时,而且加工 出一批工件的加工误差分散范围较大。
第一节
机床夹具概述
采用夹具装夹方法,不需要进行划线就可把工件 直接放入夹具中去。工件的A面支承在两支承板2 上;B面支承在两齿纹顶 支承钉3上;端面靠在支 承钉4上,这样就确定了 工件在夹具中的位置, 然后旋紧螺母9通过压板 8把工件夹紧,完成了工 件的装夹过程。下一工 件进行加工时,夹具在 机床上的位置不动,只 需松开螺母9进行装卸工 件即可。
第一节
机床夹具概述
3.夹具的两个齿纹顶支承钉3的支承工作面 与两定位键侧面保持平行,也就使支承钉 3的支承工作面与铣 床纵向进给方向平行。 4.由于工件以B面与两 支承钉3的支承工作 面相接触,因而最终 保证了铣出的槽的侧 面与工件B面平行。
第一节
机床夹具概述
对尺寸精度的保证 1.夹具上装有对刀块5,利用对刀塞尺10塞入对刀 块工作面与立铣刀切削刃之间来确定铣刀相对夹 具的位置,此时可相应 横向调整铣床工作台的 位置和垂直升降工作台 来达到刀具相对对刀块 的正确位置。 2.由于对刀块的两个工 作面与相应夹具定位支 承板2和齿纹顶支承钉3 的各自支承面已保证和 尺寸,因而最终保证铣 出槽子的a和b尺寸。
不对应特定的加工对象,适用范 围宽,通过适当的调整或更换夹 通用可调 具上的个别元件,即可用于加工 夹具 形状、尺寸和加工工艺相似的多 种工件。 专为某一组零件的成组加工而设 计,加工对象明确,针对性强。 成组夹具 通过调整可适应多种工艺及加工 形状、尺寸。
第一节
机床夹具概述
机械制造技术基础第四版卢秉恒机床夹具原理与设计知识点总结

机械制造技术基础第四版卢秉恒机床夹具原理与设计知识点总结
《机械制造技术基础第四版》卢秉恒编著,是一本经典的机械制造教材,涵盖了机械制造的各个方面。
其中关于机床夹具原理与设计的知识点如下:
1. 夹具的分类:按结构方式分为机械夹具、液压夹具、气动夹具,按夹具和工件之间的接触方式分为机械夹持、真空吸附、磁性吸附。
2. 夹具的构成:夹具主要由基座、定位元件、夹紧元件、调整元件、传动元件组成。
3. 夹具的夹紧原理:夹紧元件可以使工件获得夹紧力和定位力,常用的夹紧方式有曲柄式、螺旋式、压板式、钩爪式、气体式等。
4. 夹具的设计原则:考虑夹紧力和定位精度的要求,利用材料力学及刚度分析方法确定夹具总体结构大小,根据工件形状确定定位和夹紧位置,在夹具内设置适当排列的槽孔和凸台实现工件的精确定位和夹紧。
5. 夹具的应用范围:常用于机械加工、装配和检测等工序,适用于各种材质和形状的工件。
以上为机床夹具原理与设计的简要概述,具体知识点详见相关章节。
需要注意的是,本回答涉及到学习资料内容,仅供参考学习之用,请勿用于商业用途。
机械制造技术基础课件机床夹具设计原理

消除或减少过定位的方法主要有:
(1) 提高工件定位基准之间及定位元件工作表面之间的位置精度,减少过定位对加 工精度的影响,使不可用过定位变为可用过定位;
(2) 改变定位方案,避免过定位。改变定位元件的结构,如圆柱销改为菱形销、长 销改为短销等;或将其重复限制作用的某个支承改为辅助支承(或浮动支承)。
4.过定位
图4.5 连杆大头孔加工时工件在夹具中的定位
如图4.5所示的连杆定位方案,长销限制了
、 4个自由度,支承板
限制了
、 3个自由度,其中 被两个定位元件重复限制,这就产生了过定
位。当连杆小头孔与端面有较大的垂直度误差时,夹紧力F将使长销弯曲或使连杆
变形,见图4.5(b)、(c),造成连杆加工误差,这时为不可用过定位。若采用图4.5
4.1 机床夹具概述
4.1.4 机床夹具的功能
(1)保证工件的加工精度,稳定产品质量。机床夹具的首要任务是 保证加工精度,特别是保证被加工工件的加工面与定位面之间以及被加工 表面相互之间的尺寸精度和位置精度。使用夹具后,这种精度主要靠夹具 和机床来保证,不再依赖于工人的技术水平。
(2)提高劳动生产率、降低成本。使用夹具后可减少划线、找正等 辅助时间,而且易于实现多件、多工位加工。在现代夹具中,广泛采用气 动、液压等机动夹紧等装置,还可使辅助时间进一步减小。因而可以提高 劳动生产率、降低生产成本。
(3)通用可调夹具和成组夹具
(4)组合夹具
(5)随行夹具
4.1 机床夹具概述
4.1.2 机床夹具的分类
2)按使用的机床分类
按所使用的机床不同,夹具可分为车床夹具、铣床夹具、钻床夹 具、镗床夹具、磨床夹具、齿轮机床夹具和其他机床夹具等。
3)按夹紧动力源分类
机械制造工艺学机床夹具设计原理课件

数字化
利用数字化技术实现产品设计 、工艺规划和生产过程的数字 化管理,提高生产效率和产品 质量。
精密化
采用高精度加工设备和工艺技 术,提高产品精度和表面质量 ,满足高精度和高性能产品的
需求。
02 机床夹具设计原理
机床夹具的分类与特点
通用夹具
专用夹具
适用于一定范围内的各种零件的加工,如 三爪卡盘、四爪卡盘等。特点为结构简单 ,通用性强,但效率较低。
涉及船舶的制造,包括 船体结构、推进系统和
船舶设备的制造。
电子工业
涉及电子产品的制造, 如集成电路、电子元件
和显示器的制造。
机械制造工艺学的发展趋势
智能化
利用人工智能、大数据和云计 算等技术手段,实现机械制造
过程的智能化和自动化。
绿色化
注重环保和可持续发展,采用 清洁能源和绿色制造技术,降 低能耗和减少废弃物排放。
定位误差的产生与计算
定位误差的产生是由于工件在夹具中的定位基准与加工要求不一致所引 起的。
定位误差的计算方法包括极值法和概率法,极值法适用于定位元件为刚 性、无弹性的情况,概率法适用于定位元件有一定弹性、工件尺寸有一
定分散性的情况。
定位误差的大小对加工精度和产品质量有重要影响,因此需要对其进行 控制和补偿。
设计夹具体和零部件
根据结构方案,设计夹具体的各个零部件 ,并确定其尺寸、材料和热处理要求等。
03 夹具材料的选择与处理
夹具材料的种类与特性
钢材
硬度高、耐磨性好,适用于需要承受较大夹 紧力和切削力的夹具。
铝合金
轻便、易于加工,适用于需要快速装夹和轻 量化的夹具。
铸铁
具有良好的耐磨性和抗冲击性,适用于粗加 工和重型夹具。
第6章 机床夹具

与夹具体的配合为:H7/r6,H7/n6。
第六章 机床夹具设计 支承板:多用于工件上已加工平面的定位,一般用2个~3个M6~M12 的螺钉紧固在夹具体上。在受力较大或支承板有移动趋势时,应增加圆锥 销或将支承板嵌入夹具槽内。 支承板的结构有三种,见图。(a)型结 构简单、制造方便,故常适用于侧面和顶 面定位。(c)型结构易于保证上表面清洁, 可用于底面定位。 当工件定位基准面较大时(如箱体类 零),夹具上常设置多个支承板,用它们 的工作面组合成大的定位支承面,为确保 各支承板工作面的等高性,工艺上是用装 配后再统一“终磨”一次保证的。
第六章 机床夹具设计 平头支承钉常用于定位面较平整的工件。圆头支承钉与定位平面为点接触, 可保证接触点位置的相对稳定、但它易磨损,且使定位面产生压陷,给工件夹 紧后带来较大的安装误差,装配时也不易使几个支承处于所需的同一平面上, 故园头支承仅适用于未经加工的平面定位。网纹头支承钉与定位面间的摩擦 力较大,阻碍工件移动,加强定位的稳定性,但槽内易积切屑,常用在粗糙表 面的侧面定位。
用合理分布的六个支承点,即 可限制工件的六个自由度,使工件 的空间位置完全确定下来,这一原 理称为六点定位原理。
注意:在加工过程中并不一定 要求要将工件的六个自由度全部限 制,这要根据加工要求而定。
第六章 机床夹具设计
完全定位
如图a所示,为满足加工要求,工件的六个自由度都必须被限制。像这种 工件的六个自由度都被限制的情况,称为完全定位。
第六章 机床夹具设计
第六章 机床夹具设计 ③锥度心轴:为了消除工件与心轴的配合间隙,提高定心定位精度,在 夹具设计中还可选用如图所示的小锥度心轴。为防止工件在心轴上定位 时的倾斜,此类心轴的锥度通常取K=1/1000~1/5000,心轴的长度则根 据被定位工件圆孔的长度、孔径尺寸公差和心轴锥度等参数确定。 定位时,工件楔紧在心轴锥面上,楔紧后由于孔的局部弹性变形, 使它与心轴在一定长度上产生过盈配合,从而保证工件定位后不致倾斜。 此外,加工时也靠此楔紧所产生的过盈部分带动工件,而不需另外再夹 紧工件。
机床夹具设计原理

本演示将介绍机床夹具的设计原理和相关内容,包括夹具的概述、作用、分 类,基本要求,夹紧方式的选择,刚性分析与计算,精度要求,以及其他各 方面的内容。
机床夹具的作用
机床夹具在加工过程中起到固定工件、定位工件、夹紧工件的作用,有效提高加工精度和效率。
固定工件
通过合理的夹具设计,确保工件 在加工过程中保持稳定的位置。
1 高硬度材料
对于需要进行高速切削加工的工件,夹具材 料应具备足够的硬度和耐磨性。
2 耐热材料
对于需要进行高温加工的工件,夹具材料应 具备足够的耐高温性能。
3 耐腐蚀材料
对于特殊材料或化学腐蚀性较高的工件,夹 具材料应具备足够的耐腐蚀性。
4 高韧性材料
对于大型工件或需要承受冲击力的工件,夹 具材料应具备足够的韧性和强度。
2 液压夹具
利用液压系统提供的压力实现夹紧产生的力进行夹紧,如气动卡盘、 气动夹具等。
4 电磁夹具
利用电磁力实现夹紧工件,如电磁卡盘、电 磁夹具等。
机床夹具的基本要求
稳定性
夹具需要具备足够的稳定性,能够承受加工过程 中的力和振动。
精度
夹具要能够提供足够的定位精度和夹紧力度,确 保加工精度。
定位工件
夹紧工件
夹具将工件准确地定位在机床上, 使得加工操作精确可控。
夹具使用合适的夹紧方式,确保 工件牢固地固定在机床上,避免 移动和偏移。
机床夹具的分类
根据不同的夹紧方式和应用场景,机床夹具可以分为机械夹具、液压夹具、气动夹具、电磁夹具等多种类型。
1 机械夹具
通过机械力实现夹紧工件,如螺纹夹具、卡 盘等。
夹具的精度要求
精度测量
通过精密测量设备对夹具的定位 精度和夹紧力度进行测量。
5第五章 机床夹具设计原理

由工序简图知,加工尺寸20 ±0.15工序基准(也是设计基准)是A面, 而定位基准是B面,出现定位基准与工序基准不重合,必然存在基准不重 合误差。这时的定位尺寸是40 ±0.14,与加工寸方向一致。所以基准不 重合误差的大小就是定位尺寸的公差 ,即△b =0.28mm。若定位基准 B面制造得比较平整光滑,则同批工件的定位基准位置不变,不会产生基 准位移误差,即△j=0。所以有 △d = △b +△j= △b =0.28mm,而加工尺 寸20 ±0.15 的公差为:δ=0.30mm,此时 △b =0.28mm> δ/3=0.10mm。 可知,定位误差太大, 而留给其它加工误差的 允差值就太小了,只有 0.02mm,在实际加工 中容易出现废品。 所以此方案不宜采用。
第五章 机床夹具设计原理
第一节 概述
机床夹具通过使工件在机床上相对刀具占有正确的位置的过程— 定位,以及克服切削过程中工件受外力的作用保持工件的准确位置的 过程—夹紧,来实现工件装夹。定位和夹紧两个过程的综合称为装夹, 完成工件装夹的工艺装备称为机床夹具。 一、机床夹具的功用 1.能稳定地保证工件的加工精度
△d+△∑≤ δ
(5-4)
式中 △d—工件在夹具中的定位误差,一般小于δ /3; △∑—除定位误差以外,其它因素所引起的误差总和(如机床、刀具 制造误差及磨损误差,工艺系统变形误差等),可按加工经济精度查 表确定。
(一)定位误差及其产生原因 所谓定位误差△d ,是指由于工件定位造成的加工面相对工序基准的位 置误差。因为对一批工件来说,刀具经调整后位置是不动的,即被加工 表 面的位置相对于定位基准是不变的,所以: 定位误差就是工序基准在加工尺寸方向上的最大变动量。 定位误差的组成及产生原因有以下两个方面: ① 定位基准与工序基准不一致所引起的定位误差,称基准不重合误差, 即工序基准相对定位基准在加工尺寸方向上的最大变动量,以△b表示。 ② 定位副制造误差及其配合间隙所引起的定位误差,称基准位移误差,
第四章 机床夹具原理与设计

三、夹具的分类与组成 机床夹具按通用性程度分类: (1)机床附件类夹具 (2)可调夹具 (3)随行夹具 (4)组合夹具 (5)专用夹具
2、夹具的组成: (1)定位元件 (2)夹紧装置 (3)对刀元件 (4)导引元件 (5)联接元件 (6)夹具体 (7)其它装置
-、工件的自由度 -个尚未定位的工件,其位置是不确定的,它有 六个自由度。定位的实质就是消除工件的自由度。
3、圆锥销
4、圆锥心轴(小锥度心轴)
三、工件以外圆柱面定位时的定位元件 1、V形块
2、定位套
3、半圆套 下面的半圆套是定位元件,上面的半圆套起夹紧 作用。这种定位方式主要用于大型轴类零件及不 便于轴向装夹的零件。
4、圆锥套 常用的反顶尖,由顶尖体1、螺钉2和圆锥套3组 成
四、组合定位分析 ˉ • 实际生产中工件的形状千变万化各不相 同,往往不能用单一定位元件定位单个 表面就可解决定位问题的,而是要用几 个定位元件组合起来同时定位工件的几 个定位面。因此一个工件在夹具中的定 位,实质上就是把前面介绍的各种定位 元件作不同组合来定位工件相应的几个 定位面,以达到工件在夹具中的定位要 求,这种定位分析就是组合定位分析。
• 当某个自由度被重复限制是“过定位”, 过定位一般是不允许的,但当工件定位 面精度较高,位置已有保证时,过定位 往往可提高刚性,也是允许的。
• 值得注意的是,所限制自由度少于六个 时也可能是过定位,但不一定是欠定位。 若支承点分布不合理,欠定位、过定位 可能同时出现。
第二节 常用定位方法及定位元件
jw D d X min
四、定位误差的计算 通常,定位误差可按下述方法进行分析计算: • 一是先分别求出基准位移误差和基准不重合 误差,再求出其在加工尺寸方向上的代数和, 即△dw=△jb+△jw; • 二是按最不利情况,确定一批工件设计基准 的两个极限位置,再根据几何关系求出此二 位置的距离,并将其投影到加工尺寸方向上, 便可求出定位误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章机床夹具设计原理本章主要介绍以下内容:1.机床夹具概述2.工件的定位原理及定位元件3.定位误差分析计算4.工件的加紧及夹紧装置5.机床夹具的设计要求及设计步骤6.机床夹具设计举例课时分配:1、2,各一个学时,3、两个学时,4、5、6,共两个学时重点:工件的定位原理及定位元件;定位误差分析计算难点:定位误差分析计算机床夹具是机械加工工艺系统的一个重要组成部分。
为保证工件某工序的加工要求,必须使工件在机床上相对刀具的切削或成形运动处于准确的相对位置。
当用夹具装夹加工一批工件时,是通过夹具来实现这一要求的。
而要实现这一要求,又必须满足三个条件:①一批工件在夹具中占有正确的加工位置;②夹具装夹在机床上的准确位置;③刀具相对夹具的准确位置。
这里涉及了三层关系:零件相对夹具,夹具相对于机床,零件相对于机床。
工件的最终精度是由零件相对于机床获得的。
所以“定位”也涉及到三层关系:工件在夹具上的定位,夹具相对于机床的定位,而工件相对于机床的定位是间接通过夹具来保证的。
工件定位以后必须通过一定的装置产生夹紧力把工件固定,使工件保持在准确定位的位置上,否则,在加工过程中因受切削力,惯性力等力的作用而发生位置变化或引起振动,破坏了原来的准确定位,无法保证加工要求。
这种产生夹紧力的装置便是夹紧装置。
6.1 夹具一、机床夹具概述1.机床夹具的概念机床夹具是机床上用以装夹工件(和引导刀具)的一种装置。
其作用是将工件定位,以使工件获得相对于机床和刀具的正确位置,并把工件可靠地夹紧。
2.机床夹具的分类机床夹具可根据其使用范围,分为通用夹具、专用夹具、组合夹具、通用可调夹具和成组夹具等类型。
机床夹具还可按其所使用的机床和产生加紧力的动力源等进行分类。
根据所使用的机床可将夹具分为车床夹具、铣床夹具、钻床夹具(钻模)、镗床夹具(镗模)、磨床夹具和齿轮机床夹具等,根据产生加紧力的动力源可将夹具分为手动夹具、气动夹具、液压夹具、电动夹具、电磁夹具和真空夹具等。
3.机床夹具的组成(1)定位元件(2)夹紧装置(3)对刀、引导元件或装置(4)连接元件(5)夹具体(6)其它元件及装置二、定位基准基准是用以确定生产对象上几何要素间的几何关系所依据的点,线,面。
在加工中用以定位的基准称为定位基准。
有时,作为基准的点、线、面在工件上不一定具体存在(例如孔的中心线和对称中心平面等),其作用是由某些具体表面(如内孔圆柱面)体现的,体现基准作用的表面称为基面。
三、工件在夹具中的定位(一)六点定位原理任何未定位的工件在空间直角坐标系中都具有六个自由度。
工件定位的任务就是根据加工要求限制工件的全部或部分自由度。
工件的六点定位原理是指用六个支撑点来分别限制工件的六个自由度,从而使工件在空间得到确定定位的方法。
(二)支承点与定位元件上图为常见定位方式中的定位元件所限制的自由度和相当的支承点数(三)完全定位与不完全定位工件的六个自由度完全被限制的定位称为完全定位。
按加工要求,允许有一个或几个自由度不被限制的定位称为不完全定位。
(四)欠定位与过定位按工序的加工要求,工件应该限制的自由度而未予限制的定位,称为欠定位。
在确定工件定位方案时,欠定位时绝对不允许的。
工件的同一自由度背二个或二个以上的支撑点重复限制的定位,称为过定位。
在通常情况下,应尽量避免出现过定位。
消除过定位及其干涉一般有两个途径:其一是改变定位元件的结构,以消除被重复限制的自由度;其二是提高工件定位基面之间及夹具定位元件工作表面之间的位置精度,以减少或消除过定位引起的干涉。
四、组合夹具和随行夹具(一)组合夹具组合夹具是由一套预先制造好的标准元件和合件组装而成的专用夹具。
(二)随行夹具随行夹具是大批量生产中在自动线上使用的一种移动式夹具。
6.2 夹具定位误差分析计算所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。
因为对一批工件来说,刀具经调整后位置是不动的,即被加工表面的位置相对于定位基准是不变的,所以定位误差就是工序基准在加工尺寸方向上的最大变动量。
㈠引言①△总≤δ其中△总为多种原因产生的误差总和,δ是工件被加工尺寸的公差,△总包括夹具在机床上的装夹误差,工件在夹具中的定位误差和夹紧误差,机床调整误差,工艺系统的弹性变形和热变形误差,机床和刀具的制造误差及磨损误差等。
②△定+ω≤δ其中,ω除定位误差外,其他因素引起的误差总和,可按加工经济精度查表确定。
所以由①和②知道:△定≤δ-ω(是验算加工工件合格与否的公式)或者:△定≤1/3δ(也是验算加工工件合格与否的公式)㈡定位误差的组成1、定义:定位误差是工件在夹具中定位,由于定位不准造成的加工面相对于工序基准沿加工要求方向上的最大位置变动量。
2、定位误差的组成:定位基准与工序基准不一致所引起的定位误差,称基准不重合误差,即工序基准相对定位基准在加工尺寸方向上的最大变动量,以△不表示。
定位基准面和定位元件本身的制造误差所引起的定位误差,称基准位置误差,即定位基准的相对位置在加工尺寸方向上的最大变动量,以△基表示。
故有:△定=△不+△基此外明确两点:①只用调整法加工一批零件才产生定位误差,用试切法不产生定位误差;②定位误差是一个界限值(有一个范围)。
㈢定位误差的分析计算⑴工件以平面定位时的定位误差定位基准:平面;定位元件工作面:平面 ====>易加工平整,接触良好===>所以△基=0 △定=△不(注:若位毛坯面,则仍有△基)⑵工件以外圆柱面定位时的定位误差(以V形块为例)工序基准定位基准△定H1尺寸:A0△不≠0,△基≠0H2尺寸:00△不=0,△基≠0H3尺寸:B0△不≠0,△基≠0 ①对H2尺寸:△不=0,△基为定位基准线0的在加工方向的最大变动量,即OO' 所以△基=OO'=OE-O'E=[dmax/2sin(α/2)]-[dmin/2sin(α/2)]=δd/2sin(α/2)即:△定=△不+△基=0+δd/2sin(α/2)=δd/2sin(α/2)②对H1尺寸:△不=δd/2,△基=δd/2sin(α/2)或:△定=AA'=AO+OO'-A'O'=dmax/2+δd/2sin(α/2)-dmin/2=δd/2{1+[1/sin(α/2)]}③对H3尺寸:△定=BB'=B'O'+OO'-OB=(dmin/2)+[δd/2sin(α/2)]-dmax/2=δd/2{[1/sin(α/2)]-1}综上所述:△定(H3)<△定(H2)<△定(H1) ,所以标注尺寸H3最好。
⑶工件以内孔表面定位时的定位误差①主要介绍工件孔与定位心轴(或销)采用间隙配合的定位误差计算△定=△不+△基a.心轴(或定位销)垂直放置,按最大孔和最销轴求得孔中心线位置的变动量为:△基=δD+δd+△min=△max (最大间隙)b.心轴(或定位销)水平放置,孔中心线的最大变动量(在铅垂方向上)即为△定△基=OO'=1/2(δD+δd+△min)=△max/2或△基=(Dmax/2)-(dmin/2)=△max/2②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时的定位误差此时,由于工件孔与心轴(销)为过盈配合,所以△基=0。
对H1尺寸:工序基准与定位基准重合,均为中心O ,所以△不=0对H2尺寸:△不=δd/2⑷工件以"一面两孔"定位时的定位误差①“1”孔中心线在X,Y方向的最大位移为:△定(1x)=△定(1y)=δD1+δd1+△1min=△1max(孔与销的最大间隙)②“2”孔中心线在X,Y方向的最大位移分别为:△定(2x)=△定(1x)+2δLd(两孔中心距公差)△定(2y)=δD2+δd2+△2min=△2max③两孔中心连线对两销中心连线的最大转角误差:△定(α)=2α=2tan-1[(△1max+△2max)/2L] (其中L为两孔中心距)以上定位误差都属于基准位置误差,因为△不=0。
6.3 工件的夹紧工件的夹紧与常用的夹紧装置一、工件的夹紧(一)夹紧装置1.夹紧装置的组成——动力装置、夹紧元件、中间传力机构2.夹紧装置的基本要求(1)夹紧既不应破坏工件的定位,或产生过大的夹紧变形,又要有足够的夹紧力,防止工件在加工中产生振动;(2)足够的夹紧行程,夹紧动作迅速,操纵方便、安全省力;(3)手动夹紧机构要有可靠的自锁性,机动夹紧装置要统筹考虑夹紧的自锁性和原动力的稳定性;(4)结构应尽量简单紧凑,制造、维修方便。
(二)夹紧力的确定1.确定夹紧力作用方向的原则(1)夹紧力的方向应使定位基面与定位元件接触良好,保证工件定位准确可靠;(2)加紧力的方向应与工件刚度最大的方向一致,以减小工件变形;(3)加紧力的方向应尽量与工件受到的切削力、重力等的方向一致,以减小加紧力。
2.确定夹具力作用点的原则(1)加紧力的作用点应正对支撑元件或位于支撑元件所形成的支撑面内;(2)夹具力的作用点应位于工件刚性较好的部位。
(3)夹具力的作用点应尽量靠近加工表面,以减小切削力对夹紧点的力矩,防止或减小工件的加工振动或弯曲变形。
二、常用的夹紧装置夹具中常用的夹紧装置有楔块,螺旋,偏心轮等,它们都是根据斜面夹紧原理而夹紧工件的。
(一)楔块夹紧装置楔块夹紧装置是最基本的夹紧装置形式之一,其他夹紧装置均是它的变形。
它主要用于增大夹紧力或改变夹紧力方向。
⑴楔块夹紧装置特点:①自锁性(自锁条件α≤ψ1+ψ2)②斜楔能改变夹紧作用力方向③斜楔具有扩力作用,ip=θ/p=1/[tanψ2+tan(α+ψ1)]④夹紧行程小⑤效率低(因为斜楔与夹具体及工件间是滑动摩擦,所以夹紧效率低)所以适用范围:多用与机动夹紧装置中⑵夹紧力计算:θ=p/[tanψ2+tan(α+ψ1)] 其中p为原始力,α为楔块升角,常数6度--10度ψ1:工件与楔块的摩擦角ψ2:夹具体与楔块的摩擦角⑶自锁条件:原始力P撤除后,楔块在摩擦力作用下仍然不会松开工件的现象称为自锁.α≤ψ1+ψ2 ,一般α取10--15度或更小⑷传力系数:夹紧力与原始力之比称为传力系数.用ip表示ip=θ/p=1/[tanψ2+tan(α+ψ1)]⑸楔块尺寸与材料:升角α确定后,其工作长度应满足夹紧要求,其厚度保证热处理不变形,小头厚应为75mm.材料一般用20钢或20Cr,渗碳厚为0.8--1.2mm.HRC:56--62.Ra为1.6μm.(二)螺旋夹紧装置螺旋夹紧装置是从楔块夹紧装置转化而来的,相当于吧楔块绕在圆柱体上,转动螺旋时即可夹紧工作.⑴螺旋夹紧装置特点:①结构简单,制造容易,夹紧可靠②扩力比ip大,夹紧行程S不受限制③夹紧动作慢,效率低应用场合:手动夹紧装置常采用.⑵螺杆夹紧力计算:θ=PL/r中tan(α+ψ1)+r1tanψ2其中:P是原始力,L是原始力作用点到螺杆中心距离,r中是螺旋中经的一半,α是螺旋升角,ψ1螺母于螺杆的摩擦角,r1摩擦力矩计算半径,ψ2工件与螺杆头部(或压块)间的摩擦角。